Package ‘SPLICE’

January 20, 2025

Title Synthetic Paid Loss and Incurred Cost Experience (SPLICE)
Simulator

Version 1.1.2

Author Benjamin Avanzi [aut],
Greg Taylor [aut],
Melantha Wang [aut, cre],
William Ho [aut]

Maintainer Melantha Wang <wang.melantha@gmail . com>
Imports stats, methods, zoo, lifecycle

Description An extension to the individual claim simulator called 'SynthETIC'
(on CRAN), to simulate the evolution of case estimates of incurred losses
through the lifetime of an insurance claim. The transactional simulation
output now comprises key dates, and both claim payments and revisions of
estimated incurred losses. An initial set of test parameters, designed to
mirror the experience of a real insurance portfolio, were set up and applied
by default to generate a realistic test data set of incurred histories (see
vignette). However, the distributional assumptions used to generate this
data set can be easily modified by users to match their experiences.
Reference: Avanzi B, Taylor G, Wang M (2021) * * SPLICE: A Synthetic Paid Loss
and Incurred Cost Experience Simulator” <arXiv:2109.04058>.

License GPL-3
Encoding UTF-8

URL https://github.com/agi-1lab/SPLICE

BugReports https://github.com/agi-lab/SPLICE/issues
LazyData true

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, dplyr, RColorBrewer, actuar
VignetteBuilder knitr

Depends R (>=2.10), SynthETIC (>= 1.0.0)
NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-04 00:30:02 UTC

https://arxiv.org/abs/2109.04058
https://github.com/agi-lab/SPLICE
https://github.com/agi-lab/SPLICE/issues

2 claim_history
Contents
claim_history e 2
claim_majRev 4
claim_minRev 7
generate_datal e e 11
generate_incurred_dataset L 13
output_incurred L. e e e e e e 14
test_incurred_dataset e e 15
triangular L L 16
Index 18
claim_history Development of Case Estimates
Description
Consolidates payments and incurred revisions and returns a full transactional history of all the
individual claims (transaction being either a payment or a case estimate revision).
Usage
claim_history(
claims,
majRev_list,
minRev_list,
k1 = .95,
k2 = 0.95,
base_inflation_vector = NULL,
keep_all = FALSE
)
Arguments
claims an claims object containing all the simulated quantities (other than those related
to incurred loss), see claims.
majRev_list nested list of major revision histories, see claim_majRev.
minRev_list nested list of minor revision histories, see claim_minRev.
k1 maximum amount of cumulative claims paid as a proportion of total incurred
estimate for major revisions; between 0 and 1.
k2 maximum amount of cumulative claims paid as a proportion of total incurred

estimate for minor revisions; between 0 and 1.

base_inflation_vector

vector showing quarterly base inflation rates (quarterly effective) for all the pe-
riods under consideration (default is nil base inflation), should be consistent with
the input inflation vector in claim_payment_inflation. If a single number is
provided, the function will assume constant quarterly inflation.

claim_history 3

keep_all TRUE to keep the paid, outstanding payments, total incurred estimates just before
the revision, FALSE to keep only the estimates right after the revision (_right).

Details

This function works to generate the full history of claims paid and incurred estimates by consolidat-
ing all the simulated revision quantities. It should be noted that in this consolidation step, we make
the following adjustments:

* Major and minor revisions should not occur simultaneously. In the event that they do (which
is only possible at the second last partial payment), the major revision takes precedence, and
the minor revision be discarded. This will be reflected in the majRev and minRev components
of the output list.

 Estimates of incurred loss are specified to be computed in reverse order, and it is necessary that
the total incurred estimate is always strictly greater than the cumulative claims paid (except at
the final paymen where equality holds). Hence we introduce k1 and k2 to make sure that the
revised incurred estimates satisfy
ky(t) = c(t)

where y(t) represents the total incurred estimate at delay ¢, k is a constant between 0 and
1, and ¢(t) is the cumulative claims paid up to time ¢t. When the raw simulated revision
multipliers violate this requirement, the case estimates of the total incurred or the outstanding
claim payments will be increased to make sure this condition always holds, i.e. this adjustment
takes precedence over the raw simulated revision multipliers.

