Package 'SIGN'

July 21, 2025

Type Package

Title Similarity Identification in Gene Expression

Version 0.1.0

Date 2018-12-02

Description Provides a classification framework to use expression patterns of pathways as features to identify similarity between biological samples. It provides a new measure for quantifying similarity between expression patterns of pathways.

Depends R(>= 3.4)

License GPL (>= 3)

Imports stats, utils, survcomp, survival, GSVA

Encoding UTF-8

LazyData true

NeedsCompilation yes

biocViews GeneExpression, Classification, Clustering, Survival

RoxygenNote 6.1.1

Author Seyed Ali Madani Tonekaboni [aut], Gangesh Beri [aut], Janosch Ortmann [aut], Benjamin Haibe-Kains [aut, cre]

Maintainer Benjamin Haibe-Kains <benjamin.haibe.kains@utoronto.ca>

Repository CRAN

Date/Publication 2018-12-18 23:11:47 UTC

Contents

BubbleSort	
EventRenaming	
ExpPheno_Categorize	
ExpPhen_Matching	
ExpPhen_Subdividing	

BubbleSort

GeneMatching	5
Genes_SimCal	6
GSVA_Calculation	6
Pathway_Grouping	7
Pathway_similarity	8
SIGN_Aggregate	8
SIGN_Ensemble_SimCal	9
Similarities_Wrapper	9
SimSummary_2Class	10
SurvivalStat_PostProcess	11
Survival_Stats	11
TSC	12
	13

Index

BubbleSort	BubbleSort is a function for calculating bubble sort correlation be-
	tween two vectors

Description

BubbleSort is a function for calculating bubble sort correlation between two vectors

Usage

```
BubbleSort(Vec1, Vec2)
```

Arguments

Vec1	Vector of values of 1st feature across samples
Vec2	Vector of values of 2nd feature across samples

Value

Bubble sort similarity between the two vectors

EventRenaming

EventRenaming is a function for changing annotation of censored samples to 0 and dead samples to 1 for survival analysis

Description

EventRenaming is a function for changing annotation of censored samples to 0 and dead samples to 1 for survival analysis

Usage

EventRenaming(EventVec, Censored_Annot)

Arguments

EventVec	Status vector for all of the samples (patients) including both samples undergone
	an event or censored
Censored_Annot	Index of samples censored in the dataset

Value

Vector of events including 0 for censoring and 1 for death

ExpPheno_Categorize	ExpPheno_Categorize is a function for grouping samples based on
	their survival to 3 groups of poor, good, and intermediate

Description

ExpPheno_Categorize is a function for grouping samples based on their survival to 3 groups of poor, good, and intermediate

Usage

```
ExpPheno_Categorize(ExpMeta_List, Time_ID, Event_ID, Mad_Factor,
MinNum_ExClass, Expression_Log2 = FALSE)
```

Arguments

ExpMeta_List	List containing expression matrix and metadata matrix
Time_ID	Index of time to death in metadata matrix
Event_ID	Index of event in metadata matrix
Mad_Factor	Threshold of mad in time to death values to determine poor survival group

MinNum_ExClass Minimum number of samples that has to be kept in poor and good group (if number of samples is lower than this threhold, more samples will be addedd in order of survival)

Expression_Log2

Parameter for gene expsression value transformation to logarithmic scale (log2(expression value+1))

Value

List of expression matrices, and time to event as well as event for the patients within each category of poor, intermediate or good survival

ExpPhen_Matching	ExpPhen_Matching is a function for matching samples between ex-
	pression matrices and metadata matrix (clinical feature matrix)

Description

ExpPhen_Matching is a function for matching samples between expression matrices and metadata matrix (clinical feature matrix)

Usage

ExpPhen_Matching(ExpMat, MetaMat, SamID_Meta)

Arguments

ExpMat	Matrix of expression of genes (samples in columns and genes in rows)
MetaMat	Matrix of clinical features (samples in columns)
SamID_Meta	Sample ID in MetaMat

Value

List of expression matrix and metadata of the clinical information after matching patiend IDs between the expression and clinical information matrices ExpPhen_Subdividing ExpPhen_Subdividing is a function for grouping samples based on a clinical feature available in metadata matrix (clinical feature matrix)

Description

ExpPhen_Subdividing is a function for grouping samples based on a clinical feature available in metadata matrix (clinical feature matrix)

Usage

ExpPhen_Subdividing(ExpMeta_List, SubDiv_ID)

