Creating Migrations

James P. Gilbert

2024-09-18
Contents
Introduction 1
Assumptions 1
Creating the required file structure 1
Inan R package e 2
Using folder structure oL e 2
Adding a migration 2
Adding migrator 2
Unit testing 3

Common issues
Supporting all database platforms Lo
SQLite column types e e
Non-existent data L L e e e

=W w W

Introduction

Migrating existing data models can be a tricky process that often creates incompatibility between result
viewers and existing result sets. This guide aims to show how to use the ResultModelManager class to create
migrations for a given result model, either using a package or file structure. Please see the HADES library
for more information on HADES packages.

Assumptions

This package assumes that you are familiar with R and OHDSI Hades packages in general. These examples
make use of DatabaseConnector and SqlRender. The management of data integrity is left to the user,
migrations should be designed and tested before deployment. Steps to maintain the data (such as backup
plans) should be made prior to performing migrations in case of data corruption.

Creating the required file structure

The first step is creating a proper folder structure for migrations. The chosen path is dependent on the
structure used, the most consistent and recommended way is to expose a function within an R package to
allow users to upgrade a data model. However, a flat folder structure that does not require an R package to
be installed is also supported.

https://ohdsi.github.io/hades

In an R package

Data migrations should exist in an isolated folder within the /inst/sql/ directory of a package. The
recommended convention is to use migrations across all Hades package. As migrations are supported by
multiple database platforms this folder should exist within the generic (and SqlRender OHDSI common sql)
sql_server folder, inst/sql/sql_server/migrations. For any database specific migrations they should
be in the approprate sub directory. For example:

inst/sql/
sql_server/migrations/Migration_l-create.sql
sqlite/migrations/Migration_i-create.sql
redshift/migrations/Migration_1i-create.sql

Using folder structure

A folder structure requires a slightly different set up. Here, the migrations should be split via database
platform within the migration path. For example.

migrations/
sql_server/Migration_l-create.sql
sqlite/Migration_1i-create.sql
redshift/Migration_l-create.sql

Adding a migration

All data migrations are assumed to be in OHSI SQL and stored within a migration folder (see above for set up).
Inside this folder only migrations that conform to a regular expression such as (Migration_[0-9]+)-(.+).sql.
Explicitly, this encodes several things:

e That the file is a migration and only intended to be executed once and by a DMM instance
o The position in the sequence in which the migration will be executed (i.e. a natural number)
e The string name of the migration

o The fact that its an sql file

For example, the following file names will work:

Migration_2-MyMigration.sql
Migration_2-v3.2whaterver.sql
Migration_4-TEST.sql
Migration_4-2018922-vAAAA.sql

However, the following would be invalid:

MyMigration.sql # Does not include Migration_1
Migration_2v3.2whaterver.sql # missing -
-TEST_Migration_1.sql # Wrong order
Migraton_4-a.sql # Migration spelt wrong

Adding migrator

Each package/project should expose an instantiated DMM with the package specfic considerations. For
example, for the package CohortDiagnostics a function such as the following may be written:

#' Qexport
getDataMigrator <- function(connectionDetails, databaseSchema, tablePrefix) {
ResultModelManager: :DataMigrationManager$new(
connectionDetails = connectionDetails,

databaseSchema = databaseSchema,
tablePrefix = tablePrefix,
migrationPath = "migrations",
packageName = "CohortDiagnostics"
)
}

This will return an instance of data migrator that will expose teh functionality on a given data set. Naturally,
the package is not strictly required for creating a migration manager (should the directory structure conform
to the above outline) here you should set it according to your project’s set up.

Loading the migrator is then straightforward:

connectionDetails <- DatabaseConnector::createConnectionDetails(MySettings)
migrator <- getDataMigrator(connectionDetails = connectionDetails, databaseSchema = "mySchema", tablePr

To check migrations are valid

migrator$check() # Will return false and display any eronious files

To get the status of all migrations

migrator$getStatus() # Will return data frame of all sql migrations and if they have been ezecuted or n

To run the migrations:

It is strongly recommended that you create some form of backup before doing this
migrator$executeMigrations()

Unit testing

No specific advice is given for how to write unit tests for migrations, however, it is strongly advised that
migrations are unit tested.

Common issues

The following is a list of expected issues when handling Data migrations:

Supporting all database platforms

It is likely a challenge to support all SqlRender/DatabaseConnector supported dbmses. Therefore, careful
consideration with regards to supported platforms should be made. At the time of writing, for results
handling, we recommend supporting the open source platforms of SqlRender and Postgresql. This decision is
left to the package author.

SQLite column types

It is a not possible to change a data type within an Sqlite table (the ALTER TABLE command does not work).
Consequently, you will likely have to rename the existing table, create a new table with the modified DDL
and then copy the existing data across (using appropriate data transformations/casting).

For example, changing an INT column in the table foo to a float requires the sqlite specific transformation:
““{sqlite-sql} {DEFAULT @foo = foo}

ALTER TABLE Qdatabase schema.Qtable prefix@foo RENAME TO _ foo_old;

CREATE TABLE @database schema.@Qtable_prefix@foo (id bigint, foo float);

INSERT INTO @database__schema.@Qtable_ prefix@foo (id, foo) SELECT * FROM _ foo_ old; “*

Non-existent data

The presence of a data model does not mean data is present. As packages are developed, it is expected that
new data formats will be created. The recommended pattern for this case is to allow existing data to be
upgraded but to handle the use case of missing data in downstream reports/web applications.

	Introduction
	Assumptions
	Creating the required file structure
	In an R package
	Using folder structure

	Adding a migration
	Adding migrator
	Unit testing
	Common issues
	Supporting all database platforms
	SQLite column types
	Non-existent data

