Package ‘Rborist’

February 3, 2025

Title Extensible, Parallelizable Implementation of the Random Forest
Algorithm

Version 0.3-11
Date 2025-2-2

Maintainer Mark Seligman <mseligman@suiji.org>

BugReports https://github.com/suiji/Arborist/issues

Description Scalable implementation of classification and regression forests, as de-
scribed by Breiman (2001), <DOI:10.1023/A:1010933404324>.

URL https://github.com/suiji/Rborist.CRAN,
https://github.com/suiji/Arborist

License MPL (>=2) | GPL (>=2) | file LICENSE

LazyLoad yes

Depends R(>=3.3)

Imports Rcpp (>=0.12.2), data.table (>= 1.9.8), digest

Suggests testthat, knitr, rmarkdown, markdown

VignetteBuilder knitr

LinkingTo Rcpp

NeedsCompilation yes

Author Mark Seligman [aut, cre]

Repository CRAN

Date/Publication 2025-02-02 23:10:16 UTC

Contents

expandfe L e
Export e e
forestWeight L
predictarbTrain
predict.rfArb

https://github.com/suiji/Arborist/issues
https://doi.org/10.1023/A:1010933404324
https://github.com/suiji/Rborist.CRAN
https://github.com/suiji/Arborist

2 expandfe
preformat L L e e e e 13
presample 14
Rborist. 16
RbOMiStNEWS o o 17
rfATb . e e 17
fTrain 0 0 22
Streamline.rfArb 26
validate L 27

Index 29

expandfe Expands forest values into front-end readable vectors

Description

Formats training output into a form suitable for illustration of feature contributions.
Usage
Default S3 method:
expandfe(arbOut)
Arguments
arbOut an object of type rfTrain produced by training.
Value
An object of type ExpandReg or ExpandCtg containing human-readable representations of the
trained forest.

Author(s)

Mark Seligman at Suiji.

Examples

Not run:
data(iris)

rb <- Rborist(iris[,-5], iris[,5])
ffe <- expandfe(rb)

An rfTrain counterpart is NYI.

End(Not run)

Export

Export Exportation Format for rfArb Training Output

Description

Formats training output into a form suitable for illustration of feature contributions.

Usage
Default S3 method:
Export(arbOut)
Arguments

arbOut an object of type Rborist produced by training.

Value

An object of type Export.

Author(s)

Mark Seligman at Suiji.

Examples

Not run:
data(iris)
rb <- Rborist(iris[,-5], iris[,5])
ffe <- Export(rb)

End(Not run)

forestWeight Meinshausen forest weights

Description

Normalized observation counts across a prediction set.

Usage

Default S3 method:
forestWeight(objTrain, prediction, sampler=objTrain$sampler,
nThread=0, verbose = FALSE, ...)

forestWeight

an object of class rfArb, created from a previous invocation of the command
Rborist or rfArb to train.

an object of class SummaryReg or SummaryCtg obtained from prediction using
objTrain and argument indexing=TRUE.

an object of class Sampler, as documented for command of the same name.
specifies a prefered thread count.
whether to output progress of weighting.

not currently used.

a numeric matrix having rows equal to the Meinshausen weight of each new datum.

Mark Seligman at Suiji.

Meinshausen, N. (2016) Quantile Random Forests. Journal of Machine Learning Research 17(1),

4

Arguments
objTrain
prediction
sampler
nThread
verbose

Value

Author(s)

References
1-68.

See Also
Rborist

Examples
Not run:

Regression example:

nRow <- 5000

x <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X172 + sin(X2) + X3 * X4) # courtesy of S. Welling.
rb <- Rborist(x,y)

newdata <- data.frame(replace(6, rnorm(nRow)))

Performs separate prediction on new data, saving indices:
pred <- predict(rb, newdata, indexing=TRUE)
weights <- forestWeight(rb, pred)

obsIdx <- 215 # Arbitrary observation index (zero-based row number)

Inner product should equal prediction, modulo numerical vagaries:
yPredApprox <- weights[obsIdx,] %*% y
print((yPredApprox - pred$yPred[obsIdx])/yPredApprox)

predict.arbTrain

End(Not run)

predict.arbTrain predict method for arbTrain result

Description

Prediction and test using Rborist.

