Package ‘SPARSEMODr’

January 20, 2025

Title SPAtial Resolution-SEnsitive Models of Outbreak Dynamics
Version 1.2.0

URL https://github.com/NAU-CCL/SPARSEMODr

BugReports https://github.com/NAU-CCL/SPARSEMODr/issues

Description Implementation of spatially-explicit, stochastic disease models with customiz-
able time windows that describe how parameter values fluctuate during outbreaks (e.g., in re-
sponse to public health or conservation interventions).

License GPL (>=2)

Imports Rcpp (>= 1.0.4), future.apply, data.table, future, tidyverse,
lubridate, viridis, geosphere

Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

LinkingTo Rcpp

Depends R (>=3.5.0)
SystemRequirements GNU GSL (>=2.7)
NeedsCompilation yes

Author Joseph Mihaljevic [aut, cre] (C code, package development),
Toby Hocking [ctb] (R package interface),
Seth Borkovec [ctb] (package development),
Saikanth Ratnavale [ctb] (package development)

Maintainer Joseph Mihaljevic <Joseph.Mihaljevic@nau.edu>
Repository CRAN
Date/Publication 2022-07-19 20:50:02 UTC

Contents

SPARSEMODr-package e
covidl9_control L e e
model_interface L L e
model_parallel

https://github.com/NAU-CCL/SPARSEMODr
https://github.com/NAU-CCL/SPARSEMODr/issues

2 covid19_control

Movement e e e e 12
SEIr_control e e e e 13
time_WINdOWS e e e e e e e e 15
Index 19

SPARSEMODr-package SPAtial Resolution-SEnsitive Models of Outbreak Dynamics

Description
Implementation of spatially-explicit, stochastic disease models with customizable time windows
that describe how parameter values fluctuate over the course of the simulation (e.g., in response to
public health or conservation interventions).

Details
Stochastic realizations of the models can be performed in parallel using the model_parallel func-
tions, and time-varying parameters can be supplied using time_windows objects.

Author(s)

Maintainer: Joseph Mihaljevic <joseph.mihaljevic @nau.edu>

covidl19_control COVID19 Parameters Control Data Structure

Description

The COVID19 model uses parameters which are specific to the COVID19 model. This data struc-
ture affirms that required parameters are supplied, provides default values for optional parameters,
and validates the data of each parameter.

Usage

covid19_control(
input_N_pops=NULL,
input_S_pops=NULL,
input_E_pops=NULL,
input_I_asym_pops=NULL,
input_I_presym_pops=NULL,
input_I_sym_pops=NULL,
input_I_home_pops=NULL,
input_I_hosp_pops=NULL,
input_I_icul_pops=NULL,
input_I_icu2_pops=NULL,
input_R_pops=NULL,

covidl9_control 3

input_D_pops=NULL,
frac_beta_asym=0.55,
frac_beta_hosp=0.05,
delta=1/3.0,
recov_a=1/6.0,
recov_p=1/2.0,
recov_s=1/6.0,
recov_home=1/3.0,
recov_icul=1/8.0,
recov_icu2=1/4.0,
asym_rate=0.40,
sym_to_icu_rate=0.015

Arguments

input_N_pops Integer Vector representing the total population for each county.
input_S_pops Integer Vector representing the susceptible population for each county.

input_E_pops Integer Vector representing the exposed population for each county.
input_I_asym_pops

Integer Vector representing the asymptomatic infected population for each county.
input_I_presym_pops

Integer Vector representing the presymptomatic infected population for each

county.
input_I_sym_pops

Integer Vector representing the symptomatic infected population for each county.
input_I_home_pops

Integer Vector representing the infected and isolated at home population for each

county.
input_I_hosp_pops

Integer Vector representing the hospitalized population for each county.
input_I_icul_pops

Integer Vector representing the population for each county in ICU.
input_I_icu2_pops

Integer Vector representing the population for each county in ICU recovery.

input_R_pops Integer Vector representing the recovered population for each county.
input_D_pops Integer Vector representing the deaths for each county.

frac_beta_asym An adjustment to beta accounting for asymptomatic individuals being less likely
to transmit than symptomatic individuals. Default value is 0.55. Must be greater
than zero and less than or equal to one.

frac_beta_hosp An adjustment to beta accounting for hospitalized individuals being less likely
to transmit than non-hospitalized individuals. Default value is 0.05. Must be
greater than zero and less than or equal to one.

delta Incubation period. Default value is 1/3.0. Must be greater than or equal to zero.
Values above one are unusual.