* Inflation adjustment: One can choose to ignore inflation in the incurred estimates (default),
or to make allowance for it.

— If base_inflation_vector == NULL (default), then all case estimates will be computed
in values corresponding to time ¢ = 0, i.e. the commencement of the first occurrence
period.

— Ifbase_inflation_vector is provided, then the case estimators will include full super-
imposed inflation and base inflation only up to the date of the revision, i.e. there is an
adjustment for the time elapsed since the immediately preceding revision and no future
base inflation beyond the date of valuation.

— If inflation is involved, it should be noted that the case estimator reviews the base inflation
situation only in the process of making a revision. When only a payment is made, the
insurer’s system automatically writes down the outstanding liability on the assumption of
no change in ultimate incurred amount.

Value

A nested list structure such that the jth component of the ith sub-list provides a full transactional
history of the jth claim of occurrence period i. The "unit list" (i.e. the smallest, innermost sub-list)
contains the following components:

txn_delay Delays from notification to the transactions (payment or incurred revision).
txn_time Times of the transactions (from the commencement of the first occurrence period).
txn_type Types of the transactions, "Ma" for major revision, "Mi" for minor revision, "P" for payment, "PMa" for n

cumpaid_right Cumulative claim payments immediately after each of the transactions (in the "right" continuous sense).

4 claim_majRev

OCL_right Case estimate of outstanding claim payments immediately after each of the transactions (in the "right" cor
incurred_right Case estimate of incurred loss immediately after each of the transactions (in the "right" continuous sense).
minRev A list containing full history of minor revisions (frequency, time and revision size); claim_minRev.
majRev A list containing full history of major revisions (frequency, time and revision size); see claim_majRev.

and optionally (by setting keep_all = TRUE),

cumpaid_left Cumulative claim payments just before each of the transactions.
OCL_left Case estimate of outstanding claim payments just before each of the transactions.
incurred_left Case estimate of incurred loss just before each of the transactions.

claim_majRev Major Revisions of Incurred Loss

Description

A suite of functions that works together to simulate, in order, the (1) frequency, (2) time, and (3)
size of major revisions of incurred loss, for each of the claims occurring in each of the periods.

Usage

claim_majRev_freq(
claims,
rfun,
paramfun,
frequency_vector = claims$frequency_vector,
claim_size_list = claims$claim_size_list,

claim_majRev_time(
claims,
majRev_list,
rfun,
paramfun,
claim_size_list = claims$claim_size_list,
settlement_list = claims$settlement_list,
payment_delay_list = claims$payment_delay_list,

claim_majRev_size(majRev_list, rfun, paramfun, ...)

claim_majRev 5

Arguments

claims an claims object containing all the simulated quantities (other than those related
to incurred loss), see claims.

rfun optional alternative random sampling function for:

e claim_majRev_freq: the number of major revisions;

e claim_majRev_time: the epochs of major revisions measured from claim
notification;

e claim_majRev_size: the sizes of the major revision multipliers.

See Details for default.

paramfun parameters for the random sampling function, as a function of other claim char-
acteristics such as claim_size; see Details.

frequency_vector
a vector of claim frequencies for all the periods (not required if the claims
argument is provided); see claim_frequency.

claim_size_list
list of claim sizes (not required if the claims argument is provided); see claim_size.

other arguments/parameters to be passed onto paramfun.

majRev_list nested list of major revision histories (with non-empty revision frequencies).
settlement_list
list of settlement delays (not required if the claims argument is provided); see
claim_closure.
payment_delay_list
(compound) list of inter partial delays (not required if the claims argument is
provided); see claim_payment_delay.

Value

A nested list structure such that the jth component of the ith sub-list is a list of information on major
revisions of the jth claim of occurrence period i. The "unit list" (i.e. the smallest, innermost sub-list)
contains the following components:

majRev_freq Number of major revisions of incurred loss [claim_majRev_freq()].

majRev_time Time of major revisions (from claim notification) [claim_majRev_time()].

majRev_factor Major revision multiplier of incurred loss [claim_majRev_size()].

majRev_atP An indicator, 1 if the last major revision occurs at the time of the last major payment (i.e. second last paym

Details - claim_majRev_freq (Frequency)

Let K represent the number of major revisions associated with a particular claim. The notification
of a claim is considered as a major revision, so all claims have at least 1 major revision (K > 1).

