Package 'Rnest'

June 19, 2025

Title Next Eigenvalue Sufficiency Test
Version 1.2
Description Determine the number of dimensions to retain in exploratory factor analysis. The main function, nest(), returns the solution and the plot(nest()) returns a plot.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Imports crayon (>= 1.4.0), ggplot2 (>= 3.3.0), scales (>= 1.0.0), EFA.MRFA (>= 1.1.2), fungible (>= 2.3), MASS (>= 7.3-58.1), lavaan (>= 0.6), mvtnorm (>= 1.1), cli (>= 3.6.4)
NeedsCompilation no
Author PO. Caron [aut, cre, cph] (ORCID: <https: 0000-0001-6346-5583="" orcid.org="">)</https:>
Maintainer PO. Caron <pocaron19@gmail.com></pocaron19@gmail.com>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2025-06-19 13:40:02 UTC

Contents

Type Package

nim	2
him24	3
rtlettSphericity	3
ggs_maccallum2003	4
ron2016	
ron2019	5
rmat	6
rmat.l	6
vFIML	7

achim

cov_nest	. 8
ЕКС	. 9
ex_2factors	. 10
ex_3factors_doub_unique	. 10
ex_4factors_corr	. 11
ex_mqr	. 11
genr8	. 12
Ledermann	. 13
loadings	. 13
MAP	. 14
meek_bouchard	. 15
nest	. 15
pa	. 18
plot.nest	. 19
print.nest	
remove_unique	. 20
shem	
summary.nest	. 22
tabachnick_fidell2019	. 22
TEST1	. 23
unique_variable	. 23
	25

Index

achim

A list of seven correlation matrices.

Description

A list of seven correlation matrices.

Usage

achim

Format

A list of correlation matrices.

Source

https://github.com/quantmeth

References

Achim, A. (personal communication).

achim24

Description

A correlation matrix composed of 18 items based on six factors. Four have more than three variables, three variables have crossloadings (items 6, 7 and 13), two are doublets factors (items 13-14, 15-16), and there is two unique variables (17 and 18). Loadings range between .40 and .80.

Usage

achim24

Format

A 18 by 18 correlation matrix.

Source

https://github.com/quantmeth

References

Achim, A. (2024, April 4). *Signal cancellation factor analysis*. PsyArXiv, 1–13. doi:10.31234/osf.io/h7qwg

BartlettSphericity Bartlett Sphericity Test

Description

BartlettSphericity tests if variables are orthogonal.

Usage

```
BartlettSphericity(R, n)
```

Arguments

R	the correlation matrix.
n	the sample size.

Value

The χ^2 test of the correlation matrix R with sample size n.

Author(s)

André Achim (Matlab)

P.-O. Caron (R)

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. *Proceedings of the Royal Statistical Society, Series A*, 160, 268–282

Examples

BartlettSphericity(ex_4factors_corr, 42)

briggs_maccallum2003 A list of three correlation matrices.

Description

A list of three correlation matrices.

Usage

```
briggs_maccallum2003
```

Format

A a list of three correlation matrices.

Source

https://github.com/quantmeth

References

Briggs, N. E., & MacCallum, R. C. (2003). Recovery of weak common factors by Maximum likelihood and ordinary least squares estimation. *Multivariate Nehavioral Research*, *38*(1), 25–56. doi:10.1207/S15327906MBR3801_2

caron2016

A list of six correlation matrices composed of nine variables with three factors and different levels of correlations between factors.

Description

A list of six correlation matrices composed of nine variables with three factors and different levels of correlations between factors.

Usage

caron2016

Format

A list of six 9 x 9 correlation matrices.

Source

https://github.com/quantmeth

References

Caron, P.-O. (2016). A Monte Carlo examination of the broken-stick distribution to identify components to retain in principal component analysis. *Journal of Statistical Computation and Simulation*, 86(12), 2405-2410. doi:10.1080/00949655.2015.1112390

caron2019	A list of 15 correlation matrices composed of nine variables with three
	factors and different levels of correlations between factors.

Description

A list of 15 correlation matrices composed of nine variables with three factors and different levels of correlations between factors.

Usage

caron2019

Format

A list of 159 x 9 correlation matrices.

Source

https://github.com/quantmeth

References

Caron, P.-O. (2019). Minimum average partial correlation and parallel analysis : The influence of oblique structures. *Communications in Statistics - Simulation and Computation*, 48(7), 2110-2117. doi:10.1080/03610918.2018.1433843

cormat

A list containing 120 correlation matrices.

Description

A list containing $120\ 24 \times 24$ correlation matrices (R) built to represent different factor structures. Details are found in the 'cormat.1' data.

