Return Curves Estimation

Lidia André, Callum Murphy-Barltrop, Jennifer Wadsworth

2025-02-05
Contents
1 Introduction 1
2 Marginal transformation 1
2.1 Assessing the marginal tail fits oL L o 5
3 Estimation of the angular dependence function 7
3.1 Goodness-of-fit of the angular dependence function 10
4 Estimation of the return curve 11
4.1 Uncertainty of the return curve estimates 14
4.2 Goodness-of-fit of the return curve estimates oo 17

1 Introduction

This vignette provides complementary information to the R Documentation for the ReturnCurves package.
It summarises the key methodologies implemented in the package and is heavily based on the works of
Murphy-Barltrop et al. [2023] and Murphy-Barltrop et al. [2024]; for full details we refer the user to these
articles.

The ReturnCurves package aims at estimating the p-probability return curve [Murphy-Barltrop et al., 2023],
for small p > 0, while implementing pointwise and smooth approaches to estimate the so called angular
dependence function first introduced by Wadsworth and Tawn [2013].

library (ReturnCurves)

To illustrate the functionality of the package, we use the data set airdata which contained air pollution data
collected from Marylebone, London (UK). The data set contains 1427 daily measurements of air pollutant
concentrations of NOx and PM10.

data(airdata)

2 Marginal transformation

The estimation of the angular dependence function and/or of the return curve is implemented for a bivariate
vector (Xg,Yr) marginally distributed as standard exponential, i.e, Xg, Yg ~ Exp(1). Thus, the original
data (X,Y’) needs to be marginally transformed, which is achieved via the probability integral transform. We
follow the procedure of Coles and Tawn [1991] where the empirical cumulative distribution function F is
fitted below a threshold u, and a generalised Pareto distribution (GPD) is fitted above, giving the following

estimate of the marginal cumulative distribution function (cdf) of X or Y :

_ . ~1/¢
Play= 41— (- Fw) +é5e] L iz,

+
F(z), if z <w,

(1)

where ¢ and é are the estimated scale and shape parameters of the GPD. Exponential margins are obtained

by applying —log(1 — F'(-)) to each margin, where F(-) is estimated separately for each margin.

This is done with the function margtransf which takes as inputs a matrix containing the original data, a
vector of the marginal quantiles used to fit the GPD and a boolean value constrainedshape which decides

whether £ > —1 if set to TRUE (Default), or £ € R if set to FALSE.

Function margtransf returns an object of S4 class margtrasnf.class with 6 attributes:

e data: matrix with the data on the original margins

e gmarg: vector of marginal quantiles used to fit the GPD

o constrainedshape: whether £ > —1 (TRUE) or £ € R (FALSE)

o parameters: matrix containing estimates of parameters (4, f)

e thresh: vector containing threshold u above which the GPD is fitted
e dataexp: matrix with the data on standard exponential margins

gmarg and constrainedshape set to the default values

expdata <- margtransf(data = airdata, gmarg = rep(0.95, 2), constrainedshape

attridbutes of the S4 object

str(expdata)

#> Formal class 'margtransf.class' [package "ReturnCurves"] with 6 slots
#> ..0 data sonum [1:1427, 1:2] 154 132 120 105 175 ...

#>- attr(*, "dimnames")=List of 2

#> .o$ ¢ NULL

#>$: chr [1:2] "noz" "pm10"

#> ..0 gmarg : num [1:2] 0.95 0.95

#> ..@ constrainedshape: logi TRUE

#> ..0@ parameters s num [1:2, 1:2] 58.3333 -0.0521 9.984 -0.1428
#> ..0 thresh s num [1:2] 320.5 54.4

#> ..0 dataexp :onum [1:1427, 1:2] 0.594 0.415 0.369 0.29 0.747 ...

head of the data on standard exponential margins
head (expdata@dataexp)

#> [,1] [,2]

#> [1,] 0.5941359 0.1035535

#> [2,] 0.4150041 0.4307285

#> [3,] 0.3692105 0.1596506

#> [4,] 0.2900289 0.1827463

#> [5,] 0.7465895 0.2808641

#> [6,] 1.1461374 0.9017124

It is possible to plot an S4 object of margtrasnf.class with plot. By setting argument which = "hist",

histograms of each variable on original and standard exponential margins can be seen:

plot(expdata, which = "hist")

Original margin of X Marginal transformation of X
0.005 _ o
0.75
 0.004 >
$ 0.003 G 0.50
> >
S 0.002 o
9] Loz2s
L 0.001 L
0.000 0.00
0 200 400 600 0.0 25 50 75
X Xexp
Original margin of Y Marginal transformation of Y
> 0.03 11 > 0.75
c c
8 0.02 $ 050
5 g
T 0.01 iz 020
0.00 0.00
25 50 75 0 2 4 6 8
Y Yexp

To visualise the time series of each variable on original and standard exponential margins, we need to set
which = "ts":

plot(expdata, which = "ts")

Time series of X Times series of Xy,

600
7.5
400
< % 5.0
X
200 25
0 0.0
0 500 1000 0 500 1000
Index Index
Time series of Y Times series of Yy,
8
6
o
3 4
>_
2
0
0 500 1000 0 500 1000
Index Index
The joint distribution on original and standard exponential margins can be accessed with which = "joint":
plot(expdata, which = "joint")
Original margins Standard exponential margins
75
P °
> 50
25
0 200 400 600 0.0 2:5 50 75

