
Arbitrarily Accurate Computation with R:

The Rmpfr Package

Martin Mächler
ETH Zurich

Abstract

The R package Rmpfr allows to use arbitrarily precise numbers instead of R’s double
precision numbers in many R computations and functions. This is achieved by defining S4
classes of such numbers and vectors, matrices, and arrays thereof, where all arithmetic and
mathematical functions work via the (GNU) MPFR C library, where MPFR is acronym
for “Multiple Precision Floating-Point Reliably”. MPFR is Free Software, available under
the LGPL license, and itself is built on the free GNU Multiple Precision arithmetic library
(GMP).

Consequently, by using Rmpfr, you can often call your R function or numerical code
with mpfr–numbers instead of simple numbers, and all results will automatically be much
more accurate.

Applications by the package author include testing of Bessel or polylog functions and
distribution computations, e.g. for (α-)stable distributions and Archimedean Copulas.
In addition, the Rmpfr has been used on the R-help or R-devel mailing list for high-
accuracy computations, e.g., in comparison with results from other software, and also in
improving existing R functionality, e.g., fixing R bug PR#14491.

Keywords: MPFR, Abitrary Precision, Multiple Precision Floating-Point, R.

1. Introduction

There are situations, notably in researching better numerical algorithms for non-trivial math-
ematical functions, say the F -distribution function, where it is interesting and very useful to
be able to rerun computations in R in (potentially much) higher precision.

For example, if you are interested in Euler’s e, the base of natural logarithms, and given, e.g.,
by ex = exp(x), you will look into

R> exp(1)

[1] 2.718282

which typically uses 7 digits for printing, as getOption("digits") is 7. To see R’s internal
accuracy fully, you can use

R> print(exp(1), digits = 17)

[1] 2.7182818284590451

With Rmpfr you can now simply use “mpfr – numbers” and get more accurate results auto-
matically, here using a vector of numbers as is customary in R:

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14491

2 Arbitrarily Accurate Computation with R: The Rmpfr Package

R> require("Rmpfr") # after having installed the package ...

R> (one <- mpfr(1, 120))

1 'mpfr' number of precision 120 bits

[1] 1

R> exp(one)

1 'mpfr' number of precision 120 bits

[1] 2.7182818284590452353602874713526624979

In combinatorics, number theory or when computing series, you may occasionally want to
work with exact factorials or binomial coefficients, where e.g. you may need all factorials k!,
for k = 1, 2, . . . , 24 or a full row of Pascal’s triangle, i.e., want all

(

n

k

)

for n = 80.

With R’s double precision, and standard printing precision

R> ns <- 1:24 ; factorial(ns)

[1] 1.000000e+00 2.000000e+00 6.000000e+00 2.400000e+01 1.200000e+02

[6] 7.200000e+02 5.040000e+03 4.032000e+04 3.628800e+05 3.628800e+06

[11] 3.991680e+07 4.790016e+08 6.227021e+09 8.717829e+10 1.307674e+12

[16] 2.092279e+13 3.556874e+14 6.402374e+15 1.216451e+17 2.432902e+18

[21] 5.109094e+19 1.124001e+21 2.585202e+22 6.204484e+23

the full precision of 24! is clearly not printed. However, if you display it with more than its
full internal precision,

R> noquote(sprintf("%-30.0f", factorial(24)))

[1] 620448401733239409999872

it is obviously wrong in the last couple of digits as they are known to be 0. However, you can
easily get full precision results with Rmpfr, by replacing “simple” numbers by mpfr-numbers:

R> ns <- mpfr(1:24, 120) ; factorial(ns)

24 'mpfr' numbers of precision 120 bits

[1] 1 2

[3] 6 24

[5] 120 720

[7] 5040 40320

[9] 362880 3628800

[11] 39916800 479001600

[13] 6227020800 87178291200

[15] 1307674368000 20922789888000

[17] 355687428096000 6402373705728000

[19] 121645100408832000 2432902008176640000

[21] 51090942171709440000 1124000727777607680000

[23] 25852016738884976640000 620448401733239439360000

Or for the 80-th Pascal triangle row,
(

n

k

)

for n = 80 and k = 1, . . . , n,

R> chooseMpfr.all(n = 80)

80 'mpfr' numbers of precision 77 bits

[1] 80 3160

[3] 82160 1581580

[5] 24040016 300500200

[7] 3176716400 28987537150

.......

Martin Mächler 3

.......

