Package ‘Rsmlx’

January 20, 2025

Type Package
Title R Speaks 'Monolix'

Version 2024.1.0
Maintainer Chloe Bracis <support@lixoft.com>

Description Provides methods for model building and model evaluation of mixed effects models using
'Monolix' <https:
//monolix.lixoft.com>. 'Monolix'is a software tool for nonlinear mixed effects
modeling that must have been installed in order to use 'Rsmlx'.
Among other tasks, 'Rsmlx’' provides a powerful tool for automatic PK model building, performs
statistical tests for model assessment, bootstrap simulation and likelihood profiling for
computing confidence intervals. 'Rsmlx' also proposes several automatic covariate search meth-
ods for
mixed effects models.

URL https://monolix.lixoft.com/rsmlx/
SystemRequirements 'Monolix' (<https://monolix.lixoft.com>)

Depends R (>=3.0.0)

Imports graphics, grDevices, utils, stats, MASS, ggplot2, gridExtra,
dplyr, tidyr

Collate mlxConnectors.R bootstrap.R buildmlx.R buildVar.R buildAIL.R
confintmlx.R correlationModelSelection.R
covariateModelSelection.R covariateSearch.R
errorModelSelection.R 1lp.R newConnectors.R setSettings.R
testmlx.R zzz.R RsmlxTools.R readDatamlx.R pkbuild.R pkpopini.R
whichPKmodel.R

License BSD_2_clause + file LICENSE
Copyright Inria

NeedsCompilation no

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

https://monolix.lixoft.com
https://monolix.lixoft.com
https://monolix.lixoft.com/rsmlx/

bootmlx

Author Chloe Bracis [ctb, cre],

Frano Mihaljevic [aut],
Marc Lavielle [aut],
Jonathan Chauvin [ctb],
Clémence Pinaud [ctb]

Repository CRAN
Date/Publication 2024-06-10 13:30:07 UTC

Contents
bootmlx e 2
buildAlIl 4
builldmlx e 7
buildVar e 10
confintmlXx 12
covariateSearch L. e 14
getEstimatedCovarianceMatrix 16
getEstimatedIndividualParameters2 17
getEstimatedPredictions 18
getEstimatedResiduals oL 18
getSimulatedPredictionso 19
getSimulatedResiduals 19
itRsmlIx e e e 20
pkbuild 21
PKPOPINI L e e 22
readDatamlx e 23
resMonolix e 24
RsmlxDemol.project e e 25
RsmlxDemo2.project L 25
SESEttings e e e e e e e 26
testmlX e 27
warfarin.data L 28
whichPKmodel 29

Index 30

bootmlx Bootstrapping - case resampling
Description

Generate replicates of the original data using random sampling with replacement. Population pa-
rameters are then estimated from each replicate.

bootmlx

Usage

bootmlx(
project,

nboot = 100,

dataFold
parametr
tasks =
settings

Arguments

project
nboot

dataFolder

parametric

tasks

settings

Details

er
ic

NULL,
= FALSE,

c(populationParameterEstimation = TRUE),

NULL

Monolix project
[optional] number of bootstrap replicates (default=100)

[optional] folder where already generated datasets are stored, e.g dataFolder="./dummy_project/boot/"
(default: data set are generated by bootmlIx)

[optional] boolean to define if parametric bootstrap is performed (new data is
drawn from the model), (default: false)

[optional] vector of booleans defining the list of tasks to perform (default: esti-
mation of the population parameters) available tasks: populationParameterEs-
timation, conditionalDistributionSampling, conditionalModeEstimation, stan-
dardErrorEstimation, logLikelihoodEstimation, plots

[optional] a list of settings for the resampling and the results:
* N the number of individuals in each bootstrap data set (default value is the
number of individuals in the original data set).

* newResampling boolean to generate the data sets again if they already exist
(default=FALSE).

* covStrat a categorical covariate of the project. The original distribution of
this covariate is maintained in each resampled data set if covStrat is defined
(default=NULL). Notice that if the categorical covariate is varying within
the subject (in case of IOV), it will not be taken into account.

* plot boolean to choose if the distribution of the bootstraped esimates is
displayed (default = FALSE)

 level level of the bootstrap confidence intervals of the population parame-
ters (default = 0.90)

* seed a positive integer < 2147483647, seed for the generation of the data
sets (default = NA)

* deleteData delete created data set files after estimation (default = FALSE)

* deleteProjects delete created Monolix projects after estimation (default
= FALSE)

Bootstrap functionality is now available directly in the lixoftConnectors package using the function
runBootstrap. Please migrate, as this function will be deprecated in the future.

4 buildAll

Value

a data frame with the bootstrap estimates

See Also

getBootstrapSettings settings for bootstrap with lixoftConnectors
runBootstrap run the bootstrap with lixoftConnectors
getBootstrapResults results for bootstrap with lixoftConnectors

Examples

Not run:
RsmlxDemo1.mlxtran is a Monolix project for modelling the PK of warfarin using a PK model
with parameters ka, V, Cl.