X Xexp

Finally, it is possible to plot all these together by setting which = "all", which is the default for this
argument.

plot(expdata, which = "all") # or just plot(expdata)

Original margin of X Marginal transformation of X
0.005

>
g 0.004 8075
g 0.003 % 0.50
5 0.002 D 0.25
I 0.001 iC
0 200 400 600 0.0 25 50 75
X Xexp
Original margin of Y Marginal transformation of Y
> P []
© 0.03 % 0.75 |
L 0.02 30-50 1,
(o3
@ 0.01 @ 0.25
25 50 75 0 2 4 6 8
Y Yexp
Time series of X Times series of Xy,
600
7.5
400 o
X £ 50
200 X 55
0 0.0
0 500 1000 0 500 1000
Index Index
Time series of Y Times series of Yy,
75 8
o 6
> 50 >_é 4
25 2
0
0 500 1000 0 500 1000
Index Index
Original margins Standard exponential margins
8
75 6
* e < ° °
> 50 o 4
> 2
25
0
0 200 400 600 0.0 2:5 5.0 75
X Xexp

2.1 Assessing the marginal tail fits

When transforming the data onto standard exponential variables as in equation (1), it is assumed that above
a threshold u data follows a GPD. It is possible to assess if this is a reasonable assumption through checking
if there is an agreement between model and empirical GPD quantiles. This is done via QQ plots in the

ReturnCurves package by plotting points (FC: 11;. D (ﬁ) +u, X (%P Dy u) , where X &P D denotes the i-th

ordered increasing statistic (i = 1,...,n) of the exceedances, i.e., X¢FP = (X —u | X > u), neye denotes
the sample size of these exceedances, and F 113 p denotes the inverse of the cumulative distribution function
of a GPD. Finally, the uncertainty on the empirical quantiles is quantified using a bootstrap approach. If
temporal dependence is present in the data, then a block bootstrap approach is required, i.e., blocksize >
1.

This is done using the function marggpd function which takes as inputs an S4 object of class margtransf . class,
the size of blocks of the bootstrap procedure and the corresponding number of samples, and the significance
level « for the tolerance intervals. It then returns an S4 object of class marggpd.class with an extra attribute
marggpd containing a list with:

e model: a list containing the model quantiles for each variable,

e empirical: a list containing the empirical quantiles for each variable,

e lower: a list containing the lower bounds of the tolerance intervals for each variable,
e upper: a list containing the upper bounds of the tolerance intervals for each variable.

nboot and alpha are set to the default values
blocksize is set to 10 to account for temporal dependence
uncgpd <- marggpd(margdata = expdata, blocksize = 10, nboot = 250, alpha = 0.05)

attridbutes of the S4 object

str (uncgpd)

#> Formal class 'marggpd.class' [package "ReturnCurves"] with 5 slots

#> ..@ margdata :Formal class 'margtransf.class' [package "ReturnCurves"] with 6 slots
#>0 data :onum [1:1427, 1:2] 154 132 120 105 175 ...

#>- attr(*, "dimnames")=List of 2

#> 50 0o oo oo ool § MUILEL

#> e e oo o .8 chr [1:2] "noz" "pm10"

#>@ gmarg : num [1:2] 0.95 0.95

#>0@ constrainedshape: logi TRUE

#>0 parameters :num [1:2, 1:2] 58.3333 -0.0521 9.984 -0.1428
#>0 thresh s num [1:2] 320.5 54.4

#>0 dataexp ponum [1:1427, 1:2] 0.594 0.415 0.369 0.29 0.747 ...
#> ..@ blocksize: num 10

#> ..0@ nboot : num 250

#> ..0 alpha : num 0.05

#> ..@ marggpd :List of 4

.. ..$ model :List of 2

#> co oo & s onum [1:71] 321 322 323 324 325 ...

#> co oo .8 mum [1:71] 54.6 54.7 54.9 55 55.1

#>$% empirical:List of 2

#> co oo .8 s onum [1:71] 321 321 322 322 323 ...

#> co oo .8 o onum [1:71] 54.5 54.5 54.5 54.9 55 ...

.. ..$ lower :List of 2

#> co oo .8 onum [1:71] 321 321 321 321 322 ...

..$: nmum [1:71] 54.5 54.5 54.5 54.5 54.5 ...

#>$ upper :List of 2

#> co oo .8 s onum [1:71] 322 323 324 330 331

#> co oo .. num [1:71] 54.5 55 55.1 55.1 55.2 ...

head of the list elements of slot marggpd for wvariable X
head (uncgpd@marggpd$model [[1]])

#> [1] 321.2739 322.1004 322.9382 323.7876 324.6489 325.5225
head (uncgpd@marggpd$empirical [[1]])

#> [1] 320.5833 321.4167 321.8333 322.4167 323.0417 323.5000
head (uncgpd@marggpd$lower [[1]])
#> [1] 320.5833 320.5833 321.4167 321.4167 321.8333 322.4167
head (uncgpd@marggpd$upper [[1]])
#> [1] 321.8333 323.0417 323.5000 330.2917 330.5177 332.8750