Usage

S3 method for class 'arbTrain'

predict(object, newdata, sampler, yTest=NULL,

keyedFrame = FALSE, quantVec=numeric(@), quantiles = length(quantVec) > 0,
ctgCensus = "votes"”, indexing = FALSE, trapUnobserved = FALSE,

bagging = FALSE, nThread = @, verbose = FALSE, ...)
Arguments
object an object of class arbTrain, created from a previous invocation of the command

rfArb, Rborist or rfTrain to train.

newdata a design frame or matrix containing new data, with the same signature of pre-

dictors as in the training command.

sampler an object of class Sampler used in the command.
yTest a response vector against which to test the new predictions.
keyedFrame whether the columns of newdata may appear in arbitrary order or as a superset

of the predictors used to train.

quantVec a vector of quantiles to predict.
quantiles whether to predict quantiles.
ctgCensus whether/how to summarize per-category predictions. "votes" specifies the num-

ber of trees predicting a given class. "prob" specifies a normalized, probabilis-
tic summary. "probSample" specifies sample-weighted probabilities, similar to

quantile histogramming.

indexing whether to record the final node index, typically terminal, of tree traversal.

trapUnobserved reports score for nonterminal upon encountering values not observed during

training, such as missing data.

bagging whether prediction is restricted to out-of-bag samples.
nThread suggests ans OpenMP-style thread count. Zero denotes default processor setting.
verbose whether to output progress of prediction.

not currently used.

6 predict.arbTrain

Value

an object of one of two classes:

* SummaryReg summarizing regression, consisting of:

— prediction an object of class PredictReg consisting of:
yPred the estimated numerical response.
* gPred quantiles of prediction, if requested.
* gEst quantile of the estimate, if quantiles requested.
% indices final index of prediction, if requested.
— validation if validation requested, an object of class ValidReg consisting of:
* mse the mean-squared error of the estimate.
% rsq the r-squared statistic of the estimate.
* mae the mean absolute error of the estimate.

— importance if permution importance requested, an object of class importanceReg, con-
taining multiple instances of:

* names the predictor names.

mse the per-predictor mean-squared error, under permutation.
* SummaryCtg summarizing classification, consisting of:

— PredictCtg consisting of:
* yPred estimated categorical response.
% census factor-valued matrix of the estimate, by category, if requested.
prob matrix of estimate probabilities, by category, if requested.
* indices final index of prediction, if requested.
— validation if validation requested, an object of class ValidCtg consisting of:
* confusion the confusion matrix.
* misprediction the misprediction rate.
% 0obError the out-of-bag error.

— importance if permution importance requested, an object of class importanceCtg, con-
sisting of:

mispred the misprediction rate, by predictor.

% 00bErr the out-of-bag error, by predictor.

Author(s)

Mark Seligman at Suiji.

See Also

rfTrain

predict.arbTrain

Examples

Not run:
Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X1*2 + sin(X2) + X3 * X4) # courtesy of S. Welling.

pf <- preformat(x)
sp <- presample(y)
rb <- arbTrain(pf, sp, y)

Performs separate prediction on new data:
xx <- data.frame(replace(6, rnorm(nRow)))
pred <- predict(rb, xx)

yPred <- pred$yPred

rb <- Rborist(x,y)

Performs separate prediction on new data:
xx <- data.frame(replacate(6, rnorm(nRow)))
pred <- predict(rb, xx)

yPred <- pred$yPred

As above, but also records final indices of each tree walk:
#

pred <- predict(rb, xx, indexing=TRUE)
print(pred$indices[c(1:2), 1)

As above, but predicts over \code{newdata} with unobserved values.
In the case of numerical data, only missing values are considered
unobserved. Missing values are encoded as \code{NaN}, which are
incomparable, precipitating \code{false} on every test. Prediction
therefore takes the \code{false} branch when encountering missing
values:

H o H ¥ H HH

xxMissing <- xx
xxMissing[6, c(15, 32, 87, 101)] <- NA
pred <- predict(rb, xxMissing)

As above, but returns a nonterminal score upon encountering

unobserved values. Neither the true nor the false branch from the
testing node is taken. Instead, the score returned is derived

from all leaf nodes (terminals) reached by the testing

(nonterminal) node.

#

pred <- predict(rb, xxMissing, trapUnobserved = TRUE)

Performs separate prediction, using original response as test

vector:

pred <- predict(rb, xx, y)
mse <- pred$mse

rsq <- predsrsq

Performs separate prediction with (default) quantiles:
pred <- predict(rb, xx, quantiles="TRUE")
gPred <- pred$qgPred

Performs separate prediction with deciles:
pred <- predict(rb, xx, quantVec = seq(@.1, 1.0, by = 0.10))
gPred <- pred$qPred

Classification examples:
data(iris)
rb <- Rborist(iris[-5], iris[5])

Generic prediction using training set.
Census as (default) votes:

pred <- predict(rb, iris[-5])

yPred <- pred$yPred

census <- pred$census

Using the \code{keyedFrame} option allows the columns of

\code{newdata} to appear in arbitrary order, so long as the
columns present during training appear as a subset:

#

pred <- predict(rb, iris[c(2, 4, 3, 1)], keyedFrame=TRUE)

As above, but validation census to report class probabilities:
pred <- predict(rb, iris[-5], ctgCensus="prob")
prob <- pred$prob

As above, but with training reponse as test vector:

pred <- predict(rb, iris[-5], iris[5], ctgCensus = "prob")
prob <- pred$prob

conf <- pred$confusion

misPred <- pred$misPred

As above, but predicts nonterminal when encountering categories
not observed during training. That is, prediction returns a score
derived from all terminal nodes (leaves) reached from the
(nonterminal) testing node.

