SMMAL: Semi-Supervised Estimation of Average Treatment Effects

Provides a pipeline for estimating the average treatment effect via semi-supervised learning. Outcome regression is fit with cross-fitting using various machine learning method or user customized function. Doubly robust ATE estimation leverages both labeled and unlabeled data under a semi-supervised missing-data framework. For more details see Hou et al. (2021) <doi:10.48550/arxiv.2110.12336>. A detailed vignette is included.

Version: 0.0.5
Depends: R (≥ 3.5.0)
Imports: glmnet, randomForest, splines2, xgboost, stats, utils
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2025-08-28
Author: Jue Hou [aut, cre], Yuming Zhang [aut], Shuheng Kong [aut]
Maintainer: Jue Hou <hou00123 at umn.edu>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README
CRAN checks: SMMAL results

Documentation:

Reference manual: SMMAL.html , SMMAL.pdf
Vignettes: SMMAL_vignette (source, R code)

Downloads:

Package source: SMMAL_0.0.5.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): SMMAL_0.0.5.tgz, r-oldrel (x86_64): SMMAL_0.0.5.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SMMAL to link to this page.