
Package ‘RSC’
January 20, 2025

Type Package

Title Robust and Sparse Correlation Matrix

Description
Performs robust and sparse correlation matrix estimation. Robustness is achieved based on a sim-
ple robust pairwise correlation estimator, while sparsity is obtained based on threshold-
ing. The optimal thresholding is tuned via cross-validation. See Serra, Coretto, Fratello and Tagli-
aferri (2018) <doi:10.1093/bioinformatics/btx642>.

Author Luca Coraggio [cre, aut],
Pietro Coretto [aut],
Angela Serra [aut],
Roberto Tagliaferri [ctb]

Maintainer Luca Coraggio <luca.coraggio@unina.it>

NeedsCompilation yes

Imports stats, graphics, Matrix, methods, parallel, foreach,
doParallel, utils

License GPL (>= 2)

Version 2.0.4

Date 2023-04-17

Repository CRAN

Date/Publication 2023-04-17 19:10:05 UTC

Contents

plot.rsc_cv . 2
rmad . 3
rsc . 5
rsc_cv . 6

Index 10

1

https://doi.org/10.1093/bioinformatics/btx642

2 plot.rsc_cv

plot.rsc_cv Plot method for rsc_cv objects

Description

Plot the cross-validation estimates of the Frobenius loss.

Usage

S3 method for class 'rsc_cv'
plot(x, ...)

Arguments

x Output from rsc_cv, that is an S3 object of class "rsc_cv".

... additional arguments passed to plot.default.

Value

Plot the Frobenius loss estimated via cross-validation (y-axis) vs threshold values (x-axis). The dot-
ted blue line represents the average expected normalized Frobenius loss, while the vertical segments
around the average are 1-standard-error error bars (see Details in rsc_cv.

The vertical dashed red line identifies the minimum of the average loss, that is the optimal threshold
flagged as "minimum". The vertical dashed green line identifies the optimal selection flagged as
"minimum1se" in the output of rsc_cv (see Details in rsc_cv).

References

Serra, A., Coretto, P., Fratello, M., and Tagliaferri, R. (2018). Robust and sparsecorrelation matrix
estimation for the analysis of high-dimensional genomics data. Bioinformatics, 34(4), 625-634.
doi:10.1093/bioinformatics/btx642

See Also

rsc_cv

Examples

simulate a random sample from a multivariate Cauchy distribution
note: example in high-dimension are obtained increasing p
set.seed(1)
n <- 100 # sample size
p <- 10 # dimension
dat <- matrix(rt(n*p, df = 1), nrow = n, ncol = p)
colnames(dat) <- paste0("Var", 1:p)

perform 10-fold cross-validation repeated R=10 times

rmad 3

note: for multi-core machines experiment with 'ncores'
set.seed(2)
a <- rsc_cv(x = dat, R = 10, K = 10, ncores = 1)
a

plot the cross-validation estimates
plot(a)

pass additional parameters to graphics::plot
plot(a , cex = 2)

rmad RMAD correlation matrix

Description

Compute the RMAD robust correlation matrix proposed in Serra et al. (2018) based on the robust
correlation coefficient proposed in Pasman and Shevlyakov (1987).

Usage

rmad(x , y = NULL, na.rm = FALSE , even.correction = FALSE, num.threads = "half-max")

Arguments

x A numeric vector, a matrix or a data.frame. If x is a matrix or a data.frame, rows
of x correspond to sample units and columns correspond to variables. If x is a
numerical vector, and y is not NULL, the RMAD correlation coefficient between
x and y is computed. Categorical variables are not allowed.

y A numerical vector if not NULL. If both x and y are numerical vectors, the RMAD
correlation coefficient between x and y is computed.

na.rm A logical value, if TRUE sample observation containing NA values are excluded
(see Details).

even.correction

A logical value, if TRUE a correction for the calculation of the medians is applied
to reduce the bias when the number of samples even (see Details).

num.threads An integer value or the string "half-max" (default), specifying the number of
threads for parallel execution (see Details).

Details

The rmad function computes the correlation matrix based on the pairwise robust correlation coeffi-
cient of Pasman and Shevlyakov (1987). This correlation coefficient is based on repeated median
calculations for all pairs of variables. This is a computational intensive task when the number of
variables (that is ncol(x)) is large.