Usage

cormat

Format

A a list of 120 correlation matrices.

Source

https://github.com/quantmeth

References

Caron, P.-O. (2025). A comparison of the Next Eigenvalue Sufficiency Test to other stopping rules for the number of factors in factor analysis. *Educational and Psychological Measurement*. doi:10.1177/00131644241308528

cormat.l

A list containing 120 lists of correlation matrices and their underlying characteristics.

Description

A list containing 120 lists of 24×24 correlation matrices (R) built to represent different factor structures. Different levels of loadings (delta, .4, .5, .6, .7, .8), correlation between factors (corrfact, .0, .1, .2 .3), and. number of factors (nfactors, 1:8) are used. The list contained matrice (R), and their underlying characteristics (delta, corrfact, and nfactors).

Usage

cormat.1

covFIML

Format

A list containing 120 matrices.

Source

https://github.com/quantmeth

References

See Caron, P.-O. (2025). A comparison of the Next Eigenvalue Sufficiency Test to other stopping rules for the number of factors in factor analysis. *Educational and Psychological Measurement*. doi:10.1177/00131644241308528

covFIML	Full Information Maximum Likelihood (FIML) correlation or covari-
	ance matrix

Description

Full Information Maximum Likelihood (FIML) correlation or covariance matrix

Usage

covFIML(data,	tol =	1e-6,	maxiter	=	1000,	pvalue	=	FALSE)
corFIML(data,	tol =	1e-6,	maxiter	=	1000,	pvalue	=	FALSE)

Arguments

data	a data frame of rdata matrix.
tol	tolerance.
maxiter	maximum number of iterations.
pvalue	an argument to indicate if <i>p</i> -values are required.

Value

A list containing the means, th correlation or covariance matrix, and optionnaly the degree of freedom and the p-values.

Note

A not so efficient function. See ?cor_nest instead.

Examples

covFIML(airquality)

cov_nest

Description

Compute covariance or correlation matrix with treatments for clusters and missing values

Usage

```
cor_nest(.data, ..., cluster = NULL, missing = "fiml", ordered = FALSE, pvalue = FALSE)
cov_nest(.data, ..., cluster = NULL, missing = "fiml", ordered = FALSE, pvalue = FALSE)
```

Arguments

.data	a data frame, a numeric matrix.
	further arguments.
cluster	a variable name defining the clusters in a two-level dataset in the data frame.
missing	treatment to deal with missing values. Options are "listwise" or "pairwise". Default if "fiml".
ordered	a character vector identifying which variables have an ordered (ordinal) scale. If TRUE, all observed endogenous variables are treated as ordered (ordinal). If FALSE, all observed endogenous variables are considered to be numeric
pvalue	an argument to indicate if <i>p</i> -values are required.

Details

A quick adaptation of the lavaan package (Rosseel, 2012) to estimate a covariance or correlation matrix with missing values, hierachical structures and ordinal scales.

Value

A list of class "covnest"

References

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2), 1–36. https://www.jstatsoft.org/v48/i02/

Examples

cov_nest(airquality)

EKC

Description

Empirical Kaiser Criterion (EKC)

Usage

```
EKC(.data = NULL, n = NULL, nv = NULL, lowest.eig = 1, ...)
```

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from which to determine the number of factors.
n	the number of cases (subjects, participants, or units) if a covariance matrix is supplied in .data.
nv	the number of variables if the critical values are required.
lowest.eig	minimal eigenvalues to retain. Default is Kaiser's suggestion of 1.
	further argument for cor_nest().

Value

The number of factors to retain or the crititical eigenvalues.

Note

As Rnest version >= 1.2, a correction to EKC was done which was reported by Marcel van Assen (personnal communication, june 2025), which was found in Rnest and other packages as well. There was a confusion in the sample and critical eigenvalues in equation 2 (Braeken & van Assen, 2017, p. 454).

References

Braeken, J., & van Assen, M. A. L. M. (2017). An empirical Kaiser criterion. *Psychological Methods*, 22(3), 450–466. doi:10.1037/met0000074

Examples

EKC(ex_4factors_corr, n = 42)

ex_2factors

Description

A correlation matrix composed of 10 items based on 2 factors with 5 variables each and loadings equals to .80.

Usage

ex_2factors

Format

A 10 by 10 correlation matrix.

Source

https://github.com/quantmeth

References

Caron, P.-O. (2025). *Rnest: An R package for the Next Eigenvalue Sufficiency Test.* https://github.com/quantmeth/Rnest

ex_3factors_doub_unique

A correlation matrix composed of two factors, a doublet factor and a unique variable.