It is possible to plot an S4 object of marggpd.class with plot, where the QQ plots with the model and
empirical quantiles for each variable are shown. The points should lie close to the line y = x; for a good
fit and agreement between these quantiles, the line y = x should mainly lie within the (1 — @)% tolerance
intervals.

plot (uncgpd)

Marginal tail fit of X Marginal tail fit of Y
600 °

80)
500
70

400

Empirical quantiles
[}
[}
Empirical quantiles

350 400 450 500 550 60 70 80
Model quantiles Model quantiles

3 Estimation of the angular dependence function

In bivariate extremes, interest may lie in studying regions where both variables are extreme or where only one
is extreme. For this, methods that aim at characterising the joint tail behaviour in both scenarios, such as
the one introduced by Wadsworth and Tawn [2013], are required. Given standard exponentially distributed
variables Xz and Yy and a slowly varying function £(-;w) at infinity, the joint tail behaviour of (Xg,Yg) is
captured through A\(w) via the assumption

Pr(Xg > wu, Yg > (1 —w)u) = L(e*;w)e M as u — oo,

which can be rewritten as

X Y]
Pr (min {E £ }) = L% w)e M as u — oo, (2)

w'l—w

where w € [0,1] and A(w) > max{w, 1 —w} is called the angular dependence function (ADF). In the case of
asymptotic dependence (see for instance, Coles et al. [1999]), AM(w) = max{w, 1 — w}, for all w € [0, 1].

. X Y,
Lastly, defining a min-projection variable at w, T,, = min {TE, o

} , equation (2) implies that

L(e" i w) o M)t

—A(w)t
L(e%;w) ¢

Pr(T, >u+t|T, >u)= — as u — 00, (3)

for any w € [0,1] and ¢ > 0. In other words, for all w € [0,1] and, as u,, — oo, T} = (T,, — uy, | Ty > uy) ~
Exp(A(w)). Estimation of the ADF can be done in different ways; Murphy-Barltrop et al. [2024] present a few.

For the ReturnCurves package, two approaches are implemented: a pointwise estimator using the Hill
estimator [Hill, 1975], Ay, and a smoother estimator based on Bernstein-Bézier polynomials estimated via

composite likelihood methods, Acr. For the latter, Murphy-Barltrop et al. [2024] propose using a family
of Bernstein-Bézier polynomials to improve the estimation of the ADF. Given k € N, it is assumed that
A(w) = A(w; B) can be represented by the following family of functions:

k—1
B - {u —aft+ 3 o)t - bt =) | € 0.1

B € [0,00)""! such that f(w) > max{w,1 — w}} . (4)

As T is exponentially distributed when u,, — oo, the parameter vector 3 can be estimated using a composite
likelihood function defined as

Lo(B) = [H A(w;ﬂ)'ti'] exp =Y > AwiBtw ¢ (5)

weN weQtl et]

where | t} | represents the cardinality of set ¢! := {t, — u, | tu € tu, tw > u,} for some large values u,,,
and is a finite subset spanning the interval [0, 1]. The estimator of the ADF through composite likelihood

methods is given by A(+; B¢) where B, maximises equation (5).

Finally, Murphy-Barltrop et al. [2024] showed that incorporating knowledge of the conditional extremes
[Heffernan and Tawn, 2004] parameters c|, and oy, improves the estimation of the ADF. In particular,
the authors show that, in order to satisfy theoretical properties of A(w), A(w) = max{w,1 — w} for all
w € (0,05,] Ulay,. 1] with ag) = ag, /(1 + ag)) and ay, = 1/(1 + ay,). Thus, after estimating
the conditional extremes parameters o, and g, through maximum likelihood estimation, we can set

zly
For the composite likelihood estimator, a rescaling of equation (4) is needed to ensure continuity at di‘y and

Aw) = max{w, 1—w} for w € [0, &)U(@;Ix, 1]. Then, for the Hill estimator, A(w) = Ay for w € [di‘y, dal;lm} .

&L as defined below:

yla’
Al kg1 Al i Al k—1
v—a& k v—a& v—a&
Bi: (l_dﬂlﬂy)(l_dl _2? > +Zﬁl<z> (dl _2?) (1_6[1 _2? > +
ylo x|y i=1 ylz x|y ylz x|y
—al \F
al %) f)|vel|al,,al . |,B€0,00)* ! such that f(v) > max{v,1 — v}
yle | A1 Al = zly Yyle | 1 ’ = maxiv,

A(w) = A(w; B) is assumed to be represented by an element of Bi on [@}Cl » d;d . Finally, the estimators used

for estimation are processed in order to satisfy theoretical conditions on A as identified in Murphy-Barltrop
et al. [2024].

Estimation of the ADF can be done using the function adf_est which takes as inputs:

e an 5S4 object of class margtransf.class representing the marginal transformation of the data,

 a sequence of rays w in [0, 1],

e a string method indicating which estimator to get, Ag or Acp,

e and a boolean value constrained which decides whether to incorporate conditional extremes parameters
Q| and oy, in the estimation.

Additional arguments can be defined outside of the default values; these include marginal quantiles for
the min-projection variable T' at ray w, marginal quantiles to fit the conditional extremes method if
constrained=TRUE, and, if method= "c1", the polynomial degree k, the initial values for 8 for the composite
maximum likelihood procedure, and the convergence tolerance. Convergence is declared when the difference
of log-likelihood values between iterations does not exceed the value of tol. This repeated optimisation helps
to avoid convergence to local maxima, although does not guarantee finding the global maximum.