The default majRev_freq_function specifies that no additional major revisions will occur for
claims of size smaller than or equal to claim_size_benchmark (0.075 * ref_claim by default).
For claims above this threshold,

Pr(K =2) =0.140.3min(1, (claimsize — 0.075 x re flaim)/0.925 x re f.laim)

6 claim_majRev

P

(K =3) =0.5min(1,max(0,claimgize — 0.25 x ref.laim)/(0.75 re f.laim))
P 1

:) =1-Pr(K=2)— Pr(K =3)

where ref_claimis a package-wise global variable that user should define by set_parameters (if
moving away from the default).

The idea is that major revisions are more likely for larger claims, and do not occur at all for the
smallest claims. Note also that by default a claim may experience up to a maximum of 2 major
revisions in addition to the one at claim notification. This is taken as an assumption in the default
setting of claim_majRev_size(). If user decides to modify this assumption, they will need to take
care of the part on the major revision size as well.

Details - claim_majRev_time (Time)

Let 75, represent the epoch of the kth major revision (time measured from claim notification), k =
1, ..., K. As the notification of a claim is considered a major revision itself, we have 7y = 0 for all
claims.

The last major revision for a claim may occur at the time of the second last partial payment (which
is usually the major settlement payment) with probability
0.2min(1, max(0, (claimgize — ref.laim)/(14 * re f.laim)))

where ref_claimis a package-wise global variable that user should define by set_parameters (if
moving away from the default).
Now, if there is a major revision at the time of the second last partial payment, then 7,k =
2, ..., K — 1 are sampled from a triangular distribution with parameters (see also ptri)

e min = time_to_second_last_payment / 3

* max = time_to_second_last_payment

* maximum density at mode = time_to_second_last_payment / 3.
Otherwise (i.e. no major revision at the time of the second last partial payment), 7.,k = 2, ..., K
are sampled from a triangular distribution with parameters

* min=settlement_delay / 3

* max = settlement_delay

* maximum density at mode = settlement_delay / 3.

Note that when there is a major revision at the time of the second last partial payment, majRev_atP
(one of the output list components) will be set to be 1.

Details - claim_majRev_size (Revision Multiplier)

As mentioned in the frequency section ("Details - claim_majRev_freq"), the default function for
the major revision multipliers assumes that there are only up to 2 major revisions (in addition to the
one at claim notification) for all claims.

By default,

* the first major revision multiplier g; is simply 1 (no meaning);

claim_minRev 7

* the second major revision multiplier g is sampled from a lognormal distribution with param-
eters meanlog = 1.8 and sdlog = 0.2;

¢ the third major revision multiplier gs is sampled from a lognormal distribution with parameters
meanlog = 1+ 0.07(6 — g2) and sdlog = 0.1. Note that the third major revision is likely to
be smaller than the second.

The revision multipliers are subject to further constraints to ensure that the revised incurred estimate
never falls below what has already been paid. This is dicussed in claim_history.

The major revision multipliers apply to the incurred loss estimates, that is, a revision multiplier
of 2.54 means that at the time of the major revision the incurred loss increases by a factor of
2.54. We highlight this as in the case of minor revisions, the multipliers will instead apply
to outstanding claim amounts, see claim_minRev.

See Also

claims

Examples

set.seed(1)

test_claims <- SynthETIC::test_claims_object

major <- claim_majRev_freq(test_claims)
major[[1]ICL[1]1] # the "unit list” for the first claim

update the timing information
major <- claim_majRev_time(test_claims, major)
observe how this has changed

major[[111LL11]

update the revision multipliers
major <- claim_majRev_size(major)
again observe how this has changed

major[[1]1C[11]

claim_minRev Minor Revisions of Outstanding Claim Payments

Description

A suite of functions that works together to simulate, in order, the (1) frequency, (2) time, and (3)
size of minor revisions of outstanding claim payments, for each of the claims occurring in each of
the periods.