Arguments

ExpMeta_List	List containing expression matrix and metadata matrix
SubDiv_ID	Index of the target clinical feature in metadata matrix for samples grouping

Value

List of expression and clinical information of patients grouped based on the specified clinical feature

GeneMatching	GeneMatching is a function to remove uncommon genes between a list
	of expression matrices

Description

GeneMatching is a function to remove uncommon genes between a list of expression matrices

Usage

```
GeneMatching(ExpList)
```

Arguments

ExpList List of expression matrices

Value

List of expression matrices restricted to the common genes between them

Genes_SimCal

Genes_SimCal is a function to calculate similarity between a set of samples and 2 reference groups of samples

Description

Genes_SimCal is a function to calculate similarity between a set of samples and 2 reference groups of samples

Usage

```
Genes_SimCal(ExpMat_Test, ExpMat_Ref1, ExpMat_Ref2, RefIDs, TestClassIter,
SampleIter)
```

Arguments

ExpMat_Test	Expression matrix for the test samples for which SIGN will indetify the similar- ity with the 2 reference sataset
ExpMat_Ref1	Expression matrix for the 1st reference set fo samples
ExpMat_Ref2	Expression matrix for the 2nd reference set fo samples
RefIDs	Annotations corresponding to the 2 expression matrices (1st and 2nd names are associated with the 1st and 2nd expression matrix and)
TestClassIter	Index to be matched with RefIDs for removal of test samples from reference expression matrices
SampleIter	Index of samples in the test expression matrix exist in referencece expression matrix 1 or 2

Value

Vector of similarity between the target samples and the 2 reference sets

GSVA_Calculation	GSVA_Calculation is a function for Calculating correlation between
	expression level of pathways between 2 groups using GSVA

Description

GSVA_Calculation is a function for Calculating correlation between expression level of pathways between 2 groups using GSVA

Usage

```
GSVA_Calculation(ExpMat1, ExpMat2, GeneVec, GeneSets,
Name = "SampleComparison")
```

Pathway_Grouping

Arguments

ExpMat1	Expression matrix of genes in the 1st group of sampls
ExpMat2	Expression matrix of genes in the 2nd group of sampls
GeneVec	Name of genes in the same order as considered in ExpMat1 and ExpMat2
GeneSets	List of genes within pathways
Name	Name used for naming the columns of output matrix of correlation between the 2 groups

Value

Similarity of the pathway between the two expression matrices based on pearson correlation, bubble sort, and wilcoxon paaired rank test using GSVA enrichment scores of pathways

Pathway_Grouping	Pathway_Grouping is a function to make a pathway list from files con-
	taining genes within each pathway

Description

Pathway_Grouping is a function to make a pathway list from files containing genes within each pathway

Usage

Pathway_Grouping(PathwayDir, Pattern)

Arguments

PathwayDir	Path of directory including the files of pathways
Pattern	Pattern should be used to select the files of pathway genes from PathwayDir

Value

List of genes within the pathway

Pathway_similarity

Pathway_similarity is a function for calculating correlation between expression level of pathways between 2 groups using all the available approaches in SIGN

Description

Pathway_similarity is a function for calculating correlation between expression level of pathways between 2 groups using all the available approaches in SIGN

Usage

Pathway_similarity(ExpMat1, ExpMat2, GeneVec, GeneSets, Name)

Arguments

ExpMat1	Expression matrix of genes in the 1st group of sampls
ExpMat2	Expression matrix of genes in the 2nd group of sampls
GeneVec	Name of genes in the same order as considered in ExpMat1 and ExpMat2
GeneSets	List of genes within pathways
Name	Name used for naming the columns of output matrix of correlation between the
	2 groups

Value

Similarity of the pathway between the two expression matrices using pearson correlation, bubble sort, and wilcoxon paaired rank test

SIGN_Aggregate	SIGN_Aggregate is a function to reshape the list of pathway scoring,
	time to death, and event and return a summary list

Description

SIGN_Aggregate is a function to reshape the list of pathway scoring, time to death, and event and return a summary list

Usage

SIGN_Aggregate(ScoreList, TimeList, EventList)

Arguments

ScoreList	List of similarity scores identified using different methodologies
TimeList	List of time to event (death) for different groups of patients
EventList	List of event vectors (death or censored) for different groups of patients

Value

List of scores identified for each sample as well as time to death and event of that sample