Description

A correlation matrix composed of 10 items based on two main factors among which there is two cross-loadings. There is also a doublet factors and an unique variable.

Usage

ex_3factors_doub_unique

Format

A 10 by 10 correlation matrix.

Source

https://github.com/quantmeth

ex_4factors_corr

References

Achim, A. (personal communication).

ex_4factors_corr A correlation matrix composed of 4 correlated factors.

Description

A correlation matrix composed of 12 items based on 4 factors with 3 variables each. Loadings equals to .9, .9, and .3. Factors 1 and 2, and factors 3 and 4 are correlated at .7.

Usage

ex_4factors_corr

Format

A 12 by 12 correlation matrix.

Source

https://github.com/quantmeth

References

Achim, A (personal communication).

ex_mqr	A correlation matrix from chapter 19 Explorer of Méthodes quantita-
	tives avec R (MQR).

Description

A population correlation matrix composed of 6 items from a two factor stucture. Factor 1 is based on items 1 to 3 and 6, and Factor 2 is based on items 4 to 6.

Usage

ex_mqr

Format

A 6 by 6 correlation matrix.

Source

https://github.com/quantmeth

References

Caron, P.-O. (2024). *Méthodes quantitatives avec R.* https://mqr.teluq.ca

genr8

Simplify the the generation from a multivariate normal distributions.

Description

Speed up the use of MASS::mvrnorm.

Usage

genr8(n = 1, R = diag(10), mean = rep(0, ncol(R)), ...)

Arguments

n	the number of samples required.
R	a positive-definite symmetric matrix specifying the covariance matrix of the variables.
mean	an optinal vector giving the means of the variables. Default is 0.
	arguments for MASS::mvrnorm(), such as tol, empirical, and EISPACK.

Value

A data frame of size n by ncol(R).

Examples

```
set.seed(19)
R <- caron2016$mat1
mydata <- genr8(n = nrow(R)+1, R = R, empirical = TRUE)
round(mydata, 2)
round(cov(mydata), 2)</pre>
```

Ledermann

Description

Returns the maximum number of latent factors in a factor analysis model.

Usage

Ledermann(p)

Arguments

р

The number of variables.

Value

The Ledermann bound.

Author(s)

André Achim (Matlab)

P.-O. Caron (R)

References

Ledermann, W. (1937). On the rank of reduced correlation matrices in multiple factor analysis. *Psychometrika*, 2, 85–93.

Examples

Ledermann(ncol(ex_4factors_corr))

loadings

Print Loadings in NEST

Description

Print Loadings in NEST

Usage

```
loadings(x, nfactors = x$nfactors, method = x$method, ...)
```

Arguments

ction.
(

Value

A $p \times k$ matrix containing loadings where p is the number of variables and k is the number of factors (nfactors).

Note

See stats::loadings for the original documentation.

Examples

results <- nest(ex_2factors, n = 100)
loadings(results)</pre>

MAP

Minimum average partial correlation (MAP)

Description

Minimum average partial correlation (MAP)

Usage

MAP(.data, ...)

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from
	which to determine the number of factors.
	further argument for cor_nest().

Value

The number of factors to retain.

References

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. *Psychometrika*, 41(3), 321-327. doi:10.1007/BF02293557

meek_bouchard

Examples

D <- genr8(n = 42, R = ex_4factors_corr)
MAP(D)</pre>

meek_bouchard A correlation matrix from Meek-Bouchard.

Description

A sample correlation matrix composed of 44 items.

Usage

meek_bouchard

Format

A 44 by 44 correlation matrix.

Source

https://github.com/quantmeth

References

Meek-Bouchard, C. (personal communication).

nest

Next Eigenvalue Sufficiency Test (NEST)

Description

nest is used to identify the number of factors to retain in exploratory factor analysis.

Usage

```
nest(
  .data,
  ...,
  n = NULL,
  nreps = 1000,
  alpha = 0.05,
  max.fact = NULL,
  method = "ml",
  missing = "fiml",
  cluster = NULL,
  ordered = NULL
)
```

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from which to determine the number of factors.
	arguments for method that can be supplied. See details.
n	the number of cases (subjects, participants, or units) if a covariance matrix is supplied in .data.
nreps	the number of replications to derive the empirical probability distribution of each eigenvalue. Default is 1000.
alpha	a vector of type I error rates or (1-alpha)*100% confidence intervals. Default is .05.
max.fact	an optional maximum number of factor to extract. Default is NULL, so the maxi- mum number possible.
method	a method used to compute loadings and uniquenesses. Four methods are im- plemented in Rnest : maximum likelihood method = "ml" (default), regular- ized common factor analysis method = "rcfa", minimum rank factor analysis method = "mrfa", and principal axis factoring method = "paf". See details for custom methods.
missing	how should missing data be removed. "fiml" uses full information maxi- mum likelihood to compute the correlation matrix. Other options are "ml", "pairwise", "listwise". Default is "fiml".
cluster	a (single) variable name in the data frame defining the clusters in a two-level dataset.
ordered	a character vector to treat the variables as ordered (ordinal) variables. If TRUE, all observed endogenous variables are treated as ordered (ordinal).