We separate the case of minor revisions that occur simultaneously with a partial payment (denoted
_atP), and the ones that do not coincide with a payment (denoted _notatP).

Usage

claim_minRev_freq(

claims,

prob_atP = 0.5,

rfun_notatP,

paramfun_notatP,

frequency_vector = claims$frequency_vector,
settlement_list = claims$settlement_list,
no_payments_list = claims$no_payments_list,

claim_minRev_time(

claims,

minRev_list,

rfun_notatP,

paramfun_notatP,

settlement_list = claims$settlement_list,
payment_delay_list = claims$payment_delay_list,

claim_minRev_size(

claims,

majRev_list,

minRev_list,

rfun,

paramfun_atP,

paramfun_notatP,

settlement_list = claims$settlement_list,

Arguments

claims

prob_atP

rfun_notatP

to incurred loss), see claims

payment; default value 0.5.

optional alternative random sampling function for:

claim_minRev

an claims object containing all the simulated quantities (other than those related

(optional) probability that a minor revision will occur at the time of a partial

e claim_minRev_freq: the number of minor revisions that occur at an epoch

other than those of partial payments;

e claim_minRev_time: the epochs of such minor revisions measured from

claim notification;

e claim_minRev_size: the sizes of the minor revision multipliers (common
for _atP and _notatP, hence simply termed rfun in this case).

See Details for default.

claim_minRev 9

paramfun_notatP
parameters for the above random sampling function, as a function of other claim
characteristics (e.g. lambda as a function of claim_size for an rpois simula-
tion); see Examples.

frequency_vector
a vector of claim frequencies for all the periods (not required if the claims
argument is provided); see claim_frequency.

settlement_list
list of settlement delays (not required if the claims argument is provided); see
claim_closure.

no_payments_list
list of number of partial payments (not required if the claims argument is pro-
vided); see claim_payment_no.
other arguments/parameters to be passed onto paramfun.

minRev_list nested list of minor revision histories (with non-empty revision frequencies).
payment_delay_list
(compound) list of inter partial delays (not required if the claims argument is
provided); see claim_payment_delay.

majRev_list nested list of major revision histories (with non-empty revision frequencies).

rfun optional alternative random sampling function for the sizes of the minor revision
multipliers (common for _atP and _notatP, hence simply termed rfun in this
case).

paramfun_atP parameters for rfun in claim_minRev_size() for minor revisions that occur at
the time of a partial payment.

Value

A nested list structure such that the jth component of the ith sub-list is a list of information on minor
revisions of the jth claim of occurrence period i. The "unit list" (i.e. the smallest, innermost sub-list)
contains the following components:

minRev_atP
minRev_freqg_atP
minRev_freqg_notatP
minRev_time_atP
minRev_time_notatP
minRev_factor_atP

A vector of indicators showing whether there is a minor revision at each partial payment [claim_m
Number of minor revisions that occur simultaneously with a partial payment, numerically equals t
Number of minor revisions that do not occur with a partial payment [claim_minRev_freq()].

Time of minor revisions that occur simultaneously with a partial payment (time measured from cla
Time of minor revisions that do not occur simultaneously with a partial payment (time measured f
Minor revision multipliers of outstanding claim payments for revisions at partial payments [cla:

minRev_factor_notatP Minor revision multipliers of outstanding claim payments for revisions at any other times [clair

Details - claim_minRev_freq (Frequency)

Minor revisions may occur simultaneously with a partial payment, or at any other time.

For the former case, we sample the occurrence of minor revisions as Bernoulli random variables
with default probability parameter prob_atP = 1/2.

For the latter case, by default we sample the number of (non payment simultaneous) minor revisions
from a geometric distribution with mean = min(3, setidel/4).

10 claim_minRev

One can modify the above sampling distributions by plugging in their own prob_atP parameter
and rfun_notatP function, where the former dictates the probability of incurring a minor revision
at the time of a payment, and the latter simulates and returns the number of minor revisions at any
other points in time, with possible dependence on the settlement delay of the claim and/or other
claim characteristics.