[23] 68310851714568382400 162238272822099908200

[25] 363413731121503794368 768759815833950334240

[27] 1537519631667900668480 2910305017085669122480

[29] 5218477961670854978240 8871412534840453463008

.......

.......

[77] 82160 3160

[79] 80 1

S4 classes and methods: S4 allows “multiple dispatch” which means that the method
that is called for a generic function may not just depend on the first argument of the function
(as in S3 or in traditional class-based OOP), but on a “signature” of multiple arguments. For
example, a + b is the same as ‘+‘(a,b), i.e., calling a function with two arguments.

...

1.1. The engine behind: MPFR and GMP

The package Rmpfr interfaces R to the C (GNU) library

MPFR, acronym for “Multiple Precision Floating-Point Reliably”

MPFR is Free Software, available under the LGPL license, see http://mpfr.org/ and Fousse,
Hanrot, Lefèvre, Pélissier, and Zimmermann (2007) and the standard reference to MPFR,
Fousse, Hanrot, Lefèvre, Pélissier, and Zimmermann (2011). MPFR itself is built on and
requires the GNU Multiple Precision arithmetic library (GMP), see http://gmplib.org/

and Granlund and the GMP development team (2011). It can be obtained from there, or
from your operating system vendor.

On some platforms, it is very simple, to install MPFR and GMP, something necessary before
Rmpfr can be used. E.g., in Linux distributions Debian, Ubuntu and other Debian derivatives,
it is sufficient (for both libraries) to simply issue

sudo apt-get install libmpfr-dev

2. Arithmetic with mpfr-numbers

R> (0:7) / 7 # k/7, for k= 0..7 printed with R's default precision

[1] 0.0000000 0.1428571 0.2857143 0.4285714 0.5714286 0.7142857 0.8571429

[8] 1.0000000

R> options(digits= 16)

R> (0:7) / 7 # in full double precision accuracy

[1] 0.0000000000000000 0.1428571428571428 0.2857142857142857

[4] 0.4285714285714285 0.5714285714285714 0.7142857142857143

[7] 0.8571428571428571 1.0000000000000000

R> options(digits= 7) # back to default

R> str(.Machine[c("double.digits","double.eps", "double.neg.eps")], digits=10)

http://mpfr.org/
http://gmplib.org/

4 Arbitrarily Accurate Computation with R: The Rmpfr Package

List of 3

$ double.digits : int 53

$ double.eps : num 2.220446049e-16

$ double.neg.eps: num 1.110223025e-16

R> 2^-(52:53)

[1] 2.220446e-16 1.110223e-16

In other words, the double precision numbers R uses have a 53-bit mantissa, and the two
“computer epsilons” are 2−52 and 2−53, respectively.

Less technically, how many decimal digits can double precision numbers work with, 2−53 =
10−x ⇐⇒ x = 53 log10(2),

R> 53 * log10(2)

[1] 15.95459

i.e., almost 16 digits.

If we want to compute some arithmetic expression with higher precision, this can now easily
be achieved, using the Rmpfr package, by defining “mpfr–numbers” and then work with these.

Starting with simple examples, a more precise version of k/7, k = 0, . . . , 7 from above:

R> x <- mpfr(0:7, 80)/7 # using 80 bits precision

R> x

8 'mpfr' numbers of precision 80 bits

[1] 0 0.14285714285714285714285708

[3] 0.28571428571428571428571417 0.42857142857142857142857125

[5] 0.57142857142857142857142834 0.71428571428571428571428583

[7] 0.8571428571428571428571425 1

R> 7*x

8 'mpfr' numbers of precision 80 bits

[1] 0 1 2 3 4 5 6 7

R> 7*x - 0:7

8 'mpfr' numbers of precision 80 bits

[1] 0 0 0 0 0 0 0 0

which here is even “perfect” – but that’s “luck” only, and also the case here for “simple”
double precision numbers, at least on our current platform.1

2.1. Mathematical Constants, Pi (π), gamma, etc

Our Rmpfr package also provides the mathematical constants which MPFR provides, via
Const(., ⟨prec⟩), currently the 4 constants

R> formals(Const)$name

c("pi", "gamma", "catalan", "log2")

are available, where "gamma" is for Euler’s gamma, γ := limn→∞
∑

n

k=1
1
k

− log(n) ≈ 0.5777,
and "catalan" for Catalan’s constant (see http://en.wikipedia.org/wiki/Catalan%27s_

constant).