In this case, "unobserved” refers to categories not present in
the subpartition over which a splitting is performed. As training
partitions the data into smaller and smaller regions, a given

A E R E R

predict.arbTrain

predict.rfArb 9

category becomes less likely to appear in a region.

#

More generally, unobserved data can include missing predictors as
well as categories appearing in \code{newdata} which were not

present during training.

#

pred <- predict(rb, trapUnobserved=TRUE)

End(Not run)

predict.rfArb predict method for rfArb result

Description

Prediction and test using Rborist.

Usage

S3 method for class 'rfArb'

predict(object, newdata, sampler, yTest=NULL,

keyedFrame = FALSE, quantVec=numeric(@), quantiles = length(quantVec) > 0,
ctgCensus = "votes"”, indexing = FALSE, trapUnobserved = FALSE,

bagging = FALSE, nThread = @, verbose = FALSE, ...)
Arguments

object an object of class rfArb, created from a previous invocation of the command
rfArb or Rborist to train.

newdata a design frame or matrix containing new data, with the same signature of pre-
dictors as in the training command.

sampler an object of class Sampler used in the command.

yTest a response vector against which to test the new predictions.

keyedFrame whether the columns of newdata may appear in arbitrary order or as a superset
of the predictors used to train.

quantVec a vector of quantiles to predict.

quantiles whether to predict quantiles.

ctgCensus whether/how to summarize per-category predictions. "votes" specifies the num-

ber of trees predicting a given class. "prob" specifies a normalized, probabilis-
tic summary. "probSample" specifies sample-weighted probabilities, similar to
quantile histogramming.

indexing whether to record the final node index, typically terminal, of tree traversal.

trapUnobserved reports score for nonterminal upon encountering values not observed during
training, such as missing data.

bagging whether prediction is restricted to out-of-bag samples.

10 predict.rfArb

nThread suggests ans OpenMP-style thread count. Zero denotes default processor setting.
verbose whether to output progress of prediction.

not currently used.

Value

an object of one of two classes:

* SummaryReg summarizing regression, consisting of:

— prediction an object of class PredictReg consisting of:
* yPred the estimated numerical response.
% qPred quantiles of prediction, if requested.
* gEst quantile of the estimate, if quantiles requested.
% indices final index of prediction, if requested.
— validation if validation requested, an object of class ValidReg consisting of:
mse the mean-squared error of the estimate.
* rsq the r-squared statistic of the estimate.
mae the mean absolute error of the estimate.

— importance if permution importance requested, an object of class importanceReg, con-
taining multiple instances of:

% names the predictor names.
* mse the per-predictor mean-squared error, under permutation.
* SummaryCtg summarizing classification, consisting of:

— PredictCtg consisting of:
* yPred estimated categorical response.
% census factor-valued matrix of the estimate, by category, if requested.
prob matrix of estimate probabilities, by category, if requested.
% indices final index of prediction, if requested.

— validation if validation requested, an object of class ValidCtg consisting of:
confusion the confusion matrix.
misprediction the misprediction rate.
* 00bError the out-of-bag error.

— importance if permution importance requested, an object of class importanceCtg, con-

sisting of:

* mispred the misprediction rate, by predictor.
% 0O0bErr the out-of-bag error, by predictor.

Author(s)

Mark Seligman at Suiji.

See Also

rfTrain

predict.rfArb

Examples

Not run:
Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X1*2 + sin(X2) + X3 * X4) # courtesy of S. Welling.

pf <- preformat(x)
sp <- presample(y)
rb <- rfArb(pf, sp, y)

Performs separate prediction on new data:
xx <- data.frame(replace(6, rnorm(nRow)))
pred <- predict(rb, xx)

yPred <- pred$yPred

rb <- Rborist(x,y)

Performs separate prediction on new data:
xx <- data.frame(replacate(6, rnorm(nRow)))
pred <- predict(rb, xx)

yPred <- pred$yPred

As above, but also records final indices of each tree walk:
#

pred <- predict(rb, xx, indexing=TRUE)
print(pred$indices[c(1:2), 1)

As above, but predicts over \code{newdata} with unobserved values.
In the case of numerical data, only missing values are considered
unobserved. Missing values are encoded as \code{NaN}, which are
incomparable, precipitating \code{false} on every test. Prediction
therefore takes the \code{false} branch when encountering missing
values:

H o H ¥ H HH

xxMissing <- xx
xxMissing[6, c(15, 32, 87, 101)] <- NA
pred <- predict(rb, xxMissing)

As above, but returns a nonterminal score upon encountering

unobserved values. Neither the true nor the false branch from the
testing node is taken. Instead, the score returned is derived

from all leaf nodes (terminals) reached by the testing

(nonterminal) node.