Function adf_est returns an object of S4 class adf _est.class with 11 attributes, where the first 9 are the
inputs of the function and the last 2 are vectors:

1
x|y
and 5‘11;|m if constrained = TRUE. Otherwise, it returns the values 0 and 1; this has no meaningful
interpretation as the estimation is performed in an unconstrained interval.

o adf: contains the estimates of A(w).

e interval: contains the maximum likelihood estimates from the conditional extremes model &

Estimation using Hill estimator without conditional extiremes parameters
whill <- seq(0, 1, by = 0.001)
q and constrained are set to the default values here
lambdah <- adf_est(margdata = expdata, w = whill, method = "hill",
q = 0.95, constrained = F)

Estimation using Hill estimator with conditional extremes parameters

q and qalphas are set to the default values

lambdah2 <- adf_est(margdata = expdata, w = whill, method = "hill", q = 0.95,
galphas = rep(0.95, 2), constrained = T)

Estimation using CL method without conditional extremes parameters

w, q and constrained are set to the default values here

lambdacl <- adf_est(margdata = expdata, w = seq(0, 1, by = 0.01), method = "cl",
q = 0.95, constrained = F)

Estimation using CL method with conditional extremes parameters

w, q and galphas are set to the default wvalues

lambdacl2 <- adf_est(margdata = expdata, w = seq(0, 1, by = 0.01), method = "cl",
q = 0.95, galphas = rep(0.95, 2), constrained = T)

attridbutes of the S4 object

str(lambdah)

#> Formal class 'adf_est.class' [package "ReturnCurves"] with 11 slots

#> ..0 dataexp :onum [1:1408, 1:2] 0.594 0.415 0.369 0.29 0.747 ...

.0 uw : num [1:1001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ...
#> ..@ method : chr "hill"

#> ..@0 ¢ : num 0.95

#> ..0@ galphas s num [1:2] 0.95 0.95

#> ..0 Kk : num 7

#> ..0@ constrained: logt FALSE

#> ..0 tol : num le-04

#> ..0 par_init : num [1:6] 0 0 0 0 0 O

#> ..0@ interval s num [1:2] 0 1

#> .@ adf :num [1:1001] 1 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 ...

head of the vector with adf estimates for the first estimator
head (lambdah@adf)
#> [1] 1.000 0.999 0.998 0.997 0.996 0.995

It is possible to plot an S4 object of adf_est.class with plot, where a comparison of the estimated ADF
and its lower bound, max{w,1 — w}, is shown.

plot of the ADF estimation based on the unconstrained Hill estimator
plot(lambdah)

Estimation of A(c)

1.0
0.9
= 0.8 — ADF estimates
N
< 07 - - Lower bound
0.6 N
N v
Al ’
0.5 N
0.00 0.25 0.50 0.75 1.00
w

3.1 Goodness-of-fit of the angular dependence function

After estimation of the ADF, it is important to assess its goodness-of-fit. Noting that T} = (T, — u,, | T,, >
uy) ~ Exp(A(w)) & A(w)T} ~ Exp(1), we can investigate whether there is agreement between model and
empirical exponential quantiles, or not. This is done in the ReturnCurves package through QQ plots by

plotting points (F i/ (n+ 1), T(li)), where F;' denotes the inverse of the cumulative distribution function

of a standard exponential distribution and T(;)l is the i-th ordered increasing statistic, ¢ = 1,...,n. The
uncertainty of the empirical quantiles is quantified using a bootstrap approach. If temporal dependence is
present in the data, a block bootstrap approach should be used, i.e. blocksize > 1.

The assessment of the goodness-of-fit of A(w) can be done using the function adf_gof which takes an S4
object of class adf _est.class, a ray w to be considered, the size of the blocks for the bootstrap procedure
and the corresponding number of samples, and the significance level « for the tolerance intervals as inputs.
In turn, it returns an S4 object of class adf_gof.class with an extra attribute gof containing a list with
the model and empirical quantiles, and the lower and upper bounds of the tolerance interval.

We note that this function is implemented to evaluate the fit at a single ray w; therefore, we recommend
repeating the procedure for a few rays to have a better representation. In addition, if the ray provided by the
user was not used for the estimation of the ADF, then the closest w in the grid is used instead.

Goodness of fit of the adf for twp rays w

rays <- c(0.25, 0.75)

nboot and alpha are set to the default wvalues

blocksize is set to 10 to account for temporal dependence

gofh <- sapply(rays, adf_gof, adf = lambdah, blocksize = 10, nboot = 250, alpha = 0.05)

attridbutes of the S4 object

str(gofh[[1]1]1)

#> Formal class 'adf_gof.class' [package "ReturnCurves"] with 6 slots

#> ..0 adf :Formal class 'adf est.class' [package "ReturnCurves"] with 11 slots
#> ..Q@ dataexp :onum [1:1408, 1:2] 0.594 0.415 0.369 0.29 0.747 ...

