Package 'STOPES'

January 20, 2025

Type Package

Title Selection Threshold Optimized Empirically via Splitting

Version 0.2

Date 2022-05-20

Author Marinela Capanu [aut, cre], Mihai Giurcanu [aut, ctb], Colin Begg [aut], Mithat Gonen [aut]

Maintainer Marinela Capanu <capanum@mskcc.org>

Imports MASS, cvTools, glmnet, changepoint

Description Implements variable selection procedures for low to moderate size generalized linear regressions models. It includes the STOPES functions for linear regression (Capanu M, Giurcanu M, Begg C, Gonen M, Optimized variable selection via repeated data splitting, Statistics in Medicine, 2020, 19(6):2167-2184) as well as subsampling based optimization methods for generalized linear regression models (Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models).

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-27 08:40:13 UTC

Contents

alasso.cv	<i>.</i> .									•			 						•								1	2
opts		•		•					•	•		•	 				•	•	•		•	•	•	•	•		1	3
opts_th.		•		•					•	•		•	 				•	•	•		•	•	•	•	•		4	4
stopes .		•		•					•	•		•	 				•	•	•		•	•	•	•	•		1	5
																											1	7

Index

alasso.cv

alasso.cv

Description

alasso.cv computes the ALASSO estimator.

Usage

alasso.cv(x, y)

Arguments

х	n x p covariate matrix
У	n x 1 response vector

Value

alasso.cv returns the ALASSO estimate

alasso the ALASSO estimator

References

Hui Zou, (2006). "The adaptive LASSO and its oracle properties", JASA, 101 (476), 1418-1429

Examples

```
p <- 5
n <- 100
beta <- c(2, 1, 0.5, rep(0, p - 3))
x <- matrix(nrow = n, ncol = p, rnorm(n * p))
y <- rnorm(n) + crossprod(t(x), beta)
alasso.cv(x, y)
```

Description

opts computes the OPTS MLE in low dimensional case.

Usage

opts(X, Y, m, crit = "aic", prop_split = 0.5, cutoff = 0.75, ...)

Arguments

Х	n x p covariate matrix (without intercept)
Υ	n x 1 binary response vector
m	number of subsamples
crit	information criterion to select the variables: (a) aic = minimum AIC and (b) bic = minimum BIC
prop_split	proportion of subsample size and sample size, default value = 0.5
cutoff	cutoff used to select the variables using the stability selection criterion, default value = 0.75
	other arguments passed to the glm function, e.g., family = "binomial"

Value

opts returns a list:

betahat	OPTS MLE of regression parameter vector
Jhat	estimated set of active predictors (TRUE/FALSE) corresponding to the OPTS MLE
SE	standard error of OPTS MLE
freqs	relative frequency of selection for all variables

Examples

require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)
X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)</pre>

```
# OPTS-AIC MLE
opts(X, Y, 10, family = "binomial")
```

opts_th

Threshold OPTimization via Subsampling (OPTS_TH)

Description

opts_th computes the threshold OPTS MLE in low dimensional case.

Usage

```
opts_th(X, Y, m, crit = "aic", type = "binseg", prop_split = 0.5,
    prop_trim = 0.2, q_tail = 0.5, ...)
```

Arguments

Х	n x p covariate matrix (without intercept)
Υ	n x 1 binary response vector
m	number of subsamples
crit	information criterion to select the variables: (a) aic = minimum AIC and (b) bic = minimum BIC
type	method used to minimize the trimmed and averaged information criterion: (a) min = observed minimum subsampling trimmed average information, (b) sd = observed minimum using the 0.25sd rule (corresponding to OPTS-min in the paper), (c) pelt = PELT changepoint algorithm (corresponding to OPTS-PELT in the paper), (d) binseg = binary segmentation changepoint algorithm (corre- sponding to OPTS-BinSeg in the paper), (e) amoc = AMOC method.
prop_split	proportion of subsample size of the sample size; default value is 0.5
prop_trim	proportion that defines the trimmed mean; default value = 0.2
q_tail	quantiles for the minimum and maximum p-values across the subsample cut- points used to define the range of cutpoints
	other arguments passed to the glm function, e.g., family = "binomial"

Value

opts_th returns a list:

betahat	STOPES MLE of regression parameters
SE	SE of STOPES MLE
Jhat	set of active predictors (TRUE/FALSE) corresponding to STOPES MLE
cuthat	estimated cutpoint for variable selection

4

stopes

pval	marginal p-values from univariate fit
cutpoits	subsample cutpoints
aic_mean	mean subsample AIC
bic_mean	mean subsample BIC

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)
X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))
# Threshold OPTS-BinSeg MLE
opts_th(X, Y, M, family = "binomial")</pre>
```

stopes

Selection of Threshold OPtimized Empirically via Splitting (STOPES)

Description

stopes computes the STOPES estimator.

Usage

```
stopes(x, y, m = 20, prop_split = 0.50, prop_trim = 0.20, q_tail = 0.90)
```

Arguments

х	n x p covariate matrix
У	n x 1 response vector
m	number of split samples, with default value = 20
prop_split	proportion of data used for training samples, default value = 0.50
prop_trim	proportion of trimming, default prop_trim = 0.20
q_tail	proportion of truncation samples across the split samples, default values = 0.90

Value

stopes returns a list with the STOPE estimates via data splitting using 0.25 method and the PELT method:

beta_stopes	the STOPE estimate via data splitting					
J_stopes	the set of active predictors corresponding to STOPES via data splitting					
final_cutpoints						
	the final cutpoint for STOPES					
beta_pelt	the STOPE estimate via PELT					
J_pelt	the set of active predictors corresponding to STOPES via PELT					
final_cutpoints_PELT						
	the final cutpoint for PELT					
quan_NA	test if the vector of trimmed cutpoints has length 0, with 1 if TRUE and 0 otherwise					

Author(s)

Marinela Capanu, Mihai Giurcanu, Colin Begg, and Mithat Gonen

Examples

```
p <- 5
n <- 100
beta <- c(2, 1, 0.5, rep(0, p - 3))
x <- matrix(nrow = n, ncol = p, rnorm(n * p))
y <- rnorm(n) + crossprod(t(x), beta)
stopes(x, y)
```

Index

alasso.cv, 2

opts,3 opts_th,4

stopes, 5