In this example, bootmlx will generate 100 random replicates of the original data and will
use Monolix to estimate the population parameters from each of these 100 replicates:
r1 <- bootmlx(project="RsmlxDemol.mlxtran")

5 replicates will now be generated, with 50 individuals in each replicate:
r2 <- bootmlx(project="RsmlxDemol.mlxtran”, nboot = 5, settings = list(N = 50))

Proportions of males and females in the original dataset will be preserved
in each replicate:
r3 <- bootmlx(project="RsmlxDemol.mlxtran”, settings = list(covStrat = "sex"))

End(Not run)

See http://monolix.lixoft.com/rsmlx/bootmlx/ for detailed examples of use of bootmlx
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

buildAll Automatic complete statistical model building

Description

buildAll builds the complete statistical model by iteratively calling functions buildmlx and buildVar

Penalization criterion can be either a custom penalization of the form gamma*(number of parame-
ters), AIC (gamma=2) or BIC (gamma=log(N)).

Usage

buildAll(
project = NULL,
final.project = NULL,
model = "all”,

buildAll 5

prior = NULL,
weight = NULL,
coef.wl = 0.5,
cv.min = 0.001,
fError.min = 0.001,

paramToUse = "all",
covToTest = "all",
covToTransform = "none”,
center.covariate = FALSE,
criterion = "BICc”,
linearization = FALSE,

11 =T,

test = T,

direction = NULL,

steps = 1000,

max.iter = 20,

explor.iter = 2,
seq.cov = FALSE,
seq.corr = TRUE,
seq.cov.iter = 0,

p.max = 0.1,
p.min = c(0.075, .05, @.1),
print = TRUE,
nb.model = 1,

fix.paraml = NULL,
fix.param@ = NULL,
remove = T,

add = T,

delta = c(30, 10, 5),
omega.set = NULL,
pop.setl = NULL,
pop.set2 = NULL

Arguments

project a string: the initial Monolix project

final.project a string: the final Monolix project (default adds "_buildAll" to the original

project)
model components of the model to optimize c("residualError", "covariate", "correla-
tion"), (default="all")
prior list of prior probabilities for each component of the model (default=NULL)
weight list of penalty weights for each component of the model (default=NULL)
coef.wi multiplicative weight coefficient used for the first iteration only (default=0.5)
cv.min value of the coefficient of variation below which an individual parameter is con-

sidered fixed (default=0.001)

fError.min

paramToUse

covToTest

buildAll

minimum fraction of residual variance for combined error model (default = le-
3)

list of parameters possibly function of covariates (default="all")

components of the covariate model that can be modified (default="all")

covToTransform list of (continuous) covariates to be log-transformed (default="none"

center.covariate

criterion

linearization

11

test

direction

steps
max.iter
explor.iter
seq.cov

seq.corr

seq.cov.iter

p.max

p.min

print
nb.model
fix.paraml
fix.parameo
remove

add

delta
omega.set
pop.set1
pop.set2

Details

TRUE/FALSE center the covariates of the final model (default=FALSE)
penalization criterion to optimize c("AIC", "BIC", "BICc", gamma)

TRUE/FALSE whether the computation of the likelihood is based on a lineariza-
tion of the model (default=FALSE, deprecated)

TRUE/FALSE compute the observe likelihood and the criterion to optimize at
each iteration

TRUE/FALSE perform additional statistical tests for building the model (de-
fault=TRUE)

method for covariate search c("full", "both", "backward", "forward"), (default="full"
or "both")

maximum number of iteration for stepAIC (default=1000)

maximum number of iterations (default=20)

number of iterations during the exploratory phase (default=2)

TRUE/FALSE whether the covariate model is built before the correlation model
TRUE/FALSE whether the correlation model is built iteratively (default=TRUE)

number of iterations before building the correlation model (only when seq.cov=F,
default=0)

maximum p-value used for removing non significant relationships between co-
variates and individual parameters (default=0.1)

minimum p-values used for testing the components of a new model (default=c(0.075,
0.05,0.1))

TRUE/FALSE display the results (default=TRUE)

number of models to display at each iteration (default=1)

parameters with variability that cannot be removed (default=NULL)
parameters without variability that cannot be added (default=NULL)

try to remove random effects (default=T)

try to add random effects (default=T)

maximum difference in criteria for testing a new model (default=c(30,10,5))
settings to define how a variance varies during iterations of SAEM

Monolix settings 1

Monolix settings 2

See https://monolix.lixoft.com/rsmlx/ for more details.

buildmlix 7

Value

a new Monolix project with a new statistical model.

Examples

Not run:
Build the complete statistical model using the default settings
r1 <- buildAll(project="warfarinPK_project.mlxtran")

Force parameter Tlag to be fixed (no variability) and parameter Cl to vary
r2 <- buildAll(project="warfarinPK_project.mlxtran”, fix.param@="Tlag", fix.param1="Cl")

Estimate the log-likelihood by linearization of the model (faster)
r3 <- buildAll(project="warfarinPK_project.mlxtran”, linearization=T)
End(Not run)

See http://monolix.lixoft.com/rsmlx/buildmlx/ for detailed examples of use of buildmlx
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

buildmlx Automatic statistical model building

Description

Automatic statistical model building is available directly in the lixoftConnectors package using the
function runModelBuilding.

