## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, eval=FALSE-------------------------------------------------------- # library(SEQTaRget) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(# tells SEQuential to create kaplan meier curves # km.curves = TRUE, # # tells SEQuential to weight the outcome model # weighted = TRUE, # # tells SEQuential to build weights from the pre-expanded data # weight.preexpansion = TRUE) # # # use some example data in the package # data <- SEQdata # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) # # # retrieve risk plot # km_curve(model, plot.type = "risk") # # retrieve survival and risk data # survival_data <- km_data(model) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(km.curves = TRUE, # weighted = TRUE, # # tells SEQuential to build weights from the post-expanded data # weight.preexpansion = FALSE) # # data <- SEQdata # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) # # km_curve(model, plot.type = "risk") # survival_data <- km_data(model) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(km.curves = TRUE, # weighted = TRUE, # weight.preexpansion = TRUE, # # tells SEQuential to run a dynamic intervention # excused = TRUE, # # tells SEQuential to use columns excusedOne and # # excusedZero as excused conditions for treatment switches # excused.cols = c("excusedZero", "excusedOne"), # # tells SEQuential to expect treatment levels 0, 1 # # (mapping to the same positions as the list in excused.cols) # treat.level = c(0, 1)) # data <- SEQdata # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) # # km_curve(model, plot.type = "risk") # survival_data <- km_data(model) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(km.curves = TRUE, # weighted = TRUE, # weight.preexpansion = FALSE, # excused = TRUE, # excused.cols = c("excusedZero", "excusedOne"), # treat.level = c(0, 1)) # data <- SEQdata # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) # # km_curve(model, plot.type = "risk") # survival_data <- km_data(model) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(km.curves = TRUE, # weighted = TRUE, # weight.preexpansion = FALSE, # excused = TRUE, # excused.cols = c("excusedZero", "excusedOne"), # treat.level = c(0, 1), # # add a competing event # compevent = "LTFU") # # data <- SEQdata.LTFU # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) # # km_curve(model, plot.type = "risk") # survival_data <- km_data(model) ## ----eval=FALSE--------------------------------------------------------------- # options <- SEQopts(# tell SEQuential to run hazard ratios # hazard = TRUE, # weighted = TRUE, # weight.preexpansion = FALSE, # excused = TRUE, # excused.cols = c("excusedZero", "excusedOne")) # # data <- SEQdata # model <- SEQuential(data, # id.col = "ID", # time.col = "time", # eligible.col = "eligible", # treatment.col = "tx_init", # outcome.col = "outcome", # time_varying.cols = c("N", "L", "P"), # fixed.cols = "sex", # method = "censoring", # options = options) #