164-bit Linux, Fedora 13 on a “AMD Phenom 925” processor

http://en.wikipedia.org/wiki/Catalan%27s_constant
http://en.wikipedia.org/wiki/Catalan%27s_constant

Martin Mächler 5

R> Const("pi")

1 'mpfr' number of precision 120 bits

[1] 3.1415926535897932384626433832795028847

R> Const("log2")

1 'mpfr' number of precision 120 bits

[1] 0.69314718055994530941723212145817656831

where you may note a default precision of 120 digits, a bit more than quadruple precision,
but also that 1000 digits of π are available instantaneously,

R> system.time(Pi <- Const("pi", 1000 *log2(10)))

user system elapsed

0.001 0.000 0.002

R> Pi

1 'mpfr' number of precision 3321 bits

[1] 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019

As nice example of using Mpfr arithmetic: On a wintery Sunday, Hans Borchers desired
to have an exact π constant in Rmpfr, and realized that of course mpfr(pi, 256) could
not be the solution, as pi is the double precision version of π and hence only about 53 bit
accurate (and the mpfr() cannot do magic, recognizing “symbolic” π). As he overlooked the
Const("pi", .) solution above, he implemented the following function that computes pi
applying Gauss’ spectacular AGM-based (AGM := Arithmetic-Geometric Mean) approach
[Borwein and Borwein (1987), Pi and the AGM]; I have added a verbose argument, explicit
iteration counting and slightly adapted the style to my own:

R> piMpfr <- function(prec=256, itermax = 100, verbose=TRUE) {

m2 <- mpfr(2, prec) # '2' as mpfr number

-> all derived numbers are mpfr (with precision 'prec')

p <- m2 + sqrt(m2) # 2 + sqrt(2) = 3.414..

y <- sqrt(sqrt(m2)) # 2^ {1/4}

x <- (y+1/y) / m2

it <- 0L

repeat {

p.old <- p

it <- it+1L

p <- p * (1+x) / (1+y)

if(verbose) cat(sprintf("it=%2d, pi^ = %s, |.-.|/|.|=%e\n",

it, formatMpfr(p, min(50, prec/log2(10))), 1-p.old/p))

if (abs(p-p.old) <= m2^(-prec))

break

if(it > itermax) {

warning("not converged in", it, "iterations") ; break

}

else

s <- sqrt(x)

y <- (y*s + 1/s) / (1+y)

x <- (s+1/s)/2

}

p

}

R> piMpfr()# indeed converges *quadratically* fast

6 Arbitrarily Accurate Computation with R: The Rmpfr Package

it= 1, pi^ = 3.1426067539416226007907198236183018919713562462772, |.-.|/|.|=-8.642723e-02

it= 2, pi^ = 3.1415926609660442304977522351203396906792842568645, |.-.|/|.|=-3.227958e-04

it= 3, pi^ = 3.1415926535897932386457739917571417940347896238675, |.-.|/|.|=-2.347934e-09

it= 4, pi^ = 3.1415926535897932384626433832795028841972241204666, |.-.|/|.|=-5.829228e-20

it= 5, pi^ = 3.1415926535897932384626433832795028841971693993751, |.-.|/|.|=-1.741826e-41

it= 6, pi^ = 3.1415926535897932384626433832795028841971693993751, |.-.|/|.|=0.000000e+00

1 'mpfr' number of precision 256 bits

[1] 3.141592653589793238462643383279502884197169399375105820974944592307816406286163

R> ## with relative error

R> relErr <- 1 - piMpfr(256, verbose=FALSE) / Const("pi",260)

R> ## in bits :

R> asNumeric(-log2(abs(relErr)))

[1] 255.2451

2.2. seqMpfr() for sequences:

In R, arithmetic sequences are constructed by seq(), the “sequence” function, which is not
generic, and with its many ways and possible arguments is convenient, but straightforward
to automatically generalize for mpfr numbers. Instead, we provide the seqMpfr function...