Usage

buildmlx(
project = NULL,
final.project = NULL,
model = "all"”,
prior = NULL,
weight = NULL,
coef.wl = 0.5,
paramToUse = "all"”,
covToTest = "all”,
covToTransform = "none"”,
center.covariate = FALSE,
criterion = "BICc”,
linearization = FALSE,
11 =T,
test = T,
direction = NULL,

8
steps = 1000,
n.full = 10,
max.iter = 20
explor.iter =
fError.min =
seq.cov = FAL
seqg.cov.iter
seq.corr = TR
p.max = 0.1,
p.min = c(0.0
print = TRUE,
nb.model = 1
)
Arguments
project

final.project

model

prior
weight
coef.wl
paramToUse
covToTest

covToTransform
center.covariat

criterion

linearization

11

test

direction

steps
n.full

max.iter

explor.iter

buildmix

2,
0.001,
SE,
= @,
UE,

75, 0.05, 0.1),

a string: the initial Monolix project
a string: the final Monolix project (default adds "_built" to the original project)

non non

components of the model to optimize c("residualError", "covariate", "correla-
tion"), (default="all")

list of prior probabilities for each component of the model (default=NULL)
list of penalty weights for each component of the model (default=NULL)
multiplicative weight coefficient used for the first iteration only (default=0.5)
list of parameters possibly function of covariates (default="all")

components of the covariate model that can be modified (default="all")

list of (continuous) covariates to be log-transformed (default="none"

e
TRUE/FALSE center the covariates of the final model (default=FALSE)

penalization criterion to optimize c("AIC", "BIC", "BICc", gamma) (default=BICc)

TRUE/FALSE whether the computation of the likelihood is based on a lineariza-
tion of the model (default=FALSE)

TRUE/FALSE compute the observe likelihood and the criterion to optimize at
each iteration

TRUE/FALSE perform additional statistical tests for building the model (de-
fault=TRUE)

method for covariate search c("full", "both", "backward", "forward"), (default="full"
or "both")

maximum number of iteration for stepAIC (default=1000)

maximum number of covariates for an exhaustive comparison of all possible
covariate models (default=10)

maximum number of iterations (default=20)

number of iterations during the exploratory phase (default=2)

buildmlIx 9

fError.min minimum fraction of residual variance for combined error model (default = le-
3)

seq.cov TRUE/FALSE whether the covariate model is built before the correlation model

seq.cov.iter number of iterations before building the correlation model (only when seq.cov=F,
default=0)

seq.corr TRUE/FALSE whether the correlation model is built iteratively (default=TRUE)

p.max maximum p-value used for removing non significant relationships between co-
variates and individual parameters (default=0.1)

p.min vector of 3 minimum p-values used for testing the components of a new model
(default=c(0.075, 0.05, 0.1))

print TRUE/FALSE display the results (default=TRUE)

nb.model number of models to display at each iteration (default=1)

Details

buildmlx uses SAMBA (Stochastic Approximation for Model Building Algorithm), an iterative
procedure to accelerate and optimize the process of model building by identifying at each step how
best to improve some of the model components. This method allows to find the optimal statistical
model which minimizes some information criterion in very few steps.

Penalization criterion can be either a custom penalization of the form gamma*(number of parame-
ters), AIC (gamma=2) or BIC (gamma=log(N)).

Several strategies can be used for building the covariate model at each iteration of the algorithm:
direction="full"” means that all the possible models are compared (default when the number
of covariates is less than 10). Othrwise, direction is the mode of stepwise search of stepAIC
{MASS}, can be one of "both", "backward", or "forward", with a default of "both" when there are at
least 10 covariates. See https://monolix.lixoft.com/rsmlx/ for more details.

Value

a new Monolix project with a new statistical model.

See Also

getModelBuildingSettings settings for model building with lixoftConnectors
runModelBuilding run model building with lixoftConnectors
getModelBuildingResults results for model building with lixoftConnectors

Examples

Not run:
RsmlxDemol.mlxtran is a Monolix project for modelling the pharmacokinetics (PK) of warfarin
using a PK model with parameters ka, V, Cl.

By default, buildmlx will compute the best statistical model in term of BIC, i.e ,

the best covariate model, the best correlation model for the three random effects and the best
residual error model in terms of BIC.

In this example, three covariates (wt, age, sex) are available with the data and will be used

10 buildVar

for building the covariate model for the three PK parameters:
r1 <- buildmlx(project="RsmlxDemo1.mlxtran")

Here, the covariate model will be built for V and Cl only and log-transformation of all
continuous covariates will also be considered:

r2 <- buildmlx(project="RsmlxDemo1.mlxtran"”, paramToUse=c("V", "Cl"), covToTransform="all")

Only the covariate model will be built, using AIC instead of BIC:
r3 <- buildmlx(project="RsmlxDemol.mlxtran”, model="covariate"”, criterion="AIC")

End(Not run)

See http://monolix.lixoft.com/rsmlx/buildmlx/ for detailed examples of use of buildmlx
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

buildvar Automatic model variance building

Description

buildVar is designed to build the best variance model for the random effects by selecting which
individual parameters vary and which ones are fixed.