SIGN_Ensemble_SimCal SIGN_Ensemble_SimCal is a function for Generating list fo similarities based on different pathway quantification methods and similarity measures

Description

SIGN_Ensemble_SimCal is a function for Generating list fo similarities based on different pathway quantification methods and similarity measures

Usage

SIGN_Ensemble_SimCal(ExpList, RefClassID, TestClassID, GeneID, PathwaySets)

Arguments

ExpList	List of expression matrices for different groups of samples used in the centroid classification scheme
RefClassID	Names of the matrices in the ExpList
TestClassID	ID of a matrix in ExpList to be used as test set
GeneID	Parameter to determine if gene annotations are provided as Symbols or EntrezIDs
PathwaySets	List of pathways containing gene annotations for each pathways

Value

List of similarities identified in both gene and pathway level

Similarities_Wrapper Similarities_Wrapper is wrapper to identify similarities between the expression of genes in target sample and the reference expression matrix

Description

Similarities_Wrapper is wrapper to identify similarities between the expression of genes in target sample and the reference expression matrix

Usage

```
Similarities_Wrapper(ExpMat_Test, ExpMat_Ref, GeneVec, PathwaySet, RefID,
TestClassIter, SampleIter)
```

Arguments

ExpMat_Test	Expression matrix of test samples
ExpMat_Ref	Expression matrix of reference samples
GeneVec	Vector of gene names
PathwaySet	List of pathways containing gene annotations for each pathways
RefID	Class of the reference set
TestClassIter	Class of the test set (if it is the same as reference set, the target test sample will be removed fro the reference set)
SampleIter	Target test sample in ExpMat_Testto be used for comparison with ExpMat_Ref

Value

List of similarities between the target sample and the expression matrix of reference samples

SimSummary_2Class	SimSummary_2Class is a function to calculating similarity between
	two set of samples

Description

SimSummary_2Class is a function to calculating similarity between two set of samples

Usage

SimSummary_2Class(SimMat1, SimMat2)

Arguments

SimMat1	Matrix of similarity of the target samples with the 1st reference matrix
SimMat2	Matrix of similarity of the target samples with the 2nd reference matrix

Value

Matrix of similarities of samples

10

SurvivalStat_PostProcess

SurvivalStat_PostProcess is a function to Extract summary statistics of the built cox model

Description

SurvivalStat_PostProcess is a function to Extract summary statistics of the built cox model

Usage

SurvivalStat_PostProcess(StatList)

Arguments

StatList Summary lists of the cox models built using all the

Value

A list including Cindex, Cindex_std and LogTest_pval

Survival_Stats	Survival_Stats is a function for building cox model using all the fea-
	tures and each feature as a separate model

Description

Survival_Stats is a function for building cox model using all the features and each feature as a separate model

Usage

Survival_Stats(ScoreMat, TimeVec, EventVec)

Arguments

ScoreMat	Matrix of feature values used for survival predition
TimeVec	Vectore of time to death of samples (patients)
EventVec	Vector of events for the samples (patients) as being dead or censored

Value

A list containing summary of a cox model using all of the features and separate cox models for each feature

TSC

TSC is a function to calculate transcriptional similarity coefficient between two biological pathways

Description

TSC is a function to calculate transcriptional similarity coefficient between two biological pathways

Usage

```
TSC(PathwayExp1, PathwayExp2)
```

Arguments

PathwayExp1	Expression matrix of genes within the chosen pathway in the 1st set of samples
PathwayExp2	Expression matrix of genes within the chosen pathway in the 2nd set of samples

Value

Transcriptional similarity coefficient

Examples

```
Pathway1_ExpMat <- matrix(runif(100,0,10), ncol = 10)
Pathway2_ExpMat <- matrix(runif(100,0,10), ncol = 10)
TSC(Pathway1_ExpMat, Pathway2_ExpMat)</pre>
```

Index

 ${\tt BubbleSort, 2}$

EventRenaming, 3 ExpPhen_Matching, 4 ExpPhen_Subdividing, 5 ExpPheno_Categorize, 3

GeneMatching, 5
Genes_SimCal, 6
GSVA_Calculation, 6

Pathway_Grouping,7 Pathway_similarity,8

SIGN_Aggregate, 8
SIGN_Ensemble_SimCal, 9
Similarities_Wrapper, 9
SimSummary_2Class, 10
Survival_Stats, 11
SurvivalStat_PostProcess, 11

TSC, 12