2.3. Rounding, roundMpfr(), asNumeric() etc:

In R, the round() and signif() functions belong to the Math2 group, and we provide "mpfr"-
class methods for them:

R> getGroupMembers("Math2")

[1] "round" "signif"

R> showMethods("Math2", classes=c("mpfr", "mpfrArray"))

Function: Math2 (package methods)

x="mpfr"

For consistency reasons, however the resulting numbers keep the same number of precision
bits, precBits:

R> i7 <- 1/mpfr(700, 100)

R> c(i7, round(i7, digits = 6), signif(i7, digits = 6))

3 'mpfr' numbers of precision 100 bits

[1] 0.001428571428571428571428571428571

[2] 0.0014290000000000000000000000000001

[3] 0.0014285699999999999999999999999996

If you really want to “truncate” the precision to less digits or bits, you call roundMpfr(),

R> roundMpfr(i7, precBits = 30)

1 'mpfr' number of precision 30 bits

[1] 0.0014285714278

R> roundMpfr(i7, precBits = 15)

1 'mpfr' number of precision 15 bits

[1] 0.00142854

Note that 15 bits correspond to approximately 15 · 0.3, i.e., 4.5 digits, because 1/ log2(10) ≈
0.30103

Martin Mächler 7

asNumeric(): Often used, e.g., to return to fast (R-internal) arithmetic, also as alternative
to roundMpfr() is to “round to double precision” producing standard Rnumbers from “mpfr”
numbers. We provide the function asNumeric(), a generic function with methods also for
"mpfrArray" see below and the big integers and big rationals from package gmp,

R> showMethods(asNumeric)

Function: asNumeric (package gmp)

x="ANY"

x="bigq"

x="bigz"

x="mpfr"

x="mpfrArray"

x="numeric"

(inherited from: x="ANY")

see, e.g., its use above.

Formatting: For explicit printing or plotting purposes, we provide an "mpfr" method
for R’s format() function, also as explicit utility function formatMpfr(x, digits) which
provides results to digits significant digits,

R> cbind(sapply(1:7, function(d) format(i7, digits=d)))

[,1]

[1,] "0.001"

[2,] "0.0014"

[3,] "0.00143"

[4,] "0.001429"

[5,] "0.0014286"

[6,] "0.00142857"

[7,] "0.001428571"

There, digits = NULL is the default where the help has (“always”) promised The default,

NULL, uses enough digits to represent the full precision, often one or two digits more than you

would expect. However, for large numbers, say 1020000, e.g., new("mpfr1", prec = 80, exp =
c(66439, 0), sign = 1, d = c(0, -1008336896, 1315775171, -1124830946)), all of formatMpfr(x),
format(x), and print(x) (including “auto-printing” of x), have shown all digits before the
decimal point and not at all taken into account the 80-bit precision of x (which corresponds to
only 80 / log2(10) ≈ 24 decimal digits). This has finally changed in the (typically default)
case formatMpfr(*, maybe.full = FALSE):

R> x <- mpfr(2, 80) ^ ((1:4)*10000)

R> cbind(x) # -> show() -> print.mpfr() -> formatMpfr(.. , digits = NULL, maybe.full = FALSE)

'mpfrMatrix' of dim(.) = (4, 1) of precision 80 bits

x

[1,] 1.9950631168807583848837422e+3010

[2,] 3.9802768403379665923543072e+6020

[3,] 7.9409035191329603241325178e+9030

[4,] 1.5842603725730786800597362e+12041

R> nchar(formatMpfr(x))

[1] 33 33 33 34

R> nchar(formatMpfr(x, maybe.full = TRUE))

8 Arbitrarily Accurate Computation with R: The Rmpfr Package

[1] 3012 6022 9033 12043

3. “All” mathematical functions, arbitrarily precise

All the S4 “Math” group functions are defined, using multiple precision (MPFR) arithmetic,
i.e.,

R> getGroupMembers("Math")

[1] "abs" "sign" "sqrt" "ceiling" "floor" "trunc"

[7] "cummax" "cummin" "cumprod" "cumsum" "exp" "expm1"

[13] "log" "log10" "log2" "log1p" "cos" "cosh"

[19] "sin" "sinh" "tan" "tanh" "acos" "acosh"

[25] "asin" "asinh" "atan" "atanh" "cospi" "sinpi"

[31] "tanpi" "gamma" "lgamma" "digamma" "trigamma"

where currently, trigamma is not provided by the MPFR library, and hence not implemented
yet.

factorial() has a "mpfr" method; and in addition, factorialMpfr() computes n! efficiently
in arbitrary precision, using the MPFR-internal implementation. This is mathematically (but
not numerically) the same as Γ(n + 1) =gamma(n+1).

Similarly to factorialMpfr(), but more generally useful,the functions chooseMpfr(a,n)

and pochMpfr(a,n) compute (generalized!) binomial coefficients
(

a

n

)

and “the” Pochhammer
symbol or “rising factorial”

a(n) := a(a + 1)(a + 2) · · · (a + n − 1)

=
(a + n − 1)!

(a − 1)!
=

Γ(a + n)

Γ(a)
.