Usage

buildvVar(
project = NULL,
final.project = NULL,
prior = NULL,
weight = NULL,
cv.min = 0.001,
fix.paraml = NULL,
fix.param@ = NULL,

criterion = "BICc",
linearization = F,
remove = T,

add = T,

delta = c(30, 10, 5),
omega.set = NULL,
pop.setl = NULL,
pop.set2 = NULL,
print = TRUE

Arguments

project a string: the initial Monolix project

buildVar

final.project
prior
weight

cv.min

fix.parami
fix.paramo
criterion

linearization

remove
add

delta
omega.set
pop.seti
pop.set2

print

Details

11

a string: the final Monolix project (default adds "_var" to the original project)
named vector of prior probabilities (default=NULL)
named vector of weights (default=NULL)

value of the coefficient of variation below which an individual parameter is con-
sidered fixed (default=0.001)

parameters with variability that cannot be removed (default=NULL)
parameters without variability that cannot be added (default=NULL)

penalization criterion to optimize c("AIC", "BIC", "BICc", gamma) (default=BICc)

TRUE/FALSE whether the computation of the likelihood is based on a lineariza-
tion of the model (default=FALSE)

TRUE/FALSE try to remove random effects (default=TRUE)
TRUE/FALSE try to add random effects (default=TRUE)

maximum difference in criteria for testing a new model (default=c(30,10,5))
settings to define how a variance varies during iterations of SAEM

Monolix settings 1

Monolix settings 2

TRUE/FALSE display the results (default=TRUE)

Penalization criterion can be either a custom penalization of the form gamma*(number of parame-
ters), AIC (gamma=2) or BIC (gamma=log(N)).

See https://monolix.lixoft.com/rsmlx/ for more details.

Value

a new Monolix project with a new inter individual variability model.

Examples

Not run:

Build the variability model using the default settings
r1 <- buildVar(project="warfarinPK_project.mlxtran")

Force parameter Tlag to be fixed (no variability) and parameter Cl to vary
r2 <- buildVar(project="warfarinPK_project.mlxtran”, fix.param@="Tlag", fix.param1="Cl")

Estimate the log-likelihood by linearization of the model (faster)
r3 <- buildVar(project="warfarinPK_project.mlxtran”, linearization=T)

End(Not run)

See http://monolix.lixoft.com/rsmlx/buildvar/ for detailed examples of use of buildvar
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

12 confintmlx

confintmlx Confidence intervals for population parameters

Description

Compute confidence intervals for the population parameters estimated by Monolix.

Usage

confintmlx(
project,
parameters = "all",
method = "fim",
level = 0.9,
linearization = TRUE,
nboot = 100,
parametric = FALSE,
settings = NULL

)
Arguments
project a Monolix project
parameters list of parameters for which confidence intervals are computed (default="all")
method method c("fim", "proflike"”, "bootstrap”) (default="fim")
level confidence level, a real number between 0 and 1 (default=0.90)

linearization TRUE/FALSE whether the calculation of the standard errors (default=TRUE) or
the profile likelihood is based on a linearization of the model (default=TRUE)

nboot number of bootstrat replicates (default=100, used when method="bootstrap")

parametric boolean to define if parametric bootstrap is performed (new data is drawn from
the model), (default: FALSE)

settings a list of settings for the profile likelihood method:

e max.iter maximum number of iterations to find the solution (default=10)
e tol.LL absolute tolerance for -2LL (default=0.001)

e tol.param relative tolerance for the parameter (default=0.01)

e print TRUE/FALSE display the results (default=TRUE)

Details

Most functionality to compute confidence intervals (other than profile likelihood) is now available
directly in the lixoftConnectors package. Please migrate the following uses of this function:

confintmlx method lixoftConnectors function
"fim" linearizarion = TRUE getEstimatedConfidencelIntervals (method = "linearization")

confintmlx 13

"fim" linearizarion = FALSE getEstimatedConfidencelntervals (method = "stochasticApproximation
"bootstrap” parametric = TRUE runBootstrap (method = "parametric")
"bootstrap” parametric = FALSE runBootstrap (method = "nonparametric")

For method="proflike", continue using this function.

The method used for computing the confidence intervals can be either based on the standard er-
rors derived from an estimation of the Fisher Information Matrix ("fim"), on the profile likelihood
("proflike") or on nonparametric bootstrap estimate ("bootstrap"). method="fim" is used by default.

When method="fim", the FIM can be either estimated using a linearization of the model or a
stochastic approximation. When method="proflike", the observed likelihood can be either esti-
mated using a linearization of the model or an importance sampling Monte Carlo procedure. When
method="bootstrap”, the bootstrap estimates are obtained using the bootmlx function

Value

a list with the computed confidence intervals, the method used and the level.