Details

The Next Eigenvalues Sufficiency Test (NEST) is an extension of parallel analysis by adding a sequential hypothesis testing procedure for every $k = 0, ..., \max$. fact factor until the hypothesis is not rejected.

At k = 0, NEST and parallel analysis are identical. Both use an identity matrix as the correlation matrix. Once the first hypothesis is rejected, NEST uses a correlation matrix based on the loadings and uniquenesses of the k^{th} factorial structure. NEST then resamples nreps times the k^{th} eigenvalue of this new correlation matrix. NEST stops when the k^{th} eigenvalues is below the $1 - \alpha^* 100$

There is four method already implemented in nest to estimate loadings and uniquenesses: maximum likelihood ("ml"; default), principal axis factoring ("paf"), regularized common factor analysis method = "rcfa", and minimum rank factor analysis ("mrfa"). These functions use as arguments: covmat, n, factors, and ... (supplementary arguments passed by nest). They return loadings and uniquenesses. Any other user-defined functions can be used as long as it is programmed likewise.

The method = "paf" is the same as Achim's (2017) NESTip.

nest

Value

nest() returns an object of class nest. The functions summary and plot are used to obtain and show a summary of the results.

An object of class nest is a list containing the following components:

- nfactors The number of factors to retains (one by alpha).
- cor The supplied correlation matrix.
- n The number of cases (subjects, participants, or units).
- values The eigenvalues of the supplied correlation matrix.
- alpha The type I error rate.
- method The method used to compute loadings and uniquenesses.
- nreps The number of replications used.
- prob Probabilities of each factor.
- Eig A list of simulated eigenvalues.

Generic function

plot.nest Scree plot of the eigenvalues and the simulated confidence intervals for alpha.

loadings Extract loadings. It does not overwrite stat::loadings.

summary.nest Summary statistics for the number of factors.

Author(s)

P.-O. Caron

References

Achim, A. (2017). Testing the number of required dimensions in exploratory factor analysis. *The Quantitative Methods for Psychology*, *13*(1), 64-74. doi:10.20982/tqmp.13.1.p064

Examples

```
nest(ex_2factors, n = 100)
nest(mtcars)
```

Description

Parallel analysis

Usage

```
pa(
  .data = NULL,
  n = NULL,
  nv = NULL,
  nreps = 1000,
  alpha = 0.05,
  ...,
  crit = NULL
)
```

Arguments

.data	a data.frame.
n	the number of subjects.
nv	the number of variables.
nreps	the number of replications.
alpha	type I error rate.
	other arguments.
crit	critical values to compare the eigenvalues to.

Value

nfactors (if data is supplied) and sampled eigenvalues

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. *Psychometrika*, *30*(2), 179–185. doi:10.1007/BF02289447

Examples

```
# To get the number of factors to retain
# from a correlation matrix
pa(ex_2factors, n = 42)
# from a data set
jd <- genr8(n = 404, R = ex_4factors_corr)</pre>
```

ра

plot.nest

```
pa(jd)
# from a nest output
pa(nest(ex_2factors, n = 42))
# To get the 95th critical eigenvalues
pa(n = 10, nv = 2, nreps = 100)
```

plot.nest

Plot results of Next Eigenvalues Sufficiency Test (NEST)

Description

Scree plot of the eigenvalues and the (1-alpha)*100% confidence intervals derived from the resampled eigenvalues supplied to nest.

Usage

S3 method for class 'nest'
plot(x, pa = FALSE, ...)

Arguments

х	an object of class "nest".
ра	show results of Parallel Analysis.
	further arguments for other methods, ignored for "nest".

Value

A ggplot output.

Note

This function is more interesting with many alpha values.

Examples

```
results <- nest(ex_2factors, n = 100, alpha = c(.01, .05, .01))
plot(results)
# Return the data used to produce the plot
df <- plot(results)$data</pre>
```

print.nest

Description

Print the number of factors to retain according to confidence levels.