4 covid19_control

recov_a Recovery rate of asymptomatic individuals. Default value is 1/6.0. Must be
greater than or equal to zero. Values above one are unusual.

recov_p Recovery rate of presymptomatic individuals. Default value is 1/2.0. Must be
greater than or equal to zero. Values above one are unusual.

recov_s Recovery rate of symptomatic individuals. Default value is 1/6.0. Must be
greater than or equal to zero. Values above one are unusual.

recov_home Recovery rate of infected individuals in home isolation. Default value is 1/3.0.
Must be greater than or equal to zero. Values above one are unusual.

recov_icul Recovery rate of individuals in ICU. Default value is 1/8.0. Must be greater than
or equal to zero. Values above one are unusual.

recov_icu?2 Recovery rate of individuals in ICU recovery. Default value is 1/4.0. Must be
greater than or equal to zero. Values above one are unusual.

asym_rate Proportion of presymtomatic individuals entering the asymptomatic stage. De-
fault value is 0.40. Must be greater than zero and less than or equal to one.

sym_to_icu_rate
Proportion of symptomatic individuals entering ICU. Default value is 0.015.
Must be greater than zero and less than or equal to one.

Details

Defines a set of parameters specific to the COVID19 model. Adjustments to the model calculations
can be made by specifying any or all of the optional parameters. If an optional parameter is not
set, it will use the default value as specified above. If a parameter is outside the specified limits,
execution will stop and an error message will be displayed. Some parameters may have values
greater than one. While these situations may be unusual, execution will not stop but a warning
message will be displayed.

Note: At least one of input_N_pops or input_S_pops must be supplied. If one is not supplied, it
will be calculated within the class.

Note: Atleast one of input_E_pops, input_I_asym_pops, input_I_presym_pops, input_I_sym_pops,
input_I_home_pops, input_I_hosp_pops, input_I_icul_pops, and input_I_icu2_pops must

be supplied with a nonzero population. Any of these population parameters not supplied will be
assumed to be a vector of zeroes.

Value

Returns a named list of vectors that must be supplied to model_interface.

Author(s)

Seth Borkovec, <stb224@nau.edu>; Joseph Mihaljevic, <joseph.mihaljevic@nau.edu>

See Also

seir_control

covidl9_control

Examples

Data set for the examples:

N_pops <- rep(100000, 10)

E_pops <- c(@, 1, @, 3, 2, 0, 14, 3, 0, @)
S_pops <- N_pops - E_pops

I_asym_pops <- rep(@, 10)

I_presym_pops <- rep(@, 10)

I_sym_pops <- c(1, o, 11, @0, @, 5, @0, @0, 9, 0)
I_home_pops <- rep(@, 10)

I_hosp_pops <- rep(0, 10)

I_icul_pops <- rep(@, 10)

I_icu2_pops <- rep(@, 10)

R_pops <- rep(0, 10)

D_pops <- rep(@, 10)

Example using the default parameters:

covid19_control <- covid19_control(input_S_pops = S_pops,
input_E_pops = E_pops)

Example specifying some parameters:

covidl9_control <- covid19_control(input_N_pops = N_pops,
input_I_sym_pops = I_sym_pops,
input_I_home_pops = I_home_pops,
input_I_hosp_pops = I_hosp_pops,
input_I_icu2_pops = I_icu2_pops,
input_D_pops = D_pops,
frac_beta_hosp = 0.03)