See Also

getEstimatedConfidenceIntervals replaces this function for method = "fim” in lixoftConnec-
tors
runBootstrap replaces this function for method = "bootstrap” in lixoftConnectors

Examples

Not run:
RsmlxDemo2.mlxtran is a Monolix project for modelling the PK of warfarin using a PK model
with parameters ka, V, CI.

confintmlx will compute a 90% confidence interval for all the population parameters
using the population estimates obtained by Monolix and the Fisher Information Matrix
estimated by linearization

r1 <- confintmlx(project="RsmlxDemo2.mlxtran")

95% confidence intervals are now computed, using the FIM estimated by Monolix using a
stochastic approximation algorithm:
r2 <- confintmlx(project="RsmlxDemo2.mlxtran", linearization=FALSE, level=0.95)

Confidence intervals are computed for ka_pop and omega_ka only,
using the profile likelihood method:
r <- confintmlx(project = "RsmlxDemo2.mlxtran”,

method = "proflike”,

non

parameters = c("ka_pop", "omega_ka"))

Confidence intervals are computed using 200 bootstrap samples:
r3 <- confintmlx(project="RsmlxDemo2.mlxtran”, method="bootstrap”, nboot=200)

End(Not run)

14 covariateSearch

See http://monolix.lixoft.com/rsmlx/confintmlx/ for detailed examples of use of confintmlx
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

covariateSearch Covariate model building

Description

Automatic search of the best covariate model. Automatic covariate model building is available di-
rectly in the lixoftConnectors package using the function runModelBuilding. Please migrate, as
this function will be deprecated in the future.

Two methods for covariate model building are proposed

* SCM: stepwise covariate modeling method In the forward selection, at each step, each of the
remaining (i.e not yet included) parameter-covariate relationships are added to the model in
an univariate model (one model per relationship), and run. Among all models, the model that
improves some criteria (LRT, BIC or AIC) most is selected and taken forward to the next step.
During backward elimination, parameter-covariate relationships are removed in an univariate
manner.

* COSSAC: COnditional Sampling for Stepwise Approach based on Correlation tests method
COSSAC makes use of the information contained in the base model run to choose which
covariate to try first (instead of trying all covariates "blindly" as in SCM). Indeed, the correla-
tion between the individual parameters (or random effects) and the covariates hints at possibly
relevant parameter-covariate relationships. If the EBEs (empirical Bayes estimates) are used,
shrinkage may bias the result. COSSAC instead uses samples from the a posteriori conditional
distribution (available as "conditional distribution" task in MonolixSuite2018) to calculate the
correlation between the random effects and covariates. A p-value can be derived using the
Pearson’s correlation test for continuous covariate and ANOVA for categorical covariate. The
p-values are used to sort all the random effect-covariate relationships. Relationships with the
lowest p-value are added first, run and confirmed using a likelihood ratio test, AIC or BIC
criteria.

Usage

covariateSearch(
project,
final.project = NULL,
method = NULL,
covToTest = NULL,
covToTransform = NULL,
paramToUse = NULL,
testRelations = NULL,
settings = NULL

covariateSearch 15

Arguments

project a Monolix project

final.project [optional] string corresponding to the final Monolix project (default: ’'runFi-
nal.mlxtran’ in covariate search output folder)

method [optional] string correspondig to the method. It can be "COSSAC’ or 'SCM’.
By default, COSSAC’ is used.

covToTest [optional] vector of covariates to test. Cannot be used if testRelations is defined.
By default, all covariates are tested.

covToTransform [optional] vector of covariates to transform. The transformation consists in a
log transform of the covariate with centering by the mean value (ex: WT is
transformed into log(WT/mean) with mean the mean WT value over the indi-
viduals of the data set). Both the transformed and untransformed covariate are
tested by the algorithm. By default, no covariate is transformed. Note: adding a
non-transformed covariate on a lognormally distributed parameter results in an
exponential relationship: log(V) = log(Vpop) + beta*WT + eta <=>V = Vpop *
exp(beta*WT) * exp(eta) adding a log-transformed covariate on a lognormally
distributed parameter results in a power law relationship: log(V) = log(Vpop) +
beta*log(WT/70) + eta <=> V = Vpop * (WT/70)"beta * exp(eta)

paramToUse [optional] vector of parameters which may be function of covariates. Cannot be
used if testRelations is defined. By default, all parameters are tested.

testRelations [optional] list of parameter-covariate relationships to test, ex: list(V=c("WT","SEX"),Cl=c("CRCL")).
Cannot be used if covToTest or paramToUse is defined. By default, all parameter-
covariate relationships are tested.

settings [optional] list of settings for the covariate search:

* pInclusion [positive double] threshold on the LRT p-value to accept the
model with the added parameter-covariate relationship during forward se-
lection (default = .1). Only used if criteria="LRT".

* pElimination [positive double] threshold on the LRT p-value to accept
the model without the removed parameter-covariate relationship during the
backward elimination (default = .05). Only used if criteria="LRT".

e criteriaThreshold [positive double] the threshold on the AIC or BIC
difference to accept the model with added/removed parameter-covariate re-
lationship (default = 0). Only used if criteria="BIC" or "AIC.

e linearization [boolean] whether the computation of the likelihood is
based on a linearization of the model (default = FALSE).

e criteria [string] criteria to optimize. It can be the "BIC", "AIC", or "LRT"
(default="LRT").

* direction [string] method for covariate search. It can be "backward", "for-
ward", or "both" (default = "both").

e updateInit [boolean] whether to update or not the initial parameters using
the estimates of the parent model (default = FALSE)

¢ saveRun [boolean] whether to save or not each run (default = TRUE)

16 getEstimatedCovarianceMatrix

See Also

getModelBuildingSettings settings for model building with lixoftConnectors
runModelBuilding run model building with lixoftConnectors
getModelBuildingResults results for model building with lixoftConnectors

Examples

Not run:
RsmlxDemol.mlxtran is a Monolix project for modelling the pharmacokinetics (PK) of warfarin
using a PK model with parameters ka, V, Cl.