#

pred <- predict(rb, xxMissing, trapUnobserved = TRUE)

Performs separate prediction, using original response as test

12

vector:

pred <- predict(rb, xx, y)
mse <- pred$mse

rsq <- predsrsq

Performs separate prediction with (default) quantiles:
pred <- predict(rb, xx, quantiles="TRUE")
gPred <- pred$qgPred

Performs separate prediction with deciles:
pred <- predict(rb, xx, quantVec = seq(@.1, 1.0, by = 0.10))
gPred <- pred$qPred

Classification examples:
data(iris)
rb <- Rborist(iris[-5], iris[5])

Generic prediction using training set.
Census as (default) votes:

pred <- predict(rb, iris[-5])

yPred <- pred$yPred

census <- pred$census

Using the \code{keyedFrame} option allows the columns of

\code{newdata} to appear in arbitrary order, so long as the
columns present during training appear as a subset:

#

pred <- predict(rb, iris[c(2, 4, 3, 1)], keyedFrame=TRUE)

As above, but validation census to report class probabilities:
pred <- predict(rb, iris[-5], ctgCensus="prob")
prob <- pred$prob

As above, but with training reponse as test vector:

pred <- predict(rb, iris[-5], iris[5], ctgCensus = "prob")
prob <- pred$prob

conf <- pred$confusion

misPred <- pred$misPred

As above, but predicts nonterminal when encountering categories
not observed during training. That is, prediction returns a score
derived from all terminal nodes (leaves) reached from the
(nonterminal) testing node.

In this case, "unobserved” refers to categories not present in
the subpartition over which a splitting is performed. As training
partitions the data into smaller and smaller regions, a given

e E E R

predict.rfArb

preformat 13

category becomes less likely to appear in a region.

#

More generally, unobserved data can include missing predictors as
well as categories appearing in \code{newdata} which were not

present during training.

#

pred <- predict(rb, trapUnobserved=TRUE)

End(Not run)

preformat Preformatting for Training with Warm Starts

Description

Presorts and formats training frame into a form suitable for subsequent training by rfArb caller or
rfTrain command. Wraps this form to spare unnecessary recomputation when iteratively retrain-
ing, for example, under parameter sweep.

Usage
Default S3 method:
preformat(x,
nThread = 0,
verbose=FALSE,
)
Arguments
X the design frame expressed as either a data.frame object with numeric and/or
factor columns or as a numeric or factor-valued matrix.
nThread number of cores to run in parallel, if available.
verbose indicates whether to output progress of preformatting.
unused.
Value

an object of class Deframe consisting of:

* rleFrame run-length encoded representation of class RLEFrame consisting of:

— rankedFrame run-length encoded representation of class RankedFrame consisting of:
* nRow the number of observations encoded.
runVal the run-length encoded values.
% runRow the corresponding row indices.
* rleHeight the number of encodings, per predictor.
% topIldx the accumulated end index, per predictor.

14 presample

— numRanked packed representation of sorted numerical values of class NumRanked consist-
ing of:
numVal distinct numerical values.
* numHeight value offset per predictor.

— facRanked packed representation of sorted factor values of class FacRanked consisting
of:

+ facVal distinct factor values, zero-based.
* facHeight value offset per predictor.

* nRow the number of training observations.

* signature an object of type Signature consisting of:

predForm predictor class names.

level per-predictor levels, regardless whether realized.

factor per-predictor realized levels.

colNames predictor names.

rowNames observation names.

Author(s)

Mark Seligman at Suiji.