4 rmad

The software is optimized for large dimensional data sets, the median is approximated as the central
observation obtained based on the find algorithm of Hoare (1961) (also known as quickselect) im-
plemented in C language. For small samples this may be a crude approximation, however, it makes
the computational cost feasible for high-dimensional data sets. With the option even.correction
= TRUE a correction is applied to reduce the bias for data sets with an even number of samples.
Although even.correction = TRUE has a small computational cost for each pair of variables, it is
suggested to use the default even.correction = FALSE for large dimensional data sets.

The function can handle a data matrix with missing values (NA records). If na.rm = TRUE then
missing values are handled by casewise deletion (and if there are no complete cases, an error is
returned). In practice, if na.rm = TRUE all rows of x that contain at least an NA are removed.

Since the software is optimized to work with high-dimensional data sets, the output RMAD matrix
is packed into a storage efficient format using the "dspMatrix" S4 class from the Matrix package.
The latter is specifically designed for dense real symmetric matrices. A sparse correlation matrix
can be obtained applying thresholding using the rsc_cv and rsc.

rmad function supports parallel execution. This is provided via openmp (http://www.openmp.org),
which must be already available on the system at installation time; otherwise, falls back to single-
core execution. For later installation of openmp, the RSC package needs to be re-installed (re-
compiled) to provide multi-threads execution. If num.threads > 0, function is executed using
min(num.threads, max.threads) threads, where max.threads is the maximum number of avail-
able threads. That is, if positive the specified number of threads (up to the maximum available)
are used. If num.threads < 0, function is executed using max(max.threads - num.threads, 1)
threads, i.e. when negative num.threads indicates the number of threads not to use (at least
one thread is used). If num.threads == 0, a single thread is used (equivalent to num.threads
= 1). If num.threads == "half-max", function is executed using half of the available threads
(max(max.threads/2, 1)). This is the default.

Value

If x is a matrix or a data.frame, returns a correlation matrix of class "dspMatrix" (S4 class object)
as defined in the Matrix package.

If x and y are numerical vectors, returns a numerical value, that is the RMAD correlation coefficient
between x and y.

References

Hoare, C. A. (1961). Algorithm 65: find. Communications of the ACM, 4(7), 321-322.

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software: Practice and
Experience, 27(8), 983-993.

Pasman,V. and Shevlyakov,G. (1987). Robust methods of estimation of correlation coefficient.
Automation Remote Control, 48, 332-340.

Serra, A., Coretto, P., Fratello, M., and Tagliaferri, R. (2018). Robust and sparsecorrelation matrix
estimation for the analysis of high-dimensional genomics data. Bioinformatics, 34(4), 625-634.
doi: 10.1093/bioinformatics/btx642

See Also

rsc_cv, rsc

rsc 5

Examples

simulate a random sample from a multivariate Cauchy distribution
set.seed(1)
n <- 100 # sample size
p <- 7 # dimension
dat <- matrix(rt(n*p, df = 1), nrow = n, ncol = p)
colnames(dat) <- paste0("Var", 1:p)

compute the rmad correlation coefficient between dat[,1] and dat[,2]
a <- rmad(x = dat[,1], y = dat[,2])

compute the RMAD correlaiton matrix
b <- rmad(x = dat)
b

rsc Robust and Sparse Correlation Matrix Estimator

Description

Compute the Robust and Sparse Correlation Matrix (RSC) estimator proposed in Serra et al. (2018).

Usage

rsc(cv, threshold = "minimum")

Arguments

cv An S3 object of class "rsc_cv" (see rsc_cv).
threshold Threshold parameter to compute the RSC estimate. This is a numeric value

taken onto the interval (0,1), or it is equal to "minimum" or "minimum1se" for
selecting the optimal threshold according to the selection performed in rsc_cv.

Details

The setting threshold = "minimum" or threshold = "minimum1se" applies thresholding accord-
ing to the criteria discussed in the Details section in rsc_cv. When cv is obtained using rsc_cv
with cv.type = "random", the default settings for rsc implements exactly the RSC estimator pro-
posed in Serra et al., (2018).

Although threshold = "minimum" is the default choice, in high-dimensional situations threshold
= "minimum1se" usually provides a more parsimonious representation of the correlation structure.
Since the underlying RMAD matrix is passed through the cv input, any other hand-tuned threshold
to the RMAD matrix can be applied without significant additional computational costs. The latter
can be done setting threshold to any value onto the (0,1) interval.