Note that with this definition,
(

a

n

)

≡ a(n)

n!
.

4. Arbitrarily precise matrices and arrays

The classes "mpfrMatrix" and "mpfrArray" correspond to the classical numerical R "matrix"

and "array" objects, which basically are arrays or vectors of numbers with a dimension dim,
possibly named by dimnames. As there, they can be constructed by dim(.) <- .. setting,
e.g.,

R> head(x <- mpfr(0:7, 64)/7) ; mx <- x

6 'mpfr' numbers of precision 64 bits

[1] 0 0.142857142857142857141 0.285714285714285714282

[4] 0.428571428571428571436 0.571428571428571428564 0.714285714285714285691

R> dim(mx) <- c(4,2)

or by the mpfrArray() constructor,

R> dim(aa <- mpfrArray(1:24, precBits = 80, dim = 2:4))

Martin Mächler 9

[1] 2 3 4

R> aa

'mpfrArray' of dim(.) = (2, 3, 4) of precision 80 bits

, , 1

[,1] [,2]

[1,] 1.0000000000000000000000000 3.0000000000000000000000000

[2,] 2.0000000000000000000000000 4.0000000000000000000000000

[,3]

[1,] 5.0000000000000000000000000

[2,] 6.0000000000000000000000000

, , 2

.......

.......

[,3]

[1,] 23.000000000000000000000000

[2,] 24.000000000000000000000000

and we can index and multiply such matrices, e.g.,

R> mx[1:3,] + c(1,10,100)

'mpfrMatrix' of dim(.) = (3, 2) of precision 64 bits

[,1] [,2]

[1,] 1.00000000000000000000 1.57142857142857142851

[2,] 10.1428571428571428570 10.7142857142857142860

[3,] 100.285714285714285712 100.857142857142857144

R> crossprod(mx)

'mpfrMatrix' of dim(.) = (2, 2) of precision 64 bits

[,1] [,2]

[1,] 0.285714285714285714282 0.775510204081632653086

[2,] 0.775510204081632653086 2.57142857142857142851

and also apply functions,

R> apply(7 * mx, 2, sum)

2 'mpfr' numbers of precision 64 bits

[1] 6 22

5. Special mathematical functions

zeta(x) computes Riemann’s Zeta function ζ(x) important in analytical number theory and
related fields. The traditional definition is

ζ(x) =
∞
∑

n=1

1

nx
.

Ei(x) computes the exponential integral,

∫

x

−∞

et

t
dt.

10 Arbitrarily Accurate Computation with R: The Rmpfr Package

R> curve(Ei, 0, 5, n=2001); abline(h=0,v=0, lty=3)

0 1 2 3 4 5

0
10

20
30

40

x

E
i(x

)

Li2(x), part of the MPFR C library since version 2.4.0, computes the dilogarithm,

Li2(x) = Li2(x) :=

∫

x

0

−log(1 − t)

t
dt,

which is the most prominent “polylogarithm” function, where the general polylogarithm is
(initially) defined as

Lis(z) =
∞
∑

k=1

zk

ks
, ∀s ∈ C ∀|z| < 1, z ∈ C,

see http://en.wikipedia.org/wiki/Polylogarithm#Dilogarithm.

Note that the integral definition is valid for all x ∈ C, and also, Li2(1) = ζ(2) = π2/6.

R> if(mpfrVersion() >= "2.4.0") ## Li2() is not available in older MPFR versions

all.equal(Li2(1), Const("pi", 128)^2/6, tol = 1e-30)

[1] TRUE

where we also see that Rmpfr provides all.equal() methods for mpfr-numbers which natu-
rally allow very small tolerances tol.

R> if(mpfrVersion() >= "2.4.0")

curve(Li2, -2, 13, n=2000); abline(h=0,v=0, lty=3)

http://en.wikipedia.org/wiki/Polylogarithm#Dilogarithm

Martin Mächler 11

0 5 10

−
1

0
1

2

x

Li
2(

x)

erf(x) is the “error2 function” and erfc(x) its complement, erfc(x) := 1 - erf(x), de-
fined as

erf(x) =
2√
π

∫

x

0
e−t

2

dt,

and consequently, both functions simply are reparametrizations of the cumulative normal,
Φ(x) =

∫

x

−∞ φ(t) dt =pnorm(x) where φ is the normal density function φ(t) := 1√
2π

e−t
2

=dnorm(x).