Examples

Not run:
data(iris)
pt <- preformat(iris[,-51)

ppTry <- seq(@.2, 0.5, by= 0.3/10)

nlter <- length(ppTry)

rsq <- numeric(nlter)

for (i in 1:nlIter) {
rb <- Rborist(pt, iris[,5], predProb=ppTry[il)
rsql[i] = rb$validiation$rsq

}

End(Not run)

presample Forest-wide Observation Sampling

Description

Observations sampled for each tree to be trained. In the case of the Random Forest algorithm, this
is the bag.

presample 15

Usage
Default S3 method:
presample(y,
samplingWeight = numeric(9@),
nSamp = 0,
nRep = 500,
withRepl = TRUE,
nHoldout = @,
nFold = 1,
verbose = FALSE,
nTree = 0,
)
Arguments
y A vector to be sampled, typically the response.

samplingWeight Per-observation sampling weights. Default is uniform.

nSamp Size of sample draw. Default draws y length.

nRep Number of samples to draw. Replaces deprecated nTree.

withRepl true iff sampling is with replacement.

nHoldout Number of observations to omit from sampling. Augmented by unobserved
response values.

nFold Number of collections into which to partition the respone.

verbose true iff tracing execution.

nTree Number of samples to draw. Deprecated.

not currently used.

Value

an object of class Sampler consisting of:

* yTrain the sampled vector.

* nSamp the sample sizes drawn.

* nRep the number of independent samples.

* nTree synonymous with nRep. Deprecated.

* samples a packed data structure encoding the observation index and corresponding sample
count.

* hash a hashed digest of the data items.

References

Tille, Yves. Sampling algorithms. Springer New York, 2006.

16 Rborist

Examples

Not run:
y <- runif(1000)

Samples with replacement, 500 vectors of length 1000:
ps <- presample(y)

Samples, as above, with 63 observations held out:
ps <- presample(y, nHoldout = 63)

Samples without replacement, 250 vectors of length 500:
ps2 <- presample(y, nTree=250, nSamp=500, withRepl = FALSE)

End(Not run)

Rborist Rapid Decision Tree Construction and Evaluation

Description

Legacy entry for accelerated implementation of the Random Forest (trademarked name) algorithm.
Calls the suggested entry, rfArb.

Usage
Default S3 method:
Rborist(x,
Y,
)
Arguments
X the design matrix expressed as a PreFormat object, as a data. frame object with
numeric and/or factor columns or as a numeric matrix.
y the response (outcome) vector, either numerical or categorical. Row count must
conform with x.
specific to rfArb.
Value

an object of class rfArb, as documented in command of the same name.

Author(s)

Mark Seligman at Suiji.

RboristNews 17

Examples

Not run:
Regression example:
nRow <- 5000
X <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X1%2 + sin(X2) + X3 * X4) # courtesy of S. Welling.

Classification example:
data(iris)

Generic invocation:
rb <- Rborist(x, y)

End(Not run)

RboristNews NEWS Displayer for Rborist

Description

Displays NEWS associated with Rborist releases.

Usage

RboristNews()

Value

None.

rfArb Rapid Decision Tree Construction and Evaluation

Description

Accelerated implementation of the Random Forest (trademarked name) algorithm. Tuned for mul-
ticore and GPU hardware. Bindable with most numerical front-end languages in addtion to R.
Invocation is similar to that provided by randomForest package.

18

Usage

rfArb

Default S3 method:

rfArb(x,

Arguments

X

autoCompress
ctgCensus
classWeight

discardState

Y,
autoCompress = 0.25,
ctgCensus = "votes”,

classWeight = numeric(0),
discardState = FALSE,
impPermute = 0,

indexing = FALSE,

maxLeaf = 0,

minInfo = 0.01,

minNode = if (is.factor(y)) 2 else 3,
nHoldout = 0,

nLevel = 0,

nSamp = 0,

nThread = 0,

nTree = 500,

noValidate = FALSE,
predFixed = 0,

predProb = 0.0,
predWeight = numeric(9),
quantVec = numeric(0),

quantiles = length(quantVec) > 0,
regMono = numeric(0),
rowWeight = numeric(0),
samplingWeight = numeric(9@),
splitQuant = numeric(0),
streamline = FALSE,
thinLeaves = streamline || (is.factor(y) && !indexing),
trapUnobserved = FALSE,
treeBlock = 1,
verbose = FALSE,
withRepl = TRUE,

L)

the design matrix expressed as a PreFormat object, as a data. frame object with
numeric and/or factor columns or as a numeric matrix.

the response (outcome) vector, either numerical or categorical. Row count must
conform with x.

plurality above which to compress predictor values.
report categorical validation by vote or by probability.
proportional weighting of classification categories.

minimizes storage by discarding primary training output. Useful for parameter
sweeps and cross-validation, in which only validation may be of interest.