The software is optimized to handle high-dimensional data sets, therefore, the output RSC matrix
is packed into a storage efficient sparse format using the "dsCMatrix" S4 class from the Matrix
package. The latter is specifically designed for sparse real symmetric matrices.

6 rsc_cv

Value

Returns a sparse correlaiton matrix of class "dsCMatrix" (S4 class object) as defined in the Matrix
package.

References

Serra, A., Coretto, P., Fratello, M., and Tagliaferri, R. (2018). Robust and sparsecorrelation matrix
estimation for the analysis of high-dimensional genomics data. Bioinformatics, 34(4), 625-634.
doi:10.1093/bioinformatics/btx642

See Also

rsc_cv

Examples

simulate a random sample from a multivariate Cauchy distribution
note: example in high-dimension are obtained increasing p
set.seed(1)
n <- 100 # sample size
p <- 10 # dimension
dat <- matrix(rt(n*p, df = 1), nrow = n, ncol = p)
colnames(dat) <- paste0("Var", 1:p)

perform 10-fold cross-validation repeated R=10 times
note: for multi-core machines experiment with 'ncores'
set.seed(2)
a <- rsc_cv(x = dat, R = 10, K = 10, ncores = 1)
a

obtain the RSC matrix with "minimum" flagged solution
b <- rsc(cv = a, threshold = "minimum")
b

obtain the RSC matrix with "minimum1se" flagged solution
d <- rsc(cv = a, threshold = "minimum1se")
d

since the object 'a' stores the RMAD underlying estimator, we can
apply thresholding at any level without re-estimating the RMAD
matrix
e <- rsc(cv = a, threshold = 0.5)
e

rsc_cv Optimal threshold selection for the RSC estimator

rsc_cv 7

Description

Perform cross-validation to select an adaptive optimal threshold for the RSC estimator proposed in
Serra et al. (2018).

Usage

rsc_cv(x, cv.type = "kfold", R = 10, K = 10, threshold = seq(0.05, 0.95, by = 0.025),
even.correction = FALSE, na.rm = FALSE, ncores = NULL, monitor = TRUE)

Arguments

x A matrix or a data.frame. Rows of x correspond to sample units and columns
correspond to variables. Categorical variables are not allowed.

cv.type A character string indicating the cross-validation algorithm. Possible values are
"kfold" for repeated K-fold cross-validation, and "random" for random cross-
validation (see Details).

R An integer corresponding to the number of repeated foldings when cv.type =
"kfold". When cv.type = "random" R defines the number of random splits
(see Details).

K An integer corresponding to the number of folds in K-fold cross-validation.
Therefore this argument is not relevant when cv.type = "random".

threshold A sequence of reals taken onto the interval (0,1) defining the threshold values at
which the loss is estimated.

even.correction

A logical value. It sets the parameter even.correction in each of the underly-
ing RMAD computations (see Details in rmad).

na.rm A logical value, it defines the treatment of missing values in each of the under-
lying RMAD computations (see Details).

ncores An integer value defining the number of cores used for parallel computing.
When ncores=NULL (default), the number r of available cores is detected, and
(r-1) of them are used (see Details).

monitor A logical value. If TRUE progress messages are printed on screen.

Details

The rsc_cv function performs cross-validation to estimate the expected Frobenius loss proposed in
Bickel and Levina (2008). The original contribution of Bickel and Levina (2008), and its extension
in Serra et al. (2018), is based on a random cross-validation algorithm where the training/test size
depends on the sample size n. The latter is implemented selecting cv.type = "ramdom", and fixing
an appropriate number R of random train/test splits. R should be as large as possible, but in practice
this impacts the computing time strongly for high-dimensional data sets.

Although Serra et al. (2018) showed that the random cross-validation of Bickel and Levina (2008)
works well for the RSC estimator, subsequent experiments suggested that repeated K-fold cross-
validation on average produces better results. Repeated K-fold cross-validation is implemented
with the default cv.type = "kfold". In this case K defines the number of folds, while R defines the

8 rsc_cv

number of times that the K-fold cross-validation is repeated with R independent shuffles of the orig-
inal data. Selecting R=1 and K=10 one performs the standard 10-fold cross-validation. Ten replicates
(R=10) of the K-fold cross-validation are generally sufficient to obtain reasonable estimates of the
underlying loss, but for extremely high-dimensional data R may be varied to speed up calculations.