Details - claim_minRev_time (Time)

For minor revisions that occur simultaneously with a partial payment, the revision times simply
coincide with the epochs of the relevant partial payments.

For minor revisions that occur at a different time, by default the revision times are sampled from a
uniform distribution with parameters min = settlementgelay/6 and max = settlementgelay.

One can modify the above sampling distribution by plugging in their own rfun_notatP and paramfun_notatP
in claim_minRev_time(), which together simulate the epochs of minor revisions that do not co-

incide with a payment, with possible dependence on the settlement delay of the claim and/or other

claim characteristics (see Examples).

Details - claim_minRev_size (Revision Multiplier)

The sampling distribution for minor revision multipliers is the same for both revisions that occur
with and without a partial payment. In the default setting, we incorporate sampling dependence on
the delay from notification to settlement (setldel), the delay from notification to the subject minor
revisions (minRev_time), and the history of major revisions (in particular, the time of the second
major revision).

Let 7 denote the delay from notification to the epoch of the minor revision, and w the settlement
delay. Then

» For 7 < w/3, the revision multiplier is sampled from a lognormal distribution with param-
eters meanlog = 0.15 and sdlog = 0.05 if preceded by a 2nd major revision, sdlog = 0.1
otherwise;

* For w/3 < 7 < 2w/3, the revision multiplier is sampled from a lognormal distribution with
parameters meanlog = 0 and sdlog = 0.05 if preceded by a 2nd major revision, sdlog = 0.1
otherwise;

» For 7 > 2w/3, the revision multiplier is sampled from a lognormal distribution with param-
eters meanlog = —0.1 and sdlog = 0.05 if preceded by a 2nd major revision, sdlog = 0.1
otherwise.

Note that minor revisions tend to be upward in the early part of a claim’s life, and downward in the
latter part.

The revision multipliers are subject to further constraints to ensure that the revised incurred estimate
never falls below what has already been paid. This is dicussed in claim_history.

Important note: Unlike the major revision multipliers which apply to the incurred loss estimates,
the minor revision multipliers apply to the case estimate of outstanding claim payments i.e. a
revision multiplier of 2.54 means that at the time of the minor revision the outstanding claims
payment increases by a factor of 2.54.

generate_data 11

See Also

claims

Examples

set.seed(1)
test_claims <- SynthETIC::test_claims_object

generate major revisions (required for the simulation of minor revisions)
major <- claim_majRev_freq(test_claims)

major <- claim_majRev_time(test_claims, major)

major <- claim_majRev_size(major)

generate frequency of minor revisions
minor <- claim_minRev_freq(test_claims)
minor[[1J1CL1]1] # the "unit list” for the first claim

update the timing information
minor <- claim_minRev_time(test_claims, minor)
observe how this has changed
minor[[111LL11]
with an alternative sampling distribution e.g. triangular
minRev_time_notatP <- function(n, setldel) {
sort(rtri(n, min = setldel/6, max = setldel, mode = setldel))
3

minor_2 <- claim_minRev_time(test_claims, minor, minRev_time_notatP)

update the revision multipliers (need to generate "major” first)
minor <- claim_minRev_size(test_claims, major, minor)

generate_data Generate Data of Varying Complexity

Description

[Experimental]

Generates datasets under 5 scenarios of different levels of complexity (here "complexity" means
the level of difficulty of analysis).

Usage

generate_data(
n_claims_per_period,
n_periods = 40,
complexity = c(1:5),
data_type = c("claims”, "payments"”, "incurred"”),
random_seed = NULL,
verbose = TRUE,

12 generate_data

covariates_obj = NULL

)

Arguments

n_claims_per_period
expected number of claims per period (equals the total expected number of
claims divided by n_periods).

n_periods number of accident periods considered (equals number of claims development
periods considered); default 40.

complexity integer from 1 (simplest) to 5 (most complex); see Details.

data_type a character vector specifying output data types. By default the function will

output all 3 datasets (claims, payments, incurred), but the user may choose to
output only a subset.

random_seed optional seed for random number generation for reproducibility.
verbose logical; if TRUE print a message about the data generated.

covariates_obj a SynthETIC covariates object (requires SynthETIC >= 1.1.0). Defaults to
NULL.