1fArb

impPermute
indexing
maxLeaf
minInfo
minNode

nHoldout

nLevel

nSamp
nThread

nTree
noValidate
predFixed
predProb
predWeight
quantVec
quantiles
regMono

rowWeight

samplingWeight

splitQuant

streamline

thinLeaves

trapUnobserved

treeBlock

verbose

withRepl

Value

19

number of importance permutations: 0 or 1.

whether to report final index, typically terminal, of validation tree traversal.
maximum number of leaves in a tree. Zero denotes no limit.

information ratio with parent below which node does not split.

minimum number of distinct row references to split a node.

number of observations to omit from sampling. Augmented by missing response
values.

maximum number of tree levels to train, including terminals (leaves). Zero de-
notes no limit.

number of rows to sample, per tree.

suggests an OpenMP-style thread count. Zero denotes the default processor
setting.

the number of trees to train.

whether to train without validation.

number of trial predictors for a split (mtry).

probability of selecting individual predictor as trial splitter.
relative weighting of individual predictors as trial splitters.
quantile levels to validate.

whether to report quantiles at validation.

signed probability constraint for monotonic regression.
row weighting for initial sampling of tree. Deprecated

row weighting for initial sampling of tree.

(sub)quantile at which to place cut point for numerical splits

whether to streamline sampler contents to save space.
bypasses creation of leaf state in order to reduce storage footprint.

reports score for nonterminal upon encountering values not observed during
training, such as missing data.

maximum number of trees to train during a single level (e.g., coprocessor com-
puting).

indicates whether to output progress of training.

whether row sampling is by replacement.

not currently used.

an object sharing classes rfArb, a supplementary collection consisting of the following items:

* sampler an object of class Sampler, as described in the documentation for the presample
command, that summarizes the bagging structure.

20 rfArb

* training alist summarizing the training task, consisting of the following fields:

— call the calling invocation.
— info a vector of forest-wide Gini (classification) or weighted variance (regression), by
predictor.

version the version of the Rborist package used to train.

diag diagnostics accumulated over the training task.

samplerHash hash value of the Sampler object used to train. Recorded for consistency
of subsequent commands.

* prediction an object of class PredictReg or PredictCtg, as described by the documention
for command predict.

* validation an object of class ValidReg or ValidCtg, as described by the documention for
commandvalidate, if validation is requested.

* importance an object of class ImportanceReg orImportanceCtg, as described by the docu-
mention for command predict, if permutation performance has been requested.

Author(s)

Mark Seligman at Suiji.

References

Breiman, L. (2001) Random Forests, Machine Learning 45(1), 5-32.

See Also

Rborist

Examples

Not run:
Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X172 + sin(X2) + X3 * X4) # courtesy of S. Welling.

Classification example:
data(iris)

Generic invocation:

rb <- rfArb(x, y)

Causes 300 trees to be trained:
rb <- rfArb(x, y, nTree = 300)

Causes rows to be sampled without replacement:
rb <- rfArb(x, y, withRepl=FALSE)

1fArb 21

Causes validation census to report class probabilities:
rb <- rfArb(iris[-5], iris[5], ctgCensus="prob")

Applies table-weighting to classification categories:
rb <- rfArb(iris[-5], iris[5], classWeight = "balance")

Weights first category twice as heavily as remaining two:
rb <- rfArb(iris[-5], iris[5], classWeight = c(2.0, 1.0, 1.0))

Does not split nodes when doing so yields less than a 2% gain in
information over the parent node:
rb <- rfArb(x, y, minInfo=0.02)

Does not split nodes representing fewer than 10 unique samples:
rb <- rfArb(x, y, minNode=10)

Trains a maximum of 20 levels:
rb <- rfArb(x, y, nLevel = 20)

Trains, but does not perform subsequent validation:
rb <- rfArb(x, y, noValidate=TRUE)

Chooses 500 rows (with replacement) to root each tree.
rb <- rfArb(x, y, nSamp=500)

Chooses 2 predictors as splitting candidates at each node (or
fewer, when choices exhausted):
rb <- rfArb(x, y, predFixed = 2)

Causes each predictor to be selected as a splitting candidate with
distribution Bernoulli(@.3):
rb <- rfArb(x, y, predProb = 0.3)

Causes first three predictors to be selected as splitting candidates
twice as often as the other two:
rb <- rfArb(x, y, predWeight=c(2.0, 2.0, 2.0, 1.0, 1.0))

Causes (default) quantiles to be computed at validation:
rb <- rfArb(x, y, quantiles=TRUE)
gPred <- rb$validation$gPred

22 rfTrain

Causes specfied quantiles (deciles) to be computed at validation:
rb <- rfArb(x, y, quantVec = seq(@.1, 1.0, by = 0.10))
gPred <- rb$validation$gPred

Constrains modelled response to be increasing with respect to X1
and decreasing with respect to X5.
rb <- rfArb(x, y, regMono=c(1.0, 0, @, @, -1.0, 0))

Causes rows to be sampled with random weighting:
rb <- rfArb(x, y, samplingWeight=runif(nRow))