Example specifying all possible parameters:

covidl9_control <- covid19_control(input_S_pops = S_pops,
input_E_pops = E_pops,
input_I_asym_pops = I_asym_pops,
input_I_presym_pops = I_presym_pops,
input_I_sym_pops = I_sym_pops,
input_I_home_pops = I_home_pops,
input_I_hosp_pops = I_hosp_pops,

input_I_icul_pops I_icul_pops,

input_I_icu2_pops = I_icu2_pops,
input_R_pops = R_pops,
input_D_pops = D_pops,
frac_beta_asym = 0.50,
frac_beta_hosp = 0.06,
delta = 0.25,
recov_a = 0.57,
recov_p = 0.62,
recov_s =0.11,
recov_home = 0.28,
recov_icul =0.12,
recov_icu2 =0.29,
asym_rate = 0.65,
sym_to_icu_rate = 0.122)

6 model_interface

model_interface Universal Model Interface to the SPARSE-MOD Models

Description

model_interface determines which SPARSE-MOD model to run based on the arguments and runs
the specified model.

Usage

model_interface(
control,
arg.list

Arguments

control Either a covid19_control or seir_control named list. The control used will
determine which model to run.

arg.list A named list of arguments used in all models including:
e input_dist_mat
* input_census_area
e input_realz_seeds
e input_tw: A time window object (see time_windows)
* trans_type: Transmission type (see details below)

e dd_trans_monod_k: The Monod equation parameter 'k’, for when trans-
mission is density-dependent (see details below)

¢ stoch_sd: The standard deviation of the stochastic transmission rate (see
details below)

Details
This is the universal interface to all of the SPARSE-MOD models. Currently the models available
are the COVID-19 Model, and the SEIR Model.

The SPARSE-MOD COVID-19 Model describes transmission using 11 classes of individuals. Please
see the vignettes for a more detailed explanation of the model structure.

The SPARSE-MOD SEIR Model describes transmission using 4 classes of individuals. Please see
the vignettes for a more detailed explanation of the model structure.

Transmisison types: The day-specific transmission rate (beta) must be supplied. We allow for two
transmission types:

1. Frequency-dependent transmission: In this case the transmission function is:
betascaled = beta/popy .

This is calculated per sub-population.

model_interface 7

2. Density-dependent transmission: In this case, we allow a user-defined Monod equation to
scale the beta term by sub-population density, where popgensity = popy /censusgrea :

betascaled = (beta * popgens/(ddirans,,onody + popgens))/popn

Stochastic transmission: We implement daily stochastic variation in the transmission rate that scales
with the number of infectious individuals in the focal population. In other words, as the number
of infectious individuals increases, the variation in transmission rate reduces, emphasizing that
stochasticity has larger effects in smaller populations (i.e., larger effects when there are few in-
fectious individuals). To implement this stochasticity, we draw a random variate from a normal
distribution with a mean of zero and a standard deviation of stoch_sd, and this random variate is
termed noise. We calculate the total number of infectious individuals across infectious sub-classes
(e.g., Pre-symptomatic, Hospital, etc.), and this variable is termed infect_sum. The functional
form of stochasticity is then:

beta,ealized = |betascaled x (1 + (noise/sqrt(infect;um)))|

See Movement for details of how movement dynamics are implemented and controlled in the model.

Value
Two named lists:

1. pops: Integer vectors that provide the number of individuals in each model class at each time
step. Different realizations of the model are distinguised by the user-provided values for the
random seeds.

2. events: Integer vectors that provide the number of individuals that newly transitioned to spe-
cific, key model classes at each time step. Different realizations of the model are distinguised
by the user-provided values for the random seeds.