#> ..Qw : num [1:1001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ...
#> ..@ method : chr "hill"

#> ..0 g : num 0.95

#> ..0 galphas > num [1:2] 0.95 0.95

#> .0k : num 7

#> ..0@ constrained: logi FALSE

#> .0 tol : num le-04

10

#>0 par_init : num [1:6] 0 0 0 0 0 O

#>0 interval s num [1:2] 0 1

#> .o0 adf s num [1:1001] 1 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991
#> ..0Q ray : num 0.25

#> ..0 blocksize: num 10

#> ..0 nboot : num 250

#> ..0 alpha : num 0.05

#> ..@ gof :List of 4

#>% model s num [1:70] 0.0142 0.0286 0.0432 0.058 0.073 ...
#>$ empirical: num [1:70] 0.0177 0.0297 0.0393 0.0612 0.0918 ...
#>% lower :num [1:70] 0.0177 0.0177 0.0177 0.0297 0.0297 ...
#>$ upper :num [1:70] 0.0393 0.1047 0.1929 0.1929 0.195 ...

head of the list elements of slot gof

head(gofh[[1]]@gof$model)

#> [1] 0.01418463 0.02857337 0.04317217 0.05798726 0.07302514 0.08829261
head(gofh[[1]]@gof$empirical)

#> [1] 0.01769958 0.02967577 0.03930040 0.06115842 0.09180755 0.10471095
head(gofh[[1]]@gof$lower)

#> [1] 0.01769958 0.01769958 0.01769958 0.02967577 0.02967577 0.03930040
head(gofh[[1]]@gof$upper)

#> [1] 0.0393004 0.1047110 0.1928653 0.1928653 0.1950342 0.201599

As before, it is possible to plot an S4 object of adf _gof .class with plot, where the QQ plot with the model
and empirical quantiles is shown. The points should lie close to the line y = x; for a good fit and agreement
between these quantiles, the line y = = should mainly lie within the (1 —)% tolerance intervals.

library(gridExtra)
grid.arrange(plot(gofh[[1]]), plot(gofh[[2]]), ncol = 2)

N N
Goodness of fit of A(w) at w=0.25 Goodness of fit of A(w) at w=0.75

5] 6 °
g s
= 4 =
-) - []
g . g 4
5 3 >
(o (o
£ £ =
Q. Q.
£ 1 £
L L

0 0

0 1 2 3 4 0 1 2 3 4
Model quantiles Model quantiles

4 Estimation of the return curve

Given a probability p and the joint survivor function Pr(X > z,Y > y) of the bivariate vector (X,Y), the
p-probability return curve is defined as

RC(p) := {(=,y) € R? : Pr(X > z,Y >y) =p}. (6)
The interest lies in values of p close to 0 as these are the ones characterising rare joint exceedances events.

Given any point (z,y) € RC(p), the event {X > z,Y > y} is expected to happen once each return period

11

1/p, on average. This is equivalent to having an expected value of np points in the region (x,00) x (y,00) in
a sample size of n from (X,Y).

Since the probability p is close to 0, methods that can accurately capture the behaviour of the joint tail are
necessary in order to realistically extrapolate and estimate RC(p) for values of p outside of the observation
period. Murphy-Barltrop et al. [2023] consider a couple of methods to achieve this, one of which uses the
ADF A\(w) given in equation (2) to characterise the joint tail behaviour.

Estimation of RC(p) is done with standard exponentially distributed variables; therefore, the first step
is to transform the original data onto standard exponential margins using equation (1), and then, after
estimation of RC(p), back transform them onto the original margins. Estimates of RC(p) are obtained
through estimates of ¢ and w from equation (3), and rays w. In particular, the value of ¢ > 0 can be obtained
by first estimating u as the (1 — p*)-th quantile of T,,, where p* > p, is a small probability, and then ensuring
that Pr(T,, > t+u) = p. Since u is estimated as the (1 — p*)-th quantile of T,,, we have that Pr(T,, > u) = p*;
thus,

p=Pr(T, >t +u) =Pr(T, > w)Pr(T, >t +u|T, >u) = p'e "W,

which leads to t = —log(p/p*)/A(w). Finally, the estimates of the return curve RC(p) can be obtained by
setting (z,y) = (w(t + u), (1 —w)(t+u)).

In the ReturnCurves package, estimation of the return curve is done through function rc_est which shares
the same inputs as function adf _est with an additional argument p representing the curve survival probability.
This probability value should be smaller than 1 — g, where ¢ is the quantile for the min-projection variables
T}, and, when applicable, smaller than 1 — g, where ¢, are the quantiles used in the conditional extremes
method.

Function rc_est returns an S4 object of class rc_est.class with 14 attributes, with a list and a matrix in
the last 2 slots:

1
x|y
and &?lﬂf if constrained = TRUE. Otherwise, it returns the values 0 and 1; this has no meaningful

interpretation as the estimation is performed in an unconstrained interval.
e rc: matrix with the estimates of the return curve on the original margins.

n <- dim(airdata) [1]
prob <- 10/n
Estimation using Hill estimator without conditional extiremes parameters
whill <- seq(0, 1, by = 0.001)
q and constrained are set to the default values here
rch <- rc_est(margdata = expdata, w = whill, p = prob, method = "hill",
q = 0.95, constrained = F)

e interval: vector with the maximum likelihood estimates from the conditional extremes model &

Estimation using Hill estimator with conditional extremes parameters

q and qalphas are set to the default values

rch2 <- rc_est(margdata = expdata, w = whill, p = prob, method = "hill", q = 0.95,
galphas = rep(0.95, 2), constrained = T)

Estimation using CL method without conditional extremes parameters

w, q and constrained are set to the default values here

rccl <- rc_est(margdata = expdata, w = seq(0, 1, by = 0.01), p = prob, method = "cl",
q = 0.95, constrained = F)

Estimation using CL method with conditional extremes parameters

w, q and galphas are set to the default values

rccl2 <- rc_est(margdata = expdata, w = seq(0, 1, by = 0.01), p
q = 0.95, qgalphas = rep(0.95, 2), constrained =

= prob, method = "cl",
T)

12

attridbutes of the S4 object
str(rch)
#> Formal class 'rc_est.class' [package "ReturnCurves"] with 14 slots

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

..@ data

Jonum

[1:1408, 1:2] 154 132 120 105 175 ...

