Package 'ScoreEB'

January 20, 2025

Type Package

Title Score Test Integrated with Empirical Bayes for Association Study

Version 0.1.1

Author Wenlong Ren

Maintainer Wenlong Ren <wenlongren@ntu.edu.cn>

Description Perform association test within linear mixed model framework using score test integrated with Empirical Bayes for genome-wide association study. Firstly, score test was conducted for each marker under linear mixed model framework, taking into account the genetic relatedness and population structure. And then all the potentially associated markers were selected with a less stringent criterion. Finally, all the selected markers were placed into a multilocus model to identify the true quantitative trait nucleotide.

License GPL-3

Imports data.table Encoding UTF-8 LazyData true NeedsCompilation yes Depends R (>= 3.5.0) RoxygenNote 7.1.1 Repository CRAN

Date/Publication 2021-09-15 21:10:12 UTC

Contents

ebayes_EM	2
geno	2
likelihood	
multinormal	
PCG	
pheno	
ScoreEB	6
	0
	•

Index

ebayes_EM

Description

Empirical Bayes using expectation-maximization algorithm.

Usage

ebayes_EM(x,z,y,EMB.tau,EMB.omega)

Arguments

х	fixed effect vector or matrix.
z	genotype data.
У	phenotype data.
EMB.tau	one of hyperparameters in inverse chi-square distribution.
EMB.omega	one of hyperparameters in inverse chi-square distribution.

Value

The effect values of markers, and their absolute values are used as the basis for
further screening.

Examples

u

```
data(geno)
data(pheno)
EMB.tau <- 0
EMB.omega <- 0
z <- t(geno[,-c(1:4)])
y <- as.matrix(pheno)
nsample <- dim(z)[1]
x <- as.matrix(rep(1,nsample))
ebayes_EM(x,z,y,EMB.tau,EMB.omega)
```

geno
50110

Genotype of example data

Description

Genotype dataset with SNP chromosome, position and etc.

Usage

data(geno)

likelihood

Details

Dataset input of genotype in ScoreEB function.

likelihood

Carry out likelihood ratio test

Description

Snps selected via EM-Bayes to further identified by likelihood ratio test.

Usage

likelihood(xxn,xxx,yn,bbo)

Arguments

xxn	fixed effect vector or matrix.
XXX	snp matrix which are selected by EM-Bayes.
yn	phenotype data.
bbo	effect value of snp estimated by EM-Bayes.

Value

lod Odds of logarithm vector of markers.

Examples

```
data(geno)
data(pheno)
z <- t(geno[,-c(1:4)])
y <- as.matrix(pheno)
n.sample <- dim(z)[1]
m.marker <- dim(z)[2]
x <- as.matrix(rep(1,n.sample))
beta <- rnorm(m.marker)
likelihood(x,z,y,beta)
```

multinormal

Description

Obtain P value with multivariate normal distribution.

Usage

multinormal(y,mean,sigma)

Arguments

У	column vector.
mean	arithmetic mean.
sigma	standard deviation.

Value

pdf_value A vector of multivariate normal distribution density function.

Examples

```
data(pheno)
y <- pheno
mean <- 2.0
sigma <- 1.5
multinormal(y,mean,sigma)</pre>
```

PCG

Preconditioned Conjugate Gradient

Description

Conduct preconditioned conjugate gradient method to accelerate.

Usage

PCG(G,b,m.marker,sigma.k2,sigma.e2,tol,miter)

pheno

Arguments

G	genotype data.
b	column vector.
m.marker	the number of markers.
sigma.k2	variance of polygenic.
sigma.e2	variance of residual error.
tol	convergence threshold.
miter	the maximum number of iterations.

Value

x is approximate solution of linear equations.

Examples

х

```
data(geno)
G <- t(geno[,-c(1:4)])
n.sample <- dim(G)[1]
m.marker <- dim(G)[2]
b <- rnorm(n.sample)
sigma.k2 <- 6.0
sigma.e2 <- 10.0
tol <- 5e-4
miter <- 20
PCG(G,b,m.marker,sigma.k2,sigma.e2,tol,miter)
```

pheno

Phenotype of example data

Description

Phenotype dataset of multiple traits.

Usage

data(pheno)

Details

Dataset input of phenotype in ScoreEB function.

ScoreEB

Description

Perform association test within linear mixed model framework using score test integrated with Empirical Bayes for genome-wide association study. Firstly, score test was conducted for each marker under linear mixed model framework, taking into account the genetic relatedness and population structure. And then all the potentially associated markers were selected with a less stringent criterion. Finally, all the selected markers were placed into a multi-locus model to identify the true quantitative trait nucleotide.

Usage

```
ScoreEB(genofile, phenofile, popfile = NULL, trait.num = 1, EMB.tau = 0,
EMB.omega = 0, B.Moment = 20, tol.pcg = 1e-4, iter.pcg = 100, bin = 100,
lod.cutoff = 3.0, seed.num = 10000, dir_out)
```

Arguments

genofile	Genotype file name, change the file path where it is located, i.e., "D:/Genotype_Example.csv".
phenofile	Phenotype file name, change the file path where it is located, i.e., "D:/Phenotype_Example.csv'
popfile	Population structure file name, change the file path where it is located, i.e., "D:/Population.csv".
trait.num	trait.num stands for computing trait from the 1st to the "trait.num"
EMB.tau	EMB.tau and EMB.omega are two values of hyperparameters in empirical Bayes step, which are set to 0 by default.
EMB.omega	As describe in EMB.tau
B.Moment	B.Moment is a parameter to obtain trace of NxN matrix approximately using method of moment. B.Moment is set to 20 by default.
tol.pcg	tol.pcg and iter.pcg are tolerance and maximum iteration number in precondi- tioned conjugate gradient algorithm.
iter.pcg	As describe in tol.pcg
bin	bin is to choose the maximum score within a certain range.
lod.cutoff	lod.cutoff is the threshold to determine identified QTNs.
seed.num	Set a random number.
dir_out	Give the path where it will be saved, i.e., "D:/Result"

Value

result.total A data frame of identified markers, including "Trait", "Id", "Chr", "Pos", "Score", "Beta", "Lod" and "Pvalue" of markers.

ScoreEB

Note

1. genofile and phenofile are the required input file, while popfile is the optional input file.

2. In the "tempdir()" folder, there are two results files "ScoreEB.Result.csv" and "ScoreEB.time.csv" generated and saved after the run.

3. The results file "ScoreEB.Result.csv" has 8 columns, including "Trait", "Id", "Chr", "Pos", "Score", "Beta", "Lod" and "Pvalue".

4. The time file "ScoreEB.time.csv" includes 3 rows, which are "User", "System", "Elapse" time, respectively.

Author(s)

Wenlong Ren Wenlong Ren <wenlongren@ntu.edu.cn>

Examples

```
genofile <- system.file("extdata", "Genotype_Example.csv", package="ScoreEB")
phenofile <-system.file("extdata", "Phenotype_Example.csv", package="ScoreEB")
dir_out <- tempdir()
ScoreEB(genofile, phenofile, popfile = NULL, trait.num = 1, EMB.tau = 0,
EMB.omega = 0, B.Moment = 20, tol.pcg = 1e-4, iter.pcg = 100, bin = 100,
lod.cutoff = 3.0, seed.num = 10000, dir_out)</pre>
```

Index

ebayes_EM, 2 geno, 2 likelihood, 3 multinormal, 4 PCG, 4 pheno, 5 ScoreEB, 6