For the COVID-19 model, these event vectors are defined as:
* pos: Number of newly positive individuals. Sum of new asymptomatic and pre-symptomatic
individuals.
¢ sym: Number of newly symptomatic individuals.
e total_hosp: Number of newly hospitalized individuals. Sum of new Hospital admits
and new Symptomatic-to-ICU1 admits.
e total_icu: Number of new ICU admits. Sum of new Symptomatic-to-ICU1 admits and
new Hospital-to-ICU1 admits.
e n_death: Number of newly deceased individuals.
For the SEIR model, these event vectors are defined as:
e birth: Number of newly susceptible hosts through the process of reproduction.
* exposed: Number of newly exposed hosts.
e infectious: Number of newly infectious hosts.
e recov: Number of newly recovered hosts.
* death: Number of newly deceased hosts.

Author(s)

Joseph Mihaljevic, <joseph.mihal jevic@nau.edu>
Seth Borkovec, <stb224@nau.edu>

8 model_interface

See Also

model_parallel, time_windows, covid19_control, seir_control

Examples

See vignettes for more detailed work-ups.

HHHHHHEEEEEE AR
See model_parallel()
for an example to run realizations in parallel

HHHHHHARHEE AR
Required for run:
require(lubridate)

Using supplied example data:

Read in the example data:
ex_dir <- system.file(
"extdata”, "sparsemodr_example.Rdata”, package="SPARSEMODr"”, mustWork=TRUE)
load(ex_dir)
n_pop <- length(dat_list[["pop_N"11)

Set up realizations:
realz_seeds <- 1:2

n_realz <- length(realz_seeds)

Set up time windows (see time_windows for other ways to do this)

input_beta <- c(0.3, 0.3, 0.08, 0.08, 0.15)
input_dist_phi <- c(200, 200, 20, 150, 150)
input_m <- c(0.002, 0.002, 0.002, 0.02, 0.02)
input_imm_frac <- c(0.9, 0.0, 0.0, 0.02, 0.02)

Window intervals
start_dates = c(mdy("1-1-20"), mdy("2-1-20"), mdy("2-16-20"), mdy("3-11-20"), mdy("3-22-20"))
end_dates = c(mdy("1-31-20"), mdy("2-15-20"), mdy("3-10-20"), mdy("3-21-20"), mdy("5-1-20"))

User creates the time_windows object here
tw <- time_windows(beta = input_beta,
dist_phi = input_dist_phi,
m = input_m,
imm_frac = input_imm_frac,
start_dates = start_dates,
end_dates = end_dates)

Randomly generate initial conditions for
EXPOSED class:
E_pops <- vector("numeric”, length = n_pop)
n_initial_E <- 40
(more exposed in larger populations)
these_E <- sample.int(n_pop,

size = n_initial_E,

model_parallel 9

replace = TRUE,
prob = dat_list$pop_N)
for(i in 1:n_initial_E){
E_pops[these_E[i]] <- E_pops[these_E[i]] + 1
3

Inputs for the models
N_pops <- as.integer(dat_list[["pop_N"11)
S_pops <- N_pops - E_pops

User created control list of parameters

covid19_control <- covid19_control(input_N_pops = N_pops,
input_S_pops = S_pops,
input_E_pops = E_pops)

arg.list <- list(

input_dist_mat = dat_list$dist_vec,
input_census_area = dat_list$census_area,
input_tw = tw,

input_realz_seeds = realz_seeds

)

Using all default parameter values,
these are the minimum inputs
covid_model_output <-
model_interface(
control = covid19_control,
arg.list
)

model_parallel Parallelized implementation of the SPARSE-MOD models

Description

The function uses R-level parallelization to speed up the generation of stochastic realizations of
the SPARSEMODr models and to combine output data into a read-to-use data frame. This is the
preferred method to run model_interface.

Usage

model_parallel(..., input_realz_seeds = 1:2, control)

Arguments

Universal model arguments passed to model_interface.

10 model_parallel

input_realz_seeds
An integer vector of user-specified random seeds to generate the stochastic real-
izations of the model. The number of realizations will be equal to the length of
this vector.

control Either a covid19_control or a seir_control named list data object.

Details

Relies on future_lapply to run stochastic realizations of the SPARSEMODr model in parallel.