Suppresses creation of detailed leaf information needed for
quantile prediction and external tools.
rb <- rfArb(x, y, thinLeaves = TRUE)

Directs prediction to take a random branch on encountering
values not observed during training, such as NA or an
unrecognized category.

predict(rb, trapUnobserved = FALSE)

Directs prediction to silently trap unobserved values, reporting a
score associated with the current nonterminal tree node.

predict(rb, trapUnobserved = TRUE)

Sets splitting position for predictor @ to far left and predictor
1 to far right, others to default (median) position.

spg <- rep(@.5, ncol(x))

spql0] <- 9.0

spql1] <- 1.0

rb <- rfArb(x, y, splitQuant = spq)

End(Not run)

rfTrain Rapid Decision Tree Training

Description

Accelerated training using the Random Forest (trademarked name) algorithm. Tuned for multicore
and GPU hardware. Bindable with most numerical front-end languages in addtion to R.

rfTrain

Usage

23

Default S3 method:
rfTrain(preFormat,

Arguments

y

preFormat

sampler
autoCompress
ctgCensus
classWeight
maxLeaf
minInfo
minNode

nLevel

nThread

predFixed
predProb
predWeight

regMono

sampler,

Y,
autoCompress = 0.25,

ctgCensus = "votes”,
classWeight = numeric(9@),
maxLeaf = 0,
minInfo = 0.01,
minNode = if (is.factor(y)) 2 else 3,
nLevel = @
nThread =
predFixed
predProb = 0.0,
predWeight = numeric(0),
regMono = numeric(@),
splitQuant = numeric(0),
thinLeaves = FALSE,
treeBlock = 1,
verbose = FALSE,

>

o,
= 0’

the response (outcome) vector, either numerical or categorical.

Compressed, presorted representation of the predictor values. Row count must
conform with y.

Compressed representation of the sampled response.

plurality above which to compress predictor values.

report categorical validation by vote or by probability.
proportional weighting of classification categories.

maximum number of leaves in a tree. Zero denotes no limit.
information ratio with parent below which node does not split.
minimum number of distinct row references to split a node.

maximum number of tree levels to train, including terminals (leaves). Zero de-
notes no limit.

suggests an OpenMP-style thread count. Zero denotes the default processor set-
ting.

number of trial predictors for a split (mtry).
probability of selecting individual predictor as trial splitter.
relative weighting of individual predictors as trial splitters.

signed probability constraint for monotonic regression.

24 rfTrain
splitQuant (sub)quantile at which to place cut point for numerical splits
thinLeaves bypasses creation of leaf state in order to reduce memory footprint.
treeBlock maximum number of trees to train during a single level (e.g., coprocessor com-
puting).
verbose indicates whether to output progress of training.

Not currently used.

Value

an object of class arbTrain, containing:

* version the version of the Rborist package used to train.

* samplerHash hash value of the Sampler object used to train. Recorded for consistency of

subsequent commands.

* predInfo a vector of forest-wide Gini (classification) or weighted variance (regression), by

predictor.
» forest an object of class Forest containing:

— nTree the number of trees trained.
— node an object of class Node consisting of:
treeNode forest-wide vector of packed node representations.
* extent per-tree node counts.
scores numeric vector of scores, for all terminals and nonterminals.
% factor an object of class Factor consisting of:
- facSplit forest-wide vector of packed factor bits.
- extent per-tree extent of factor bits.
- observed forest-wide vector of observed factor bits.

— Leaf an object of class Leaf containing:

% extent forest-wide vector of leaf populations, i.e., counts of unique samples.

% index forest-wide vector of sample indices.

* diag diagnostics accumulated over the training task.

Author(s)

Mark Seligman at Suiji.

See Also

Rborist

rfTrain 25

Examples

Not run:
Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <= with(x, X1*2 + sin(X2) + X3 * X4) # courtesy of S. Welling.

Classification example:
data(iris)

Generic invocation:

rt <- rfTrain(y)

Causes 300 trees to be trained:
rt <- rfTrain(y, nTree = 300)

Causes validation census to report class probabilities:
rt <- rfTrain(iris[-5], iris[5], ctgCensus="prob")

Applies table-weighting to classification categories:
rt <- rfTrain(iris[-5], iris[5], classWeight = "balance")

Weights first category twice as heavily as remaining two:
rt <- rfTrain(iris[-5], iris[5], classWeight = c(2.0, 1.0, 1.0))

Does not split nodes when doing so yields less than a 2% gain in
information over the parent node:
rt <- rfTrain(y, preFormat, sampler, minInfo=0.02)

Does not split nodes representing fewer than 10 unique samples:
rt <- rfTrain(y, preFormat, sampler, minNode=10)