.= attr(*, "dimnames")=List of 2
NULL

.8
.8

gmarg

w

p
method

q
qalphas
k

tol
par_intt
interval
TG

SIS SRR I O I S I S I O R R S

chr [1:2]

: num
constrainedshape:
: num
: num

constrained

"nox

logi

: chr
: num
: num
: num

logi

S num
S num
S num
S num

n upmlou
[1:2] 0.95 0.95
TRUE

[1:1001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ...

0.00701

"hill"

0.95

[1:2] 0.95 0.95

7

FALSE

0.001

[1:6] 000000

[1:2] 0 1

[1:1001, 1:2] 0 26.2 29.6 33.1 34.2 ...

head of the vector with adf estimates for the first estimator
head (rch@rc)

#>
#>
#>
#>
#>
#>
#>

[,1]
[1,] 0.00000
[2,] 26.19885
[3,] 29.61038
[4,] 33.08634
[5,] 34.20411
[6,] 36.17626

71.
71.
71.
71.
71.
71.

[,2]
54081
50107
50107
50107
50107
50107

It is possible to plot an S4 object of rc_est.class with plot, where the original data is plotted with the
estimated line for the return curve RC(p).

plot of the ADF estimation based on the unconstrained Hill estimator
plot(xch)

13

N
Estimation of RC(p)

75
* °
> 50
25
0 200 400 600

4.1 Uncertainty of the return curve estimates

Murphy-Barltrop et al. [2023] propose a procedure to assess the uncertainty of the return curve estimates.

For large positive m € N| let
m(m+1-—7))
O = ——|1<j< 7
(P <i<ml,)
define a set of angles. For each § € ©, the line Ly := {(z,y) € R% | tan(#) > 0} intersects the estimated
RC(p) exactly once, i.e. {(Z,70)} := RC(p) N Ly where (&g, §ig) € RC(p). Moreover, let dg := (&7 + gjg)l/Q
denote the Lo-norm of the point estimate. Uncertainty in the return curve estimates is quantified using the
distribution of dy at each angle § € © as follows: for k =1,..., nboot:

1. Bootstrap the original data set; when temporal dependence is present, a block bootstrap should be
used.

2. For each 6 € ®, obtain CZg’k for the corresponding return curve estimate.

Finally, given 6 € ©, empirical estimates of the mean, median and (1 — «)% confidence intervals for dg can
be obtained using the sample of dg ;. These are available through function rc_unc, which takes as inputs:

e retcurve: an S4 object of class rc_est.class containing the return curve estimates,

e blocksize: size of blocks for the block bootstrap procedure; if no temporal dependence is present, then
set blocksize = 1 (default),

e nboot: number of bootstrap samples to be taken,

o nangles: number of angles m,

o alpha: significance level to compute the (1 —)% confidence intervals.

Function rc_unc returns an S4 object of class rc_unc.class with 6 attributes, where the last slot unc
contains a list with:

e median: a vector containing the empirical estimates of the median return curve
e mean: a vector containing the empirical estimates of the mean return curve

e lower: a vector containing the lower bound of the confidence interval

e upper: a vector containing the upper bound of the confidence interval

For simplicity, just the uncertainty of the return curve obtained using the unconstrained Hill estimator is
computed here.

14

nangles and alpha set to defau
nboot set to 50 for simplicity

Ut

blocksize is set to 10 to account for temporal dependence
= 10, nboot = 50, nangles = 150, alpha = 0.05)

rch_unc <- rc_unc(rch, blocksize

attridbutes of the S4 object
str(rch_unc)

#> Formal class 'rc_unc.class' [package "ReturnCurves"] with 6 slots

#> ..@ retcurve :Formal class 'rc_est.class' [package "ReturnCurves"] with 14 slots
..0 data :onum [1:1408, 1:2] 154 132 120 105 175 ...
..- attr(*, "dimnames")=List of 2

#>$: NULL

#>$: chr [1:2] "noz" "pmi0"

#> ..Q@ gmarg s num [1:2] 0.95 0.95

#> ..@ constrainedshape: logt TRUE

#> .0 w : num [1:1001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 .
#> ..0p : num 0.00701

#> ..@ method : chr "hill"

#> ..0 g : num 0.95

#> ..@ galphas : num [1:2] 0.95 0.95

#> ..0k : num 7

#> ..Q@ constrained logi FALSE

#> ..0 tol : num 0.001

#> ..0 par_init s num [1:6] 0 0 0 0 0 0

#> ..@ interval :num [1:2] 0 1

..@rc : num [1:1001, 1:2] 0 26.2 29.6 33.1 34.2 ...
#> ..0@ blocksize: num 10

#> ..0 nboot : num 50

#> ..0@ nangles : num 150

#> ..@ alpha : num 0.05

#> ..Q@ unc :List of 4

.. ..$% median: num [1:150, 1:2] 0.66 1.32 1.98 2.64 3.31 ...