Namely, erf(x) = 2*pnorm(sqrt(2)*x) and erfc(x) = 1 - erf(x) = 2* pnorm(sqrt(2)*x,

lower=FALSE).

R> curve(erf, -3,3, col = "red", ylim = c(-1,2))

R> curve(erfc, add = TRUE, col = "blue")

R> abline(h=0, v=0, lty=3); abline(v=c(-1,1), lty=3, lwd=.8, col="gray")

R> legend(-3,1, c("erf(x)", "erfc(x)"), col = c("red","blue"), lty=1)

−3 −2 −1 0 1 2 3

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

x

er
f(

x)

erf(x)
erfc(x)

2named exactly because of its relation to the normal / Gaussian distribution

12 Arbitrarily Accurate Computation with R: The Rmpfr Package

5.1. Applications

The CRAN package Bessel provides asymptotic formulas for Bessel functions also of fractional

order which do work for mpfr-vector arguments as well.

6. Integration highly precisely

Sometimes, important functions are defined as integrals of other known functions, e.g., the
dilogarithm Li2() above. Consequently, we found it desirable to allow numerical integration,
using mpfr-numbers, and hence—conceptionally—arbitrarily precisely.

R’s integrate() uses a relatively smart adaptive integration scheme, but based on C code
which is not very simply translatable to pure R, to be used with mpfr numbers. For this
reason, our integrateR() function uses classical Romberg integration (Bauer 1961).

We demonstrate its use, first by looking at a situation where R’s integrate() can get prob-
lems:

R> integrateR(dnorm,0,2000)

0.5 with absolute error < 4.3687e-05

R> integrateR(dnorm,0,2000, rel.tol=1e-15)

0.5 with absolute error < 0

R> integrateR(dnorm,0,2000, rel.tol=1e-15, verbose=TRUE)

n= 1, 2^n= 2 | I = 132.98076013381089, abs.err = 265.9615

n= 2, 2^n= 4 | I = 62.057688062445074, abs.err = 70.92307

n= 3, 2^n= 8 | I = 30.536322697393608, abs.err = 31.52137

n= 4, 2^n= 16 | I = 15.208286206152895, abs.err = 15.32804

n= 5, 2^n= 32 | I = 7.5967099231125408, abs.err = 7.611576

n= 6, 2^n= 64 | I = 3.7974274023470991, abs.err = 3.799283

n= 7, 2^n= 128 | I = 1.8985978058124329, abs.err = 1.89883

n= 8, 2^n= 256 | I = 0.94928441753372339, abs.err = 0.9493134

n= 9, 2^n= 512 | I = 0.47574025959605515, abs.err = 0.4735442

n=10, 2^n= 1024 | I = 0.40552346957493818, abs.err = 0.07021679

n=11, 2^n= 2048 | I = 0.50575841635110108, abs.err = 0.1002349

n=12, 2^n= 4096 | I = 0.50004134868550221, abs.err = 0.005717068

n=13, 2^n= 8192 | I = 0.49999766130535211, abs.err = 4.368738e-05

n=14, 2^n= 16384 | I = 0.5000000108190541, abs.err = 2.349514e-06

n=15, 2^n= 32768 | I = 0.49999999998902311, abs.err = 1.083003e-08

n=16, 2^n= 65536 | I = 0.50000000000000278, abs.err = 1.097966e-11

n=17, 2^n= 131072 | I = 0.5, abs.err = 2.775558e-15

n=18, 2^n= 262144 | I = 0.5, abs.err = 0

0.5 with absolute error < 0

Now, for situations where numerical integration would not be necessary, as the solution is
known analytically, but hence are useful for exploration of high accuracy numerical integra-
tion:

First, the exponential function exp(x) = ex with its well-known
∫

exp(t) dt = exp(x), both
with standard (double precision) floats,

R> (Ie.d <- integrateR(exp, 0 , 1, rel.tol=1e-15, verbose=TRUE))

http://CRAN.R-project.org/package=Bessel

Martin Mächler 13

n= 1, 2^n= 2 | I = 1.7188611518765928, abs.err = 0.1402798

n= 2, 2^n= 4 | I = 1.7182826879247572, abs.err = 0.000578464

n= 3, 2^n= 8 | I = 1.7182818287945303, abs.err = 8.591302e-07

n= 4, 2^n= 16 | I = 1.7182818284590784, abs.err = 3.354519e-10

n= 5, 2^n= 32 | I = 1.7182818284590453, abs.err = 3.308465e-14

n= 6, 2^n= 64 | I = 1.7182818284590453, abs.err = 0

1.7183 with absolute error < 0

and then the same, using 200-bit accurate mpfr-numbers:

R> (Ie.m <- integrateR(exp, mpfr(0,200), 1, rel.tol=1e-25, verbose=TRUE))

n= 1, 2^n= 2 | I = 1.71886115187659297045914844, abs.err = 0.1402798

n= 2, 2^n= 4 | I = 1.71828268792475745881674571, abs.err = 0.0005784640

n= 3, 2^n= 8 | I = 1.71828182879453042315257873, abs.err = 8.591302e-7

n= 4, 2^n= 16 | I = 1.71828182845907832266010358, abs.err = 3.354521e-10

n= 5, 2^n= 32 | I = 1.71828182845904523617810757, abs.err = 3.308648e-14

n= 6, 2^n= 64 | I = 1.71828182845904523536029253, abs.err = 8.178150e-19

n= 7, 2^n= 128 | I = 1.71828182845904523536028747, abs.err = 5.056528e-24

n= 8, 2^n= 256 | I = 1.71828182845904523536028747, abs.err = 7.817216e-30

1.7183 with absolute error < 7.8172e-30

R> (I.true <- exp(mpfr(1, 200)) - 1)

1 'mpfr' number of precision 200 bits

[1] 1.7182818284590452353602874713526624977572470936999595749669679

R> ## with absolute errors

R> as.numeric(c(I.true - Ie.d$value,

I.true - Ie.m$value))

[1] -7.747992e-17 -3.021394e-36

Now, for polynomials, where Romberg integration of the appropriate order is exact, mathe-
matically,

R> if(require("polynom")) {

x <- polynomial(0:1)

p <- (x-2)^4 - 3*(x-3)^2

Fp <- as.function(p)

print(pI <- integral(p)) # formally

print(Itrue <- predict(pI, 5) - predict(pI, 0)) ## == 20

} else {

Fp <- function(x) (x-2)^4 - 3*(x-3)^2

Itrue <- 20

}

-11*x - 7*x^2 + 7*x^3 - 2*x^4 + 0.2*x^5

[1] 20

R> (Id <- integrateR(Fp, 0, 5))

20 with absolute error < 7.1054e-15

R> (Im <- integrateR(Fp, 0, mpfr(5, 256),

rel.tol = 1e-70, verbose=TRUE))

n= 1, 2^n= 2 | I = 46.041667, abs.err = 98.95833

n= 2, 2^n= 4 | I = 20.00, abs.err = 26.04167

n= 3, 2^n= 8 | I = 20.00, abs.err = 2.763574e-76

20.000 with absolute error < 2.7636e-76

14 Arbitrarily Accurate Computation with R: The Rmpfr Package

R> ## and the numerical errors, are indeed of the expected size:

R> 256 * log10(2) # - expect ~ 77 digit accuracy for mpfr(*., 256)

[1] 77.06368

R> as.numeric(Itrue - c(Im$value, Id$value))

[1] 0.000000e+00 3.552714e-15

7. Miscellaneous

For probability and density computations, it is known to be important in many contexts
to work on the log–scale, i.e., with log probabilities log P (.) or log densities log f(). In R

itself, we (R Core) had introduced logical optional arguments log (for density) and log.p for
probability (e.g., pnorm() and quantile (e.g., qnorm) functions.

As our pnorm() is based on MPFR’s erf() and erfc() which currently do not have scaled
versions, for Rmpfr::pnorm(.., log.p=TRUE) we do need to compute the logarithm (instead
of working on the log scale). On the extreme left tail, R correctly computes

R> pnorm(-1234, log.p=TRUE)

[1] -761386

i.e., -761386.036955 to more digits. However, erf() and erfc() do not have a log scale or
other scaled versions.

Thanks to the large range of exponents compared to double precision numbers it does less
quickly underflow to zero, e.g.,

R> (p123 <- Rmpfr::pnorm(mpfr(-123, 66), log.p=TRUE)) # is based on

1 'mpfr' number of precision 66 bits

[1] -7570.23118897588017062

R> (ec123 <- erfc(123 * sqrt(mpfr(0.5, 66+4))) / 2) # 1.95....e-3288

1 'mpfr' number of precision 70 bits

[1] 1.9514970354854432606612e-3288

R> (p333 <- Rmpfr::pnorm(mpfr(-333, 66), log.p=TRUE))

1 'mpfr' number of precision 66 bits

[1] -55451.2270900410088492

R> exp(p333)