Value

A data frame that combines the two named lists of model_interface.

Author(s)

Joseph Mihaljevic, <joseph.mihaljevic@nau.edu>; Toby Hocking, <toby.hocking@r-project.org>

See Also

future_lapply, model_interface, time_windows, covid19_control, seir_control

Examples

See vignettes for more detailed work-ups.

HHHHHHHEHE AR
Required for run:
require(lubridate)

Using supplied example data:

Read in the example data:
ex_dir <- system.file(
"extdata", "sparsemodr_example.Rdata"”, package="SPARSEMODr", mustWork=TRUE)
load(ex_dir)
n_pop <- length(dat_list[["pop_N"1]1)

Set up realizations:
realz_seeds <- 1:2

n_realz <- length(realz_seeds)

START FUTURE PLAN FOR PARALLELIZATION
future::plan("multisession”)

Set up time windows (see time_windows for other ways to do this)

input_beta <- c(0.3, 0.3, 0.08, 0.08, 0.15)
input_dist_phi <- c(200, 200, 20, 150, 150)

input_m <- c(0.002, 0.002, 0.002, 0.02, 0.02)
input_imm_frac <- c(0.9, 0.0, 0.0, 0.02, 0.02)

Window intervals

model_parallel 11

start_dates = c(mdy("1-1-20"), mdy("2-1-20"), mdy("2-16-20"), mdy("3-11-20"), mdy("3-22-20"))
end_dates = c(mdy("1-31-20"), mdy("2-15-20"), mdy("3-10-20"), mdy("3-21-20"), mdy("5-1-20"))

User creates the time_windows object here
tw <- time_windows(beta = input_beta,
dist_phi = input_dist_phi,
m = input_m,
imm_frac = input_imm_frac,
start_dates = start_dates,
end_dates = end_dates)

Randomly generate initial conditions for
EXPOSED class:
E_pops <- vector("numeric”, length = n_pop)
n_initial_E <- 40
(more exposed in larger populations)
these_E <- sample.int(n_pop,
size = n_initial_E,
replace = TRUE,
prob = dat_list$pop_N)
for(i in 1:n_initial_E){
E_pops[these_E[i]] <- E_pops[these_E[i]] + 1
3

Population sizes
N_pops <- as.integer(dat_list[["pop_N"11)

Set up a function to use the dat_list
get_result <- function(input_realz_seeds, control = NULL){

with(dat_list, SPARSEMODr::model_parallel(
input_census_area = census_area,
input_dist_mat = dist_vec,
input_realz_seeds = input_realz_seeds,
input_tw = tw,
control = control)

}

User creates control list of parameters
covid19_control <- covid19_control(input_N_pops = N_pops,
input_E_pops = E_pops)

covid_model_output <-
get_result(
input_realz_seeds = realz_seeds,
control = covid19_control

)

Shut down parallel workers
future: :plan(”sequential”)

12 Movement

Movement Movement dynamics in SPARSEMODr models.

Description

The SPARSEMODr models allow for spatially explicit movement dynamics between focal popula-
tions, and for ’visitation’ from outside of the focal populations of interest.

Details

The meta-population of interest is defined by the focal populations supplied by the user in model_interface.
Movement between focal populations within the meta-population is implemented as daily visitation

(e.g., commuting). Specifically, individuals can move to a new focal population and can influence

the local transmission dynamics for that day, but then individuals return to their focal population

before the model simulates the next day’s events. Every day, immigrants from outside of the meta-
population can also visit the focal populations and influence transmission.

Movement within the meta-population

We assume that susceptible and infectious individuals can move between focal populations. In the
COVID-19 model, we further assume that only individuals in the Susceptible, Asymptomatic, and
Pre-symptomatic classes are moving. This is because we assume individuals that are Symptomatic,
Home (isolating) or in the hospital (Hospital, ICU1, ICU2) will not be moving outside of their focal
population.