#>- attr(*, "dimnames")=List of 2

#>$: chr [1:150] "507%" "50%" "50%" "50%" ...

..$: NULL

#>$ mean : num [1:150, 1:2] 0.658 1.317 1.975 2.634 3.294 ...

.. ..% lower : num [1:150, 1:2] 0.608 1.215 1.824 2.432 3.041 ...

#>- attr(*, "dimnames")=List of 2

#>% : chr [1:150] "2.5%" "2.57" "2.5%" "2.5%" ...

..$: NULL

#>% upper : num [1:150, 1:2] 0.706 1.412 2.118 2.825 3.532 ...

#> .o «. ..— attr(*, "dimnames")=List of 2

..$: chr [1:150] "97.5]" "97.5%" "97.54" "97.5" ...

#>$: NULL

head of the list elements of slot unc

head(rch_unc@unc$median)
#> [,1] [,2]
#> 507 0.660442 72.23572
#> 507 1.321027 72.23572
#> 507 1.981898 72.23572
#> 507 2.643187 72.23546
#> 507 3.305026 72.23485

15

#> 507 3.967570 72.2342/
head (rch_unc@unc$mean)

#> [,1] [,2]
#> [1,] 0.6582093 72.02110
#> [2,] 1.3165355 72.01987
#> [3,] 1.9751211 72.01864
#> [4,] 2.6341090 72.01741
#> [5,] 3.2936423 72.01618
#> [6,] 3.9538646 72.01495
head(rch_unc@unc$lower)

#> [,1] [,2]

#> 2.5/ 0.6076678 67.16275
#> 2.5) 1.2154631 67.16255
#> 2.5) 1.8235175 67.16236
#> 2.5 2.4319629 67.16216
#> 2.5] 3.0409315 67.16196

#> 2.5/ 3.6505559 67.16177
head (rch_unc@unc$upper)

#> [, 1] [,2]
#> 97.5J 0.7058674 T6.60229
#> 97.5) 1.4118675 76.60133
#> 97.5) 2.1181530 76.60036
#> 97.5) 2.8248773 76.59939
#> 97.5) 3.5321938 76.59841
#> 97.5) 4.2402566 76.59744

It is possible to plot an instance of the S4 class rc_unc.class with function plot; this takes the S4 object
and an extra argument which as inputs. If which = "rc" (default), then the estimated return curve is
plotted, setting which = "median" shows the empirical median estimates of the return curve, while setting
which = "mean" shows the empirical mean estimates of the return curve. All plots show the uncertainty
associated with the estimated return curve in dashed lines. Finally, by setting which = "all", plots the
estimated return curve, the empirical median and mean estimates and the associated uncertainty.

library(gridExtra)
grid.arrange(plot(rch_unc, which
plot(rch_unc, which

"rc"), plot(rch_unc, which = "median"),
"mean"), plot(rch_unc, which = "all"), nrow = 2)

16

N N
Uncertainty of RC(p) Uncertainty of RC(p)

75 V-3 e e
= Estimated RC --++ Lower Bound
> 50 . - Lower Bound > 50 XA Median RC
'; - Upper Bound ?): +-++ Upper Bound
25 ; 25
0 200 400 600 0 200 400 600
X X
. /\ . /\
Uncertainty of RC(p) Uncertainty of RC(p)
75 75 e
............ e & == Estimated RC
- Lower Bound - Lower Bound
> 50 : =— Mean RC > 50 =— Mean RC
- Upper Bound Median RC
25 25 * Upper Bound
0 200 400 600 0 200 400 600
X X

4.2 Goodness-of-fit of the return curve estimates

It is important to assess the goodness-of-fit of the return curve estimates, given that the true return curve is
unknown in reality. This is implemented in the ReturnCurves package based on the approach proposed by
Murphy-Barltrop et al. [2023].

Given the return curve RC(p), the probability of lying in a survival region (x, 00) X (y, 00) is p. Given the same
set of angles © as in equation (7), for each 6; € ©, the empirical probability p; of lying in (Z,, 00) x (g, ,00),
where (i‘gj,fggj) is the corresponding point in RAC(p)7 is given by the proportion of points in that region.
The goodness-of-fit of the estimated return curve is then assessed via a bootstrap procedure; for each angle
0; € ©, the original data set is bootstrapped and empirical probability estimates p; are obtained. When
temporal dependence is present in the data, a block bootstrap approach should be taken and the size of the
blocks must be defined. We note that for each j, nboot empirical probabilities are estimated and, so the
median and the (1 — @)% pointwise confidence intervals for the probabilities can be obtained by taking the
50%, (a/2)% and (1 — a/2)% quantiles of the set of empirical probabilities for each j, respectively.

The goodness-of-fit for an estimated return curve is implemented through function rc_gof. This shares the
same input arguments as the rc_unc function and returns an S4 object with 5 attributes with the last slot
gof containing a list with:

e median: a vector with the median of the empirical probabilities,
e lower: a vector with the lower bound of the confidence interval,
e upper: a vector with the upper bound of the confidence interval.