In this example, three covariates (wt, age, sex) are available with the data
covariatesearch will compute the best covariate model, in term of BIC,

for the three PK parameters using the three covariates.

r1 <- covariateSearch(project="RsmlxDemo1l.mlxtran")

Instead of using the COSSAC method, we can use the SCM method:
r2 <- covariateSearch(project="RsmlxDemol.mlxtran”, method = 'SCM")

Here, the covariate model is built using age and wt only, for V and Cl only:
r3 <- covariateSearch(project = "RsmlxDemol.mlxtran”,

paramToUse = c("V","C1"),

covToTest = c("age","wt"))

End(Not run)

See http://monolix.lixoft.com/rsmlx/covariatesearch/ for detailed examples of covariatesearch
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

getEstimatedCovarianceMatrix
Get estimated covariance and correlation matrices

Description

Get estimated covariance and correlation matrices

Usage

getEstimatedCovarianceMatrix()

Value

a list of two matrices.

getEstimatedIndividualParameters2 17

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran” has been loaded
r = getEstimatedCovarianceMatrix() # r is a list with elements "cor.matrix” and "cov.matrix”

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

getEstimatedIndividualParameters?2
Get estimated individual and population parameters

Description

Get the individual individual parameters, the population parameters with the population covariates
and the population parameters with the individual covariates.

Usage

getEstimatedIndividualParameters2()

Value

a list of data frames.

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran” has been loaded
r = getEstimatedIndividualParameters2()

#r is alist with elements "saem”, "conditionalMean”, "conditionalSD"”, "conditionalMode",
"popPopCov"” and "popIndCov”

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

18 getEstimatedResiduals

getEstimatedPredictions
Get estimated predictions

Description

Get the individual predictions obtained with the estimated individual parameters :

Usage

getEstimatedPredictions()

Value

a list of data frames (one data frame per output).

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran” has been loaded
r = getEstimatedPredictions() # r is a list with elements "y1" and "y2"

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

getEstimatedResiduals Get estimated residuals

Description

Get the residuals computed from the individual predictions obtained with the estimated individual
parameters:

Usage

getEstimatedResiduals()

Value

a list of data frames (one data frame per output).

getSimulatedPredictions 19

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran” has been loaded
r = getEstimatedResiduals() # r is a list with elements "y1" and "y2"

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

getSimulatedPredictions
Get simulated predictions

Description

Get the individual predictions obtained with the simulated individual parameters :

Usage

getSimulatedPredictions()

Value

a list of data frames (one data frame per output).

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran"” has been loaded
r = getSimulatedPredictions() # r is a list with elements "Cc"” and "E”

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

getSimulatedResiduals Get simulated residuals

Description

Get the residuals computed from the individual predictions obtained with the simulated individual
parameters:

20 initRsmix

Usage

getSimulatedResiduals()

Value

a list of data frames (one data frame per output).

Examples

Not run:
Assume that the Monolix project "warfarinPKPD.mlxtran” has been loaded
r = getSimulatedResiduals() # r is a list with elements "y1"” and "y2"

See http://monolix.lixoft.com/rsmlx/newconnectors/ for more detailed examples
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

initRsmlx Initialize Rsmlx library

Description
Initialize Rsmlx library and lixoftConnectors. Prints information about the versions of Monolix and
lixoftConnectors used.

Usage

initRsmlx(path = NULL)

Arguments

path Monolix path

Value
A list:

e software: the software that is used (should be monolix with Rsmlx)

* path: the path to MonolixSuite

¢ version: the version of MonolixSuite that is used

* status: boolean equaling TRUE if the initialization has been successful.

Examples

Not run:
initRsmlx ()
initRsmlx(path="C:/ProgramData/Lixoft/MonolixSuite2024R1") # specifiy a specific path

End(Not run)

pkbuild

21

pkbuild

Automatic PK model building

Description

Fit several structural PK models and select the best one based on a Bayesian Information Crite-
rion. Models to compare can be defined by rate constants and/or clearances and can include or not
nonlinear elimination models. See https://monolix.lixoft.com/rsmlx/pkbuild/ for more details.

Usage

pkbuild(
data = NULL,

project = NULL,

stat = FALSE,

param = "clearance”,

n o n

new.dir =
MM = FALSE,
linearization

’

:F,

criterion = "BICc",

level = NULL,
settings.stat

Arguments

data

project
stat
param

new.dir

MM

linearization

criterion
level

settings.stat

= NULL

a list with fields

* dataFile: path of a formatted data file
* headerTypes: a vector of strings
e administration ("iv", "bolus", "infusion", "oral", "ev"): route of admin-
istration
a Monolix project
(FALSE, TRUE): the statistical model is also built (using buildmlx) (default=FALSE)

("clearance", "rate", "both): parametrization (default="clearance")

name of the directory where the created files are stored (default is the current
working directory))

(FALSE, TRUE): tested models include or not Michaelis Menten elimination
models (default=FALSE)

TRUE/FALSE whether the computation of the likelihood is based on a lineariza-
tion of the model (default=FALSE)

penalization criterion to optimize c("AIC", "BIC", "BICc", gamma) (default="BICc")
an integer between 1 and 9 (used by setSettings)

list of settings used by buildmlx (only if stat=TRUE)

22 pkpopini

Value

A list of results

Examples

Not run:

Build a PK model for the warfarin PK data.