In general, susceptible individuals in a focal population can become exposed to the pathogen by
infectious visitors from the meta-population or by infectious visitors from outside of the meta-
population (below). Similarly, susceptible individuals can visit a population within the meta-
community but outside of their focal population, at which point these susceptible individuals may
become exposed by resident infectious individuals.

Movement frequency is controlled by parameter m in the model, and this rate can be updated daily
to simulate changes in movement patterns over time (see time_windows). In the model differential
equations, m is the per-capita rate of movement outside of the focal population. The inverse of m
therefore corresponds to the average number of days between an individual’s movement events.

When an individual moves outside of their focal population, the model assigns this individual to
a new focal population using a dispersal kernel. For now, we implement a simple distance-based
dispersal kernal in the form: prob_move[i][j] =1/ exp(dist_mat[i][j] / dist_phi). Here,
as is convention, prob_move[i][j] corresponds to the probability of individuals in population j
moving to population i. The dist_phi is user-defined and can be updated daily in the simulaiton
(see time_windows).

On each day in the model simulation, the tau-leaping algorithm calculates the number of individuals
in each class that will move outside of their focal population. We determine which individuals will
move to which outside population using a random draw from a multinomial probability distribution,
using the prob_move[i][j] that are calculated as above. Once individuals are assigned to their
new, temporary populations, then transmission can occur dependent upon the local composition of
infectious individuals.

Immigration from outside of the meta-population

seir_control 13

The model allows for outside visitors to enter the system temporarily, with visitors updated daily.
In this case, the user can define parameter imm_frac, the value of which can be updated daily (see
time_windows). The imm_frac is the proportion of the focal population that may constitute visitors
on any given day. For example if for a given focal population, pop_N = 1000 and imm_frac = 0. 05,
an average of 50 visitors may arrive on a given day. The exact number of visitors on a given day
is determined by drawing from a Poisson distribution. Then, the number of infectious visitors from
that group is assumed to be proportional to the number of infectious residents in the focal popu-
lation. In other words, we assume that the pathogen is present in ’outsider’ populations at similar
prevalence as the focal population. The exact number of infectious visitors is then determined again
by a Poisson draw. After visitors arrive at the focal population, transmission between susceptible
residents and infectious visitors is determined.

See Also

model_interface, model_parallel, time_windows

seir_control SEIR Parameters Control Data Structure

Description

The SEIR model uses parameters which are specific to the SEIR model. This data structure affirms
that required parameters are supplied, provides default values for optional parameters, and validates
the data of each parameter.

Usage

seir_control(
input_N_pops=NULL,
input_S_pops=NULL,
input_E_pops=NULL,
input_I_pops=NULL,
input_R_pops=NULL,
birth=1/(75%365),
incubate=1/8.0,
recov=1/3.0

Arguments

input_N_pops Integer Vector representing the total population for each county.
input_S_pops Integer Vector representing the susceptible population for each county.
input_E_pops Integer Vector representing the exposed population for each county.
input_I_pops Integer Vector representing the infected population for each county.

input_R_pops Integer Vector representing the recovered population for each county.

14 seir_control

birth Default value is 1/(75%365). Must be greater than or equal to zero. Values above
one are unusual.

incubate Default value is 1/8.0. Must be greater than or equal to zero. Values above one
are unusual.

recov Default value is 1/3.0. Must be greater than or equal to zero. Values above one
are unusual.

Details

Defines a set of parameters specific to the SEIR model. If an optional parameter is not set, it will
use the default value as specified above. If a parameter is outside the specified limits, execution
will stop and an error message will be displayed. Some parameters may have values greater than
one. While these situations may be unusual, execution will not stop but a warning message will be
displayed.

Note: At least one of input_N_pops or input_S_pops must be supplied. If one is not supplied, it
will be calculated within the class.

Note: At least one of input_E_pops and input_I_pops must be supplied with a nonzero popula-
tion. If either of these population parameters or input_R_pops is not supplied, it will be assumed
to be a vector of zeroes.

Value

Returns a named list of vectors that must be supplied to model_interface.