Usage

S3 method for class 'nest'
print(x, ...)

Arguments

х	an object of class "nest".
	further arguments for other methods, ignored for "nest".

Value

No return value, called for side effects.

Examples

```
results <- nest(ex_2factors, n = 100)
print(results)</pre>
```

remove_unique Remove unique variables

Description

Remove unique variables

Usage

```
remove_unique(.data, ..., alpha = 0.05)
```

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from which to determine the number of factors.
	further arguments for unique_variable() and cor_nest().
alpha	type I error rate.

shem

Value

A list containing the unique variables and a data frame containing their probabilities and the .data with the unique variable removed.

Examples

```
remove_unique(ex_3factors_doub_unique, n = 420)
```

shem

Split-Half Eigenvector Matching (SHEM)

Description

shem estimates the number of principal components via Split-Half Eigenvector Matching (SHEM).

Usage

shem(.data, nIts = 30)

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from
	which to determine the number of factors.
nIts	number of iterations.

Value

shem returns a list containing the number of components, nfactors, whether the additional step in case of zero true latent components was carried, zeroComponents, the eigenvalues and the eigenvectors of the solution.

References

Galdwin, T. E. (2023) Estimating the number of principal components via Split-Half Eigenvector Matching (SHEM). *MethodsX*, *11*, 102286. doi:10.1016/j.mex.2023.102286

Examples

jd <- genr8(n = 404, R = ex_4factors_corr)
shem(jd)</pre>

summary.nest

Description

summary method for class "nest".

Usage

```
## S3 method for class 'nest'
summary(object, ...)
```

Arguments

object	an object of class "nest".
	further arguments for other methods, ignored for "nest".

Value

No returned value, called for side effects.

Examples

```
results <- nest(ex_2factors, n = 100)
summary(results)</pre>
```

tabachnick_fidell2019 A covariance matrix composed of 11 variables.

Description

A sample covariance matrix composed of 11 items based on two factors according to Tabachnick and Fidell (2019, see, 576-578). The first five variables are related to "Verbak IQ", the next five are related to "Performance IQ". The last variable CODING is unique. Loadings range between .39 and .76.

Usage

```
tabachnick_fidell2019
```

Format

A 11 by 11 covariance matrix.

Source

https://github.com/quantmeth

TEST1

References

Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics. Allyn and Bacon. p. 576-577.

TEST1

A problematic correlation matrix from Paquin.

Description

A sample correlation matrix composed of 72 items with poorly defined factorial structure. NEST does not converge to a solution and reach very large number of factors. The associated sample size is 348. To investigate.

Usage

TEST1

Format

A correlation matrix in a data.frame.

Source

https://github.com/quantmeth

References

Paquin, S. (personal communication).

unique_variable Probability of unique variables

Description

Probability of unique variables

Usage

```
unique_variable(.data, n = NULL, ...)
```

Arguments

.data	a data frame, a numeric matrix, covariance matrix or correlation matrix from which to determine the number of factors.
n	the number of cases (subjects, participants, or units) if a covariance matrix is supplied in .data.
	further arguments for cov_nest().

Value

A data frame containing the F-values and probabilities of the variable to be an unique variable.

Author(s)

P.-O. Caron (R) André Achim (Matlab)

Examples

```
exData <- genr8(n = 420, R = ex_3factors_doub_unique)
unique_variable(exData)</pre>
```

Index

```
* datasets
    achim, 2
    achim24,3
    briggs_maccallum2003,4
    caron2016, 5
    caron2019, 5
    cormat, 6
    cormat.1,6
    ex_2factors, 10
    ex_3factors_doub_unique, 10
    ex_4factors_corr, 11
    ex_mqr, 11
    meek_bouchard, 15
    tabachnick_fidell2019,22
    TEST1, 23
achim, 2
achim24,3
BartlettSphericity, 3
briggs_maccallum2003,4
caron2016, 5
caron2019, 5
cor_nest (cov_nest), 8
corFIML (covFIML), 7
cormat, 6
cormat.1,6
cov_nest, 8
covFIML, 7
EKC, 9
ekc (EKC), 9
ex_2factors, 10
ex_3factors_doub_unique, 10
ex_4factors_corr, 11
ex_mqr, 11
genr8, 12
Ledermann, 13
```

loadings, 13 MAP, 14 map (MAP), 14 meek_bouchard, 15 NEST (nest), 15 nest, 15 PA (pa), 18 pa, 18 plot.nest, 19 print.nest, 20 remove_unique, 20 shem, 21 summary.nest, 22 tabachnick_fidell2019, 22 TEST1, 23 unique_variable, 23