1 'mpfr' number of precision 66 bits

[1] 6.88747493033304647776e-24083

R> stopifnot(p123 == log(roundMpfr(ec123, 66)), ## '==' as we implemented our pnorm()

all.equal(p333, -55451.22709, tol=1e-8))

and indeed, the default range for exponent (wrt base 2, not 10) is given by

R> (old_erng <- .mpfr_erange())

Emin Emax

-1073741823 1073741823

Martin Mächler 15

which shows the current minimal and maximal base-2 exponents for mpfr-numbers, by “factory-
fresh” default, the number −230 and 230, i.e., ±1073741823 which is much larger than the
corresponding limits for regular double precision numbers,

R> unlist(.Machine[c("double.min.exp", "double.max.exp")])

double.min.exp double.max.exp

-1022 1024

which are basically ±210; note that double arithmetic typically allows subnormal numbers
which are even smaller than 2−1024, also in R, on all usual platforms,

R> 2^(-1022 - 52)

[1] 4.940656e-324

is equal to 2−1074 and the really smallest positive double precision number.

Now, if if the GMP library to which both R package gmp and Rmpfr interface is built
“properly”, i.e., with full 64 bit “numb”s, we can extend the range of mpfr-numbers even
further. By how much, we can read off

R> .mpfr_erange(.mpfr_erange_kinds) ## and then set

Emin Emax min.emin max.emin min.emax

-1.073742e+09 1.073742e+09 -4.611686e+18 4.611686e+18 -4.611686e+18

max.emax

4.611686e+18

R> # use very slightly smaller than extreme values:

R> (myERng <- (1-2^-52) * .mpfr_erange(c("min.emin","max.emax")))

min.emin max.emax

-4.611686e+18 4.611686e+18

R> .mpfr_erange_set(value = myERng) # and to see what happened:

R> .mpfr_erange()

Emin Emax

-4.611686e+18 4.611686e+18

If that worked well, this shows -/+ 4.611686e+18, or actually ∓262, log2(abs(.mpfr_erange()))

giving 62.

However, currently on Winbuilder this does not extend, notably as the GMP numbs,

R> .mpfr_gmp_numbbits()

[1] 64

have not been 64, there.

8. Conclusion

The R package Rmpfr, available from CRAN since August 2009, provides the possibility to run
many computations in R with (arbitrarily) high accuracy, though typically with substantial
speed penalty.

This is particularly important and useful for checking and exploring the numerical stability
and appropriateness of mathematical formulae that are translated to a computer language
like R, often without very careful consideration of the limits of computer arithmetic.

16 Arbitrarily Accurate Computation with R: The Rmpfr Package

References

Bauer FL (1961). “Algorithm 60: Romberg integration.” Commun. ACM, 4, 255. ISSN
0001-0782. doi:http://doi.acm.org/10.1145/366573.366594. URL http://doi.acm.

org/10.1145/366573.366594.

Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2007). “MPFR: A multiple-
precision binary floating-point library with correct rounding.” ACM Trans. Math. Softw.,
33(2), 13. ISSN 0098-3500. URL http://doi.acm.org/10.1145/1236463.1236468.

Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2011). MPFR: A multiple-

precision binary floating-point library with correct rounding. URL http://mpfr.org/.

Granlund T, the GMP development team (2011). GNU MP - The GNU Multiple Precision

Arithmetic Library. URL http://gmplib.org/.

FIXME: Index of all functions mentioned . . .

Affiliation:

Martin Mächler
Seminar für Statistik, HG G 16
ETH Zurich
8092 Zurich, Switzerland
E-mail: maechler@stat.math.ethz.ch

URL: http://stat.ethz.ch/people/maechler

https://doi.org/http://doi.acm.org/10.1145/366573.366594
http://doi.acm.org/10.1145/366573.366594
http://doi.acm.org/10.1145/366573.366594
http://doi.acm.org/10.1145/1236463.1236468
http://mpfr.org/
http://gmplib.org/
mailto:maechler@stat.math.ethz.ch
http://stat.ethz.ch/people/maechler

	Introduction
	The engine behind: MPFR and GMP

	Arithmetic with mpfr-numbers
	Mathematical Constants, Pi, gamma, ..
	seqMpfr() for sequences:
	Rounding, roundMpfr(), asNumeric() etc:

	``All'' mathematical functions, arbitrarily precise
	Arbitrarily precise matrices and arrays
	Special mathematical functions
	Applications

	Integration highly precisely
	Miscellaneous
	Conclusion