Details

generate_data() produces datasets of varying levels of complexity, where 1 represents the sim-
plest, and 5 represents the most complex:
* 1 —simple, homogeneous claims experience, with zero inflation.

* 2 —slightly more complex than 1, with dependence of notification delay and settlement delay
on claim size, and 2% p.a. base inflation.

* 3 — steady increase in claim processing speed over occurrence periods (i.e. steady decline in
settlement delays).

* 4 —inflation shock at time 30 (from 0% to 10% p.a.).

5 — default distributional models, with complex dependence structures (e.g. dependence of
settlement delay on claim occurrence period).

We remark that this by no means defines the limits of the complexity that can be generated with
SPLICE. This function is provided for the convenience of users who wish to generate (a collection
of) datasets under some representative scenarios. If more complex features are required, the user is
free to modify the distributional assumptions (which, of course, requires more thoughts and coding)
to achieve their purposes.

Value

A named list of dataframes:

claim_dataset A dataset of claim records that takes the same structure as test_claim_dataset, with each row repres
payment_dataset A dataset of partial payment records that takes the same structure as test_transaction_dataset, wit
incurred_dataset A dataset of transaction records that tracks how the case estimates change over time. Takes the same st
covariates_data Only if covariates_obj is not NULL, in which case it will return a SynthETIC covariates_data ob;

generate_incurred_dataset 13

See Also

generate_claim_dataset, generate_transaction_dataset, generate_incurred_dataset

Examples

Generate datasets of full complexity

result <- generate_data(
n_claims_per_period = 50, data_type = c('claims', 'payments'),
complexity = 5, random_seed = 42)

Save individual datasets
claims <- result$claim_dataset
payments <- result$payment_dataset

Generate chain-ladder compatible dataset
CL_simple <- generate_data(
n_claims_per_period = 50, data_type = 'claims', complexity = 1, random_seed = 42)

To mute message output
CL_simple_2 <- generate_data(
n_claims_per_period = 50, data_type = 'claims', verbose = FALSE, random_seed = 42)

Ouput is reproducible with the same random_seed value
all.equal(CL_simple$claim_dataset, CL_simple_2%$claim_dataset)

generate_incurred_dataset
Generate Incurred Dataset

Description

Generates a dataset of transaction records that tracks how the case estimates of the total incurred,
the outstanding claim payments, and the cumulative claims paid change over time. A sample dataset
is included as part of the package, see test_incurred_dataset.

Usage

generate_incurred_dataset(claims, incurred_history)

Arguments

claims an claims object containing all the simulated quantities, (other than those re-
lated to incurred loss), see claims.

incurred_history
the full history of incurred case estimates, see claim_history.

14 output_incurred

Value

A dataframe that takes the same structure as test_incurred_dataset.

See Also

test_incurred_dataset

output_incurred Incurred Triangles

Description

Outputs the full square of claims incurred by occurrence period and development period. The upper
left triangle represents the past, and the lower right triangle the unseen future.

Users can modify the aggregate level by providing an aggregate_level argument to the func-
tion. For example, setting aggregate_level =4 when working with calendar quarters produces
an incurred square by occurrence and development year.

We refer to the package vignette for examples on changing the aggregation granularity: vignette(”SPLICE-demo”,
package = "SPLICE")

Usage

output_incurred(
incurred_history,
aggregate_level = 1,
incremental = TRUE,
future = TRUE

Arguments

incurred_history
the full history of incurred case estimates, see claim_history.

aggregate_level
number of periods to be aggregated together; must be a divisor of the total num-
ber of periods under consideration (default 1).

incremental logical; if true returns the incremental incurred square, else returns the cumula-
tive incurred square.

future logical; if true (default) shows the full claim triangle (i.e. including claim pay-
ments in future periods), else shows only the past triangle.

test_incurred_dataset 15

Details

Remark on out-of-bound transaction times: This function includes adjustment for out-of-bound
transaction dates, by forcing any transactions that were projected to fall out of the maximum devel-
opment period to be counted as if they were made at the end of the limiting development period.
For example, if we consider 40 periods of development and a claim of the 21st occurrence period
was projected to have a major revision at time 62.498210, then we would treat such a revision as if
it occurred at time 60 for the purpose of tabulation.