By default, only models using clearance (and inter compartmental clearances) are used
warf.pkl <- pkbuild(data=warfarin)

Models using elimination and transfer rate constants are used,
as well as nonlinear elimination models
warf.pk2 <- pkbuild(data=warfarin, new.dir="warfarin”, param="rate"”, MM=TRUE)

Both models using clearances and rates are used.
Level is set to 7 in order to get accurate results.

warf.pk3 <- pkbuild(data=warfarin, new.dir="warfarin"”, param="both”, level=7)

End(Not run)

pkpopini Compute initial population PK parameters

Description

Use the pooled PK data to derive population PK parameters for a "standard" PK model (i.e. a model
of the Monolix PK library). The structural model is automatically defined using the names of the
PK parameters. Allowed names are: 'Tlag’, "Mtt’, *Ktr’, *ka’, "Tk0’, "V’, ’V1°, °V2’,’V3’,°Q’,
’Q2°,°Q3%, °Cl, ’k’, k127, ’k21°, ’k13’, °k31°, ’Vm’, ’Km’.

Usage

pkpopini(
data = NULL,
project = NULL,
parameter = NULL,
new.project = NULL,
new.dir = NULL,
par.ini = NULL

Arguments

data a list with fields

* dataFile: path to a formatted data file
* headerTypes: a vector of strings

project a Monolix project

readDatamlix

parameter
new.project

new.dir

par.ini

Details

23

a vector of strings (names of the PK parameters)
name of the new Monolix project (a default name is created if not provided)

name of the directory where the created files are stored (default is the current
working directory))

a vector of PK parameter values

A Monolix project is then automatically created using these values as initial population parameters.

See https://monolix.lixoft.com/rsmlx/pkpopini/ for more details.

Value

A list of results

Examples

Not run:

Create in the working directory a Monolix project for a 1 cpt model with
lag time, @ order absorption and linear elimination
warf.inil <- pkpopini(data=warfarin, param=c("Tlag", "Tke", "V", "Cl"))

Create in directory 'warfarin' a Monolix project called 'warfPK2.mlxtran'
for a 2 cpt model with 1st order absorption and nonlinear elimination
warf.ini3 <- pkpopini(data=warfarin, param=c("ka”, "V", "k12", "k21", "vVvm", "Km"),

End(Not run)

new.dir="warfarin”, new.project="warfPK2.mlxtran")

readDatamlx

Read formatted data file

Description

Read data in a Monolix/NONMEM format

Usage

readDatamlx(
data = NULL,

out.data = FALSE,
nbSSDoses = 10,
obs.rows = FALSE,
datafile = NULL,
header = NULL

24 resMonolix

Arguments

data a list with fields
* dataFile: path of a formatted data file
* headerTypes: a vector of strings

out.data TRUE/FALSE (default=FALSE) returns the original data as a table and some
information about the Monolix project

nbSSDoses number of additional doses to use for steady-state (default=10)
obs.rows a list of observation indexes
datafile (deprecated) a formatted data file
header (deprecated) a vector of strings
Value

A list of data frames

Examples
Not run:
using a data file:
warfarinPK <- list(dataFile = "data/warfarinPK.csv",
headerTypes = c("id", "time"”, "observation”, "amount”,
"contcov", "contcov”, "catcov"),
administration = "oral")

d <- readDatamlx(data=warfarinPK)

End(Not run)

resMonolix Monolix results

Description

Monolix results used by the Rsmlx examples

Usage

resMonolix

Format

A R list

Source

Monolix demos

RsmixDemol.project 25

References

Rsmlx website: http://rsmlx.webpopix.org

RsmlxDemo1l.project Monolix project for warfarin PK - 1

Description
RsmlxDemo2.mlxtran is a Monolix project for modelling the pharmacokinetics (PK) of warfarin
using a PK model with parameters ka, V, Cl. There is no covariate in the model.

Usage

RsmlxDemo1.project

Format

A text file

Source

Monolix project

References

Rsmlx doumentation

RsmlxDemo2.project Monolix project for warfarin PK - 2

Description
RsmlxDemo2.mlxtran is a Monolix project for modelling the pharmacokinetics (PK) of warfarin
using a PK model with parameters ka, V, Cl. Here, V and Cl are function of weight.

Usage

RsmlxDemo2.project

Format

A text file

Source

Monolix project

26 setSettings

References

Rsmlx doumentation

setSettings Easy tuning of the settings of a Monolix project

Description

Use a single accuracy level, between 1 and 9, to automatically tune all the settings of a Monolix
project. When the accuray level is equal to 1, the algorithms are very fast but the results may be not
precise. When the accuray level is equal to 9, the algorithms are slow but the results are accurate.
Default Monolix settings are obtained with level=5.

Usage

setSettings(project = NULL, new.project = NULL, level = 5)

Arguments
project a string: a Monolix project (the loaded project if NULL)
new.project a string: the new created Monolix project (default is the original project)
level an integer between 1 and 9 (default=5)
Examples
Not run:

RsmlxDemol.mlxtran is a Monolix project for modelling the PK of warfarin.