For simplicity, just the goodness-of-fit of the return curve obtained using the unconstrained Hill estimator is

17

computed here.
nboot, mnangles and alpha set to default

blocksize is set to 10 to account for temporal dependence
rch_gof <- rc_gof (rch, blocksize = 10, nboot = 250, nangles = 150, alpha =

attridbutes of the S4 object
str(rch_gof)
#> Formal class 'rc_gof.class' [package "ReturnCurves"] with 5 slots

#> ..@ retcurve :Formal class 'rc_est.class' [package "ReturnCurves"] with 14 slots
#>0 data :num [1:1408, 1:2] 154 132 120 105 175 ...

..- attr(*, "dimnames")=List of 2

#>% : NULL

#>$: chr [1:2] "noz" "pmi0"

#> ..@ gmarg : num [1:2] 0.95 0.95

#> ..@ constrainedshape: logi TRUE

#> .Qw s num [1:1001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 .
#> ..0p : num 0.00701

#> ..@ method : chr "hill"

#> ..0 g : num 0.95

#> ..@ galphas : num [1:2] 0.95 0.95

#> .0k : num 7

#> ..Q@ constrained : logt FALSE

#> ..Q@ tol : num 0.001

#> ..0 par_init s num [1:6] 0 0 0 0 0 0

#> ..@ interval :num [1:2] 0 1

#>0 rc :num [1:1001, 1:2] 0 26.2 29.6 33.1 34.2 ...

#> ..@ blocksize: num 10

#> ..@ nboot : num 250

#> ..0 alpha : num 0.05

#> ..@ gof :List of 3

#>$ median: Named num [1:150] 0.00639 0.00639 0.00639 0.00639 0.00639 ...
#> ee— attr(*, "names")= chr [1:150] "50j" "50%" "50%" "50j" ...

.. ..% lower : Named num [1:150] 0.00229 0.00229 0.00229 0.00229 0.00229 ...
..- attr(*, "names")= chr [1:150] "2.5]" "2.5]" "2.5/" "2.5/" ...

#>% upper : Named num [1:150] 0.0121 0.0121 0.0121 0.0121 0.0121

#>- attr(*, "names")= chr [1:150] "97.57" "97.5}" "97.54" "97.5%" ...

head of the list elements of slot gof

head(rch_gof@gof$median)

#> 507 507 507 507 507 507
#> 0.006392045 0.006392045 0.006392045 0.006392045 0.006392045 0.006392045
head(rch_gof@gof$lower)

#> 2.5/ 2.57 2.5/ 2.57 2.5 2.57
#> 0.002290483 0.002290483 0.002290483 0.002290483 0.002290483 0.002290483
head (rch_gof@gof $upper)

#> 97.5% 97.5% 97.5% 97.57 97.5% 97.5%

#> 0.01207386 0.01207386 0.01207386 0.01207386 0.01207386 0.01207386

It is possible to plot an instance of the S4 class rc_gof.class with function plot, where a comparison
between the true probability p (in red) and the empirical median estimates (in black) is shown. Ideally, p
should be contained in the confidence region, shaded in grey. Finally, in practice, the value of p should be
within the range of the data and not too extreme, given the nature of empirical probabilities.

18

plot (rch_gof)

N
Goodness of fit of RC(p)
0.016 E f
I\.l ' ‘\
R A T
o) _
©
‘S 0.008 A/\’\
a Wa'l —
0.004 . a8 N
_________________________________ " ‘e =
0 50 100 150
Angle Index
- = Confidence interval — Median estimate —— True probability
References

S. G. Coles and J. A. Tawn. Modelling extreme multivariate events. Journal of the Royal Statistical Society.
Series B (Methodological), 53(2):377-392, 1991. ISSN 00359246. doi: 10.1111/j.2517-6161.1991.tb01830.x.

Stuart Coles, Janet Heffernan, and Jonathan Tawn. Dependence measures for extreme value analyses.
Extremes, 2:339-365, 1999.

J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values (with discussion).
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3):497-546, 2004. doi:
https://doi.org/10.1111/j.1467-9868.2004.02050.x.

B. M. Hill. A Simple General Approach to Inference About the Tail of a Distribution. The Annals of Statistics,
3(5):1163 — 1174, 1975. doi: 10.1214/a0s/1176343247. URL https://doi.org/10.1214/a0s/1176343247.

C. J. R. Murphy-Barltrop, J. L. Wadsworth, and E. F. Eastoe. New estimation methods for extremal bivariate
return curves. Environmetrics, 34, 8 2023. ISSN 1099095X. doi: 10.1002/env.2797.

C. J. R. Murphy-Barltrop, J. L. Wadsworth, and E. F. Eastoe. Improving estimation for asymptotically
independent bivariate extremes via global estimators for the angular dependence function, 2024.

J. L. Wadsworth and J. A. Tawn. A new representation for multivariate tail probabilities. Bernoulli, 19:
26892714, 11 2013. ISSN 13507265. doi: 10.3150/12-BEJ471.

19

https://doi.org/10.1214/aos/1176343247

	Introduction
	Marginal transformation
	Assessing the marginal tail fits

	Estimation of the angular dependence function
	Goodness-of-fit of the angular dependence function

	Estimation of the return curve
	Uncertainty of the return curve estimates
	Goodness-of-fit of the return curve estimates