Trains a maximum of 20 levels:
rt <- rfTrain(y, preFormat, sampler, nLevel = 20)

Trains, but does not perform subsequent validation:
rt <- rfTrain(y, preFormat, sampler, noValidate=TRUE)

Chooses 500 rows (with replacement) to root each tree.
rt <- rfTrain(y, preFormat, sampler, nSamp=500)

Chooses 2 predictors as splitting candidates at each node (or

26 Streamline.rfArb

fewer, when choices exhausted):
rt <- rfTrain(y, preFormat, sampler, predFixed = 2)

Causes each predictor to be selected as a splitting candidate with
distribution Bernoulli(@.3):
rt <- rfTrain(y, preFormat, sampler, predProb = 0.3)

Causes first three predictors to be selected as splitting candidates
twice as often as the other two:
rt <- rfTrain(y, preFormat, sampler, predWeight=c(2.0, 2.0, 2.0, 1.0, 1.0))

Constrains modelled response to be increasing with respect to X1
and decreasing with respect to X5.
rt <- rfTrain(x, y, preFormat, sampler, regMono=c(1.0, @, @, @, -1.0, 0))

Suppresses creation of detailed leaf information needed for
quantile prediction and external tools.
rt <- rfTrain(y, preFormat, sampler, thinLeaves = TRUE)

spq <- rep(@.5, ncol(x))

spqlo] <- 0.0

spq[1] <- 1.0

rt <- rfTrain(y, preFormat, sampler, splitQuant = spq)

End(Not run)

Streamline.rfArb Reducing Memory Footprint of Trained Decision Forest

Description

Clears fields deemed no longer useful.

Usage
S3 method for class 'rfArb'
Streamline(arbOut)
Arguments
arbOut Trained forest object of class rfArb.
Value

an object of class rfArb with sample data cleared.

validate 27

Author(s)

Mark Seligman at Suiji.

Examples

Not run:
Trains.
rs <- Rborist(x, y)

Replaces trained object with streamlined copy.
rs <- Streamline(rs)

End(Not run)

validate Separate Validation of Trained Decision Forest

Description

Permits trained decision forest to be validated separately from training.

Usage

Default S3 method:

validate(train, preFormat, sampler = NULL, ctgCensus

= "votes”, impPermute = @, quantVec = numeric(@), quantiles =

length(quantVec) > @, indexing = FALSE, trapUnobserved = FALSE, nThread = @, verbose =
FALSE, ...)

Arguments
train an object of class Rborist obtained from previous training.
sampler summarizes the response and its per-tree samplgin.
preFormat internal representation of the design matrix, of class PreFormat
ctgCensus report categorical validation by vote or by probability.
impPermute specifies the number of importance permutations: O or 1.
quantVec quantile levels to validate.
quantiles whether to report quantiles at validation.
indexing whether to report final index, typically terminal, of tree traversal.

trapUnobserved indicates whether to return a nonterminal for values unobserved during training,
such as missing data.

nThread suggests an OpenMP-style thread count. Zero denotes the default processor
setting.
verbose indicates whether to output progress of validation.

not currently used.

28 validate

Value
either of two pairs of objects:

* SummaryReg summarizing regression, as documented with the command predict.arbTrain.
» validation an object of class ValidReg consisting of:

— mse the mean-square error of the estimate.
— rsq the r-squared statistic of the estimate.
— mae the mean absolute error of the estimate.

* SummaryCtg summarizing classification, as documented with the command predict.arbTrain.
* validation an object of class ValidCtg consisting of:

— confusion the confusion matrix.
— misprediction the misprediction rate.
— oobError the out-of-bag error.

Author(s)

Mark Seligman at Suiji.

Examples

Not run:
Trains without validation.
rb <- Rborist(x, y, novalidate=TRUE)

Delayed validation using a preformatted object.
pf <- preformat(x)
v <- validate(rb, pf)

End(Not run)

Index

* bagging
presample, 14

* decision forest simplification
Streamline.rfArb, 26

+ decision tree validation
validate, 27

+ decision trees
expandfe, 2
Export, 3
preformat, 13
Rborist, 16
rfArb, 17
rfTrain, 22

expandfe, 2
Export, 3

forestWeight, 3

predict.arbTrain, 5
predict.rfArb, 9
preformat, 13
presample, 14

Rborist, 4, 16, 20, 24
RboristNews, 17
rfArb, 17
rfTrain, 6, 10, 22

Streamline (Streamline.rfArb), 26

Streamline.rfArb, 26

validate, 27

29

	expandfe
	Export
	forestWeight
	predict.arbTrain
	predict.rfArb
	preformat
	presample
	Rborist
	RboristNews
	rfArb
	rfTrain
	Streamline.rfArb
	validate
	Index

