Package 'SAMTx'

January 20, 2025

Type Package

Title Sensitivity Assessment to Unmeasured Confounding with Multiple Treatments

Version 0.3.0

Description A sensitivity analysis approach for unmeasured confounding in observational data with multiple treatments and a binary outcome. This approach derives the general bias formula and provides adjusted causal effect estimates in response to various assumptions about the degree of unmeasured confounding. Nested multiple imputation is embedded within the Bayesian framework to integrate uncertainty about the sensitivity parameters and sampling variability. Bayesian Additive Regression Model (BART) is used for outcome modeling. The causal estimands are the conditional average treatment effects (CATE) based on the risk difference. For more details, see paper: Hu L et al. (2020) A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data <arXiv:2012.06093>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports BART

NeedsCompilation no

Author Liangyuan Hu [aut], Jungang Zou [aut], Jiayi Ji [aut, cre]

Maintainer Jiayi Ji <Jiayi.Ji@mountsinai.org>

Repository CRAN

Date/Publication 2021-06-28 15:10:02 UTC

Contents

sensitivity_analysis																						• •		2	2
----------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	--	---	---

4

Index

sensitivity_analysis

Description

This function implements the nested multiple imputation using Bayesian Additive Regression Trees (BART)

Usage

```
sensitivity_analysis(
   covariates,
   y,
   A,
   alpha,
   n_p,
   nposterior = 1000,
   sensitivity_correction = TRUE
)
```

Arguments

covariates	Dataframe including all the covariates				
У	Numeric vector for the binary outcome				
А	Numeric vector for the treatment indicator				
alpha	Priors for sensitivity parameters				
n_p	Number of nested imputations to conduct				
nposterior	Number of posterior samples, default is 1000				
sensitivity_correction					
	Whether to use sensitivity correction algorithm, default is TRUE				

Value

A list of dataframes for each ATE between different treatments. If number of treatments = 3, it contains

ATE12:	A dataframe with number of rows = $n_p * nrow(alpha)$ and number of columns = length(y)
ATE23:	A dataframe with number of rows = $n_p * nrow(alpha)$ and number of columns = length(y)
ATE13:	A dataframe with number of rows = n_p * nrow(alpha) and number of columns = length(y)

sensitivity_analysis

Examples

```
sample_size = 10
x1 = rbinom(sample_size, 1, prob=0.4)
x2 = rbinom(sample_size, 1, prob=0.5)
lp.A = 0.2 * x1 + 0.4 * x2 + rnorm(sample_size, 0, 0.1)
lp.B = -0.3 * x1 + 0.8 * x2 + rnorm(sample_size, 0, 0.1)
lp.C = 0.1 * x1 + 0.5 * x2 + rnorm(sample_size, 0, 0.1)
# calculate the true probability of assignment
p.A1 \le exp(lp.A)/(exp(lp.A)+exp(lp.B)+exp(lp.C))
p.A2 \leftarrow exp(lp.B)/(exp(lp.A)+exp(lp.B)+exp(lp.C))
p.A3 <- exp(lp.C)/(exp(lp.A)+exp(lp.B)+exp(lp.C))</pre>
p.A <- matrix(c(p.A1,p.A2,p.A3),ncol = 3)</pre>
A = NULL
for (m in 1:sample_size) { # assign treatment
A[m] <- sample(c(1, 2, 3),
                size = 1,
                replace = TRUE,
                prob = p.A[m, ])
}
table(A)
# set the binary outcome
Y2 = 0.3 * x1 + 0.2 * x1 * x2 + 1.3 * x2
Y1 = -0.6 * x1 + 0.5 * x2 + 0.3 * x1 * x2
Y0 = -0.8 * x1 - 1.2 * x2 + 1.5 * x2 * x1
Y2 = rbinom(sample_size, 1, exp(Y2)/(1+exp(Y2)))
Y1 = rbinom(sample_size, 1, exp(Y1)/(1+exp(Y1)))
Y0 = rbinom(sample_size, 1, exp(Y0)/(1+exp(Y0)))
dat = cbind(Y0, Y1, Y2, A)
Yobs <- apply(dat, 1, function(x)
x[1:3][x[4]]) #observed when trt is received
n = 1
alpha = cbind(
runif(n, mean(Y0[A ==1])-mean(Y0[A ==2]) - 0.001, mean(Y0[A ==1])-mean(Y0[A ==2]) + 0.001),
runif(n, mean(Y1[A ==2])-mean(Y1[A ==1]) - 0.001, mean(Y1[A ==2])-mean(Y1[A ==1]) + 0.001),
runif(n, mean(Y1[A ==2])-mean(Y1[A ==3]) - 0.001, mean(Y1[A ==2])-mean(Y1[A ==3]) + 0.001),
runif(n, mean(Y0[A ==1])-mean(Y0[A ==3]) - 0.001, mean(Y0[A ==1])-mean(Y0[A ==3]) + 0.001),
runif(n, mean(Y2[A ==3])-mean(Y2[A ==1]) - 0.001, mean(Y2[A ==3])-mean(Y2[A ==1]) + 0.001),
runif(n, mean(Y2[A ==3])-mean(Y2[A ==2]) - 0.001, mean(Y2[A ==3])-mean(Y2[A ==2]) + 0.001))
y <- Yobs
n_p <- 1
sample_gap <- 10</pre>
sensitivity_analysis_result <- sensitivity_analysis(cbind(x1, x2), Yobs,</pre>
A, alpha, n_p = 1, sensitivity_correction = TRUE)
mean(sensitivity_analysis_result$ATE_12)
mean(sensitivity_analysis_result$ATE_02)
mean(sensitivity_analysis_result$ATE_01)
```

Index

 ${\tt sensitivity_analysis, 2}$