All settings of the project are set so that algorithms used by Monolix converge as
quickly as possible possible:

setSettings(project="RsmlxDemol.mlxtran”, level=1)

A new project will be created with settings set in order to obtain the most
precise results possible:

new.project= file.path(tempdir(), "RsmlxDemoNew.mlxtran")
setSettings(project="RsmlxDemol.mlxtran”, new.project=new.project, level=9)

See http://monolix.lixoft.com/rsmlx/setSettings/ for detailed examples of use of setSettings
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

End(Not run)

testmlx 27

testmlx Statistical tests for model assessment

Description

Perform several statistical tests using the results of a Monolix run to assess the statistical compo-
nents of the model in use.

Usage
testmlx(
project = NULL,
tests = c("covariate”, "randomEffect”, "correlation”, "residual"),
plot = FALSE,

adjust = "edf",
n.sample = NULL

)
Arguments
project a Monolix project
tests a vector of strings: the list of tests to perform among c("covariate","randomEffect","correlation","residual
plot FALSE/TRUE display some diagnostic plots associated to the tests (default=FALSE)
adjust method to take into account the dependency of MCMC sample c("edf","BH")
(default="edf")
n.sample number of samples from the conditional distribution to be used (default = num-
ber of available samples in the project)
Details

The tests used are: 1) F-tests (or, equivalently, correlation tests) to evaluate the effect of each co-
variate on each parameter ("covariate"), 2) correlation tests to assess the correlation structure of
the random effects ("correlation"), 3) Shapiro-Wilk and Miao-Gel-Gastwirth tests to assess, respec-
tively the normality and the symmetry of the distribution of the random effects (""randomEffect"),
4) Shapiro-Wilk and Miao-Gel-Gastwirth tests to assess, respectively the normality and the sym-
metry of the distribution of residual errors ("residual").

By default, the four tests are performed.

When several samples of the conditional distributions are used, two methods are proposed in order
to take into the dependance of the samples for the Shapiro-Wilk and Miao-Gel-Gastwirth tests:
"edf" computes an effective degrees of freedom, "BH" performs one test per replicates and adjust
the smallest p-value using the Benjamini-Hochberg correction.

Value

a list of data frames and ggplot objects if plot=TRUE

28 warfarin.data

Examples

Not run:
RsmlxDemo2.mlxtran is a Monolix project for modelling the PK of warfarin using a PK model
with parameters ka, V, CI.

#testmlx will perform statistical tests for the different component of the statistical model:
r1 <- testmlx(project="RsmlxDemo2.mlxtran")

#testmlx will perform statistical tests for the covariate model and the correlation model only.

non

r2 <- testmlx(project="RsmlxDemo2.mlxtran”, tests=c("”covariate”,"correlation"))
End(Not run)

See http://monolix.lixoft.com/rsmlx/testmlx/ for detailed examples of use of testmlx
Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation

warfarin.data warfarin PKPD data

Description

The warfarin PK and PD data for 32 patients

Usage

warfarin.data

Format

A csv file

Source

Monolix demos

References

O’Reilly (1968). Studies on coumarin anticoagulant drugs. Initiation of warfarin therapy without a
loading dose. Circulation 1968, 38:169-177.

whichPKmodel 29

whichPKmodel Find a Monolix PK model

Description

Return the path of the Monolix PK model defined by a list of parameter names See https://monolix.lixoft.com/rsmlx/whichPK
for more details.

Usage
whichPKmodel (parameter, mlxPath = NULL, pkPath = NULL, 1ib = FALSE)

Arguments

parameter a vector of PK parameter names

mlxPath path to Monolix install

pkPath path to the Monolix PK library

lib boolean to define if the absolute path is returned
Examples

Not run:

whichPKmodel (parameter=c("Tlag"”, "Tke", "V", "Cl1"))

End(Not run)

Index

+ datasets
resMonolix, 24
RsmlxDemol.project, 25
RsmlxDemo2.project, 25
warfarin.data, 28

bootmlx, 2
buildAll, 4
buildmlx, 7
buildvar, 10

confintmlx, 12
covariateSearch, 14

getEstimatedCovarianceMatrix, 16
getEstimatedIndividualParameters2, 17
getEstimatedPredictions, 18
getEstimatedResiduals, 18
getSimulatedPredictions, 19
getSimulatedResiduals, 19

initRsmlx, 20

pkbuild, 21
pkpopini, 22

readDatamlx, 23
resMonolix, 24
RsmlxDemol.project, 25
RsmlxDemo2.project, 25

setSettings, 26
testmlx, 27

warfarin.data, 28
whichPKmodel, 29

30

	bootmlx
	buildAll
	buildmlx
	buildVar
	confintmlx
	covariateSearch
	getEstimatedCovarianceMatrix
	getEstimatedIndividualParameters2
	getEstimatedPredictions
	getEstimatedResiduals
	getSimulatedPredictions
	getSimulatedResiduals
	initRsmlx
	pkbuild
	pkpopini
	readDatamlx
	resMonolix
	RsmlxDemo1.project
	RsmlxDemo2.project
	setSettings
	testmlx
	warfarin.data
	whichPKmodel
	Index