On multi-core hardware the cross-validation is executed in parallel setting ncores. The parallelism
is implemented on the total number of data splits, that is R for the random cross-validation, and
R*K for the repeated K-fold cross-validation. The software is optimized so that generally the total
computing time scales almost linearly with the number of available computer cores (ncores).

For both the random and the K-fold cross-validation it is computed the normalized version of the
expected squared Frobenius loss proposed in Bickel and Levina (2008). The normalization is such
that the squared Frobenius norm of the identity matrix equals to 1 whatever is its dimension.

Two optimal threshold selection types are reported with flags (see Value section below): "minimum"
and "minimum1se". The flag "minimum" denotes the threshold value that minimizes the average
loss. The flag "minimum1se" implements the so called 1-SE rule: this is the maximum thresh-
old value such that the corresponding average loss is within 1-standard-error with respect to the
threshold that minimizes the average loss (that is the one corresponding to the "minimum" flag).

Since unbiased standard errors for the K-fold cross-validation are impossible to compute (see Ben-
gio and Grandvalet, 2004), when cv.type="kfold" the reported standard errors have to be consid-
ered as a downward biased approximation.

Value

An S3 object of class 'cv_rsc' with the following components:

rmadvec A vector containing the lower triangle of the underlying RMAD matrix.

varnames A character vector if variable names are available for the input data set x. Oth-
erwise this is NULL.

loss A data.frame reporting cross-validation estimates. Columns of loss are as fol-
lows: loss$Threshold is the threshold value; loss$Average is averaged loss;
loss$SE is the standard error for the average loss; loss$Flag="minimum" de-
notes the threshold achieving the minimum average loss; loss$Flag = "*" de-
notes threshold values such that the average loss is within 1-standard-error with
respect to the "minimum" solution.

minimum A numeric value. This is the minimum of the average loss. This corresponds to
the flag "minimum" in the loss component above (see Details).

minimum1se A numeric value. This is the largest threshold such that the corresponding flag
= "*". In practice this selects the optimal threshold based on the 1-SE rule
discussed in the Details Section above.

References

Bengio, Y., and Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-
validation. Journal of Machine Learning Research, 5(Sep), 1089-1105.

Bickel, P. J., and Levina, E. (2008). Covariance regularization by thresholding. The Annals of
Statistics, 36(6), 2577-2604. doi:10.1214/08-AOS600

rsc_cv 9

Serra, A., Coretto, P., Fratello, M., and Tagliaferri, R. (2018). Robust and sparsecorrelation matrix
estimation for the analysis of high-dimensional genomics data. Bioinformatics, 34(4), 625-634.
doi:10.1093/bioinformatics/btx642

See Also

rsc, plot.rsc_cv

Examples

simulate a random sample from a multivariate Cauchy distribution
note: example in high-dimension are obtained increasing p
set.seed(1)
n <- 100 # sample size
p <- 10 # dimension
dat <- matrix(rt(n*p, df = 1), nrow = n, ncol = p)
colnames(dat) <- paste0("Var", 1:p)

perform 10-fold cross-validation repeated R=10 times
note: for multi-core machines experiment with 'ncores'
set.seed(2)
a <- rsc_cv(x = dat, R = 10, K = 10, ncores = 1)
a

threshold selection: note that here, knowing the sampling designs,
we would like to threshold any correlation larger than zero in
absolute value
##
a$minimum ## "minimum" flagged solution
a$minimum1se ## "minimum1se" flagged solution

plot the cross-validation estimates
plot(a)

to obtain the RSC matrix we pass 'a' to the rsc() function
b <- rsc(cv = a, threshold = "minimum")
b

d <- rsc(cv = a, threshold = "minimum1se")
d

since the object 'a' stores the RMAD underlying estimator, we can
apply thresholding at any level without re-estimating the RMAD
matrix
e <- rsc(cv = a, threshold = 0.5)
e

Index

Matrix, 4–6

plot.default, 2
plot.rsc_cv, 2

rmad, 3, 7
rsc, 4, 5, 5
rsc_cv, 2, 4–6, 6

10

	plot.rsc_cv
	rmad
	rsc
	rsc_cv
	Index