Author(s)

Seth Borkovec, <stb224@nau.edu>; Joseph Mihaljevic, <joseph.mihaljevic@nau.edu>

See Also

covidl19_control

Examples

Data set for the examples:

S_pops <- rep(100000, 10)

E_pops <- c(0, 1, o, 3, 2, 0, 13, 3, 0, @)
I_pops <- c(0, 0, 0, 0, 0, @0, 1, @, 0, Q)
R_pops <- rep(@, 10)

N_pops <- S_pops + E_pops + I_pops + R_pops

Example using the default parameters:

seir_control <- seir_control(input_S_pops = S_pops,
input_E_pops = E_pops,
input_I_pops = I_pops)

Example specifying one optional parameter:

seir_control <- seir_control(input_N_pops = N_pops,
input_I_pops = I_pops,
input_R_pops = R_pops,

time_windows 15

recov =1/4.0)

Example specifying all possible parameters:

seir_control <- seir_control(input_N_pops = N_pops,
input_S_pops = S_pops,
input_E_pops = E_pops,
input_I_pops = I_pops,
input_R_pops = R_pops,

birth = 1/(65%365),

incubate =0.12,

recov = 0.25)
time_windows Time Windows Data Structure

Description

The SPARSEMODr models allow for users to dynamically update transmission rates and movement
dynamics across the course of the outbreak. These time-varying parameter values must then be
compiled into a time_windows object.

A time_windows object is a set of data across multiple vectors or lists including time-varying trans-
mission rate (beta); a parameter that helps define the range of movement; a parameter that defines
the frequency of movement between focal populations; a parameter that constrains the impact of
hosts that immigrate from outside of the focal populations; and a method to define the dates over
which these parameters fluctuate.

When specifying dates for each entry, there are three options, but only one of which may be used.
See details below.

1. Providing a vector for window_length,
2. Providing a vector each for start_dates and end_dates,
3. Providing a vector for daily.

Usage

time_windows(
beta=NULL,
dist_phi=NULL,
m=NULL,
imm_frac=NULL,
hosp_rate=NULL,
recov_hosp=NULL,
icu_rate=NULL,
death_rate=NULL,
window_length=NULL,
start_dates=NULL,
end_dates=NULL,
daily=NULL,
ro=NULL

Arguments

beta

dist_phi

imm_frac

hosp_rate

recov_hosp

icu_rate

death_rate

window_length

start_dates

end_dates

daily

ro

Details

time_windows

required - New in version 1.2.0: A numeric vector of the time-varying trans-
mission rate. If a single vector is provided, the same transmission rate is used in
all populations. You can instead provide a list of transmission rate vectors—one
for each population. The number of populations must be equal to those used in
the covid19_control or seir_control.

required - A numeric vector of the dist_phi that is used to calculate the disper-
sal kernal (see details below).

required - A numeric vector of the m parameter. The inverse of m is the average
time between individuals moving away from their focal population (see details
below).

required - A numeric vector. This parameter corresponds to the fraction of the
focal population (between 0 and 1) that may be comprised of immigrants from
outside of the system (i.e., immigrants that are not from any of the supplied
populations in input_pop_N from model_interface); see details below.

A numeric vector. Proportion of symptomatic individuals entering hospitaliza-
tion. Default value is 0.175. Must be greater than zero and less than or equal to
one.

A numeric vector. Recovery rate of hospitalized individuals. Default value is
1/7.0. Must be greater than or equal to zero. Values above one are unusual.

A numeric vector. Proportion of hospitalized individuals entering ICU. Default
value is 0.20. Must be greater than zero and less than or equal to one.

A numeric vector. Proportion of individuals who do not recover in ICU. Default
value is 0.60. Must be greater than zero and less than or equal to one.

An integer vector supplying the number of days in each time window (see details
below).

A vector of Date objects that corresponds to the starting date of each time win-
dow. If supplied, end_dates must also be supplied (see details below).