Value

An array of claims incurred to date.

test_incurred_dataset Incurred Case Estimates Dataset

Description

A dataset of 31,250 records of transactions (partial payments and incurred revisions) associated
with the 3,624 claims described in SynthETIC’s test_claim_dataset. The _inflated version
includes inflation adjustment in the case estimates, while the _noInf version excludes any inflation
effects.

Usage

test_incurred_dataset_noInf

test_incurred_dataset_inflated

Format
A data frame with 31,250 rows and 9 variables:

claim_no claim number, which uniquely characterises each claim.

claim_size size of the claim (in constant dollar values).

txn_time double; the "absolute" time of transaction (on a continuous time scale).
txn_delay delay from notification to the subject transaction.

txn_type character; nature of the transactions, "Ma" for major revision, "Mi" for minor revision,
"P" for payment, "PMa" for major revision coincident with a payment, "PMi" for minor revi-
sion coincident with a payment.

incurred double; case estimate of total incurred loss immediately after the transaction.
OCL double; case estimate of outstanding claim payments immediately after the transaction.
cumpaid double; cumulative claim paid after the transaction.

multiplier revision multipliers (subject to further constraints documented in claim_history), NA
for transactions that do not involve a revision. Note that major revision multipliers apply to
the incurred losses, while minor revision multipliers apply to the outstanding claim payments.

16 triangular

See Also

generate_incurred_dataset

triangular The Triangular Distribution

Description

Density, distribution function, quantile function and random generation for the triangular distribu-
tion with parameters min, max and mode.

Usage

ptri(qg, min, max, mode)
dtri(x, min, max, mode)
gtri(p, min, max, mode)

rtri(n, min, max, mode)

Arguments
min vector of minimum values.
max vector of maximum values.
mode vector of modes.
X, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

The triangular distribution with parameters min= a, max = b, mode= c has density:

f(z) = % fora<xz<c
% forc <z S b
0 otherwise
and distribution function:
Fz)= 0 forx <a
2
% fora<ax<c

(b—z)?

1-— forc<z<b

G-a)(b—0)

triangular 17

1 forz > b

fora <c¢<hb.

Value

dtri gives the density, ptri gives the distribution function, qtri gives the quantile function, and
rtri generates random deviates.

Examples

ptri(c(@, 1/2, 1), min = @, max = 1, mode = 1/2)
dtri(c(@, 1/2, 1), min = @, max = 1, mode = 1/2)
plot(function(x) dtri(x, min = @, max = 1, mode = 1/2), @, 1)

Index

x datasets
test_incurred_dataset, 15

claim_closure, 5, 9
claim_frequency, 5, 9
claim_history, 2, 7, 10, 1315
claim_majRev, 2,4, 4
claim_majRev_freq (claim_majRev), 4
claim_majRev_size (claim_majRev), 4
claim_majRev_time (claim_majRev), 4
claim_minRev, 2,4, 7,7
claim_minRev_freq (claim_minRev), 7
claim_minRev_size (claim_minRev), 7
claim_minRev_time (claim_minRev), 7
claim_payment_delay, 5, 9
claim_payment_inflation, 2
claim_payment_no, 9

claim_size, 5

claims, 2,5,7, 8,11, 13
covariates, 12

covariates_data, 12

dtri (triangular), 16

generate_claim_dataset, 13
generate_data, 11
generate_incurred_dataset, /3, 13, 16
generate_transaction_dataset, /3

output_incurred, 14

ptri, 6
ptri (triangular), 16

gtri (triangular), 16
rtri(triangular), 16
set_parameters, 6

test_claim_dataset, 12, 15

test_incurred_dataset, /12—14, 15
test_incurred_dataset_inflated
(test_incurred_dataset), 15
test_incurred_dataset_nolInf
(test_incurred_dataset), 15
test_transaction_dataset, /12
triangular, 16

	claim_history
	claim_majRev
	claim_minRev
	generate_data
	generate_incurred_dataset
	output_incurred
	test_incurred_dataset
	triangular
	Index