A vector of Date objects that corresponds to the ending dates of each time win-
dow. If supplied start_dates must also be supplied (see details below).

A vector of Date objects that is sequential and complete, encompassing all dates
from the start of the outbreak to the end of the outbreak (see details below).

No longer supported. Gives error message to provide beta instead.

See Movement for descriptions of m and dist_phi.

Defining time window durations. One of the following options is required to define the duration of
each time window: window_length, or start_dates AND end_dates, or daily.

Use window_length when you want to specify the length of each time window by the number of

days.

Use start_dates AND end_dates when you want to define a time window by its starting and
ending dates. A start date may not overlap with an end date, and there can be no gaps between the
end date and the subsequent start date.

time_windows

17

Use daily when you want to update parameters every day of the simulation. In this mode, each
time window has a length of one day.

Value

Returns a named list of vectors that must be supplied to model_interface.

Author(s)

Seth Borkovec, <stb224@nau. edu>

See Also

covid19_control, seir_control

Examples

Data set for the examples: (A

input_beta <- c(0.30
input_dist_phi <- c(200
input_m <- c(0.002
input_imm_frac <- c(0.0

input_window_length <- c(10

input_start_dates <- c(seq(as
input_end_dates <- c(seq(as
input_daily <- c(seq(as

Example using window_length:

input_window_length defines

that each value of the other
tw <- time_windows(beta

dist_phi =
m
imm_frac

window_length

Example using start_dates wit
Five time windows, each with
tw <- time_windows(beta
dist_phi =
m
imm_frac
start_dates
end_dates

Example using daily:

Parameters are updated daily

tw <- time_windows(beta =
dist_phi = in
m =
imm_frac =
daily =

; Joseph Mihaljevic, <joseph.mihaljevic@nau.edu>

11 examples include 5 time windows)

, 0.10, 0.15, ©.15, 0.20)
, 200, 20, 150, 150)
, 0.002, 0.002, ©0.02, 0.02)
, 0.0, 0.0, 0©.02, 0.02)
, 35, 46, 81, 40)

.Date("2020-07-09"), by=10, len=5))
.Date("2020-07-18"), by=10, len=5))
.Date("2020-07-09"), by=1, len=5))

the number of days
parameters is repeated.
= input_beta,
input_dist_phi,

= input_m,

= input_imm_frac,

= input_window_length)

h end_dates:
10 days
= input_beta,
input_dist_phi,
= input_m,
= input_imm_frac,
= input_start_dates,
= input_end_dates)

over 5 days
input_beta,
put_dist_phi,
input_m,
input_imm_frac,
input_daily)

time_windows

Example with different beta vectors for different populations:

n_pops should be the total number of populations as used in covid19_control or seir_control
n_pops <- 4

input_beta_list <- vector("list”, length = n_pops)

input_beta_list[[11] <- c(0.30, ©.10, ©0.10, ©0.15, ©.20)
input_beta_list[[2]] <- c(0.15, .08, 0.15, ©0.109, 0.15)
input_beta_list[[3]1] <- c(0.20, 0.08, .10, 0.10, 0.25)

input_beta_list[[n_pops]] <- c(©.25, ©0.12, ©0.08, 0.12, 0.10)

tw <- time_windows(beta = input_beta_list,
dist_phi = input_dist_phi,
m = input_m,
imm_frac = input_imm_frac,

window_length = input_window_length)

Index

* package
SPARSEMODr-package, 2

covidl19_control, 2, 8, 10, 14, 16, 17
future_lapply, 10
model_interface, 4,6, 9, 10, 12-14, 16, 17
model_parallel, 2, 8,9, 13
Movement, 7, 12, 16

seir_control, 4, 8, 10, 13, 16, 17
SPARSEMODr (SPARSEMODr-package), 2
SPARSEMODr-package, 2

time_windows, 2, 6, 8, 10, 12, 13, 15

19

	SPARSEMODr-package
	covid19_control
	model_interface
	model_parallel
	Movement
	seir_control
	time_windows
	Index

