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adjust_significance_level

Adjust Significance Level on a Simulation Basis

Description

Adjust Significance Level on a Simulation Basis

Usage

adjust_significance_level(
allocation_rule,

models,
N_total,
N_ini,
N_block,

outcome_type = c("continuous”, "binary"),
sd_normal = NULL,

alpha

n_sim
seed = NULL

Arguments

allocation_rule

models

N_total

N_ini

0.025,
10000L,

An object of class AllocationRule specifying an obtained optimal adaptive allo-
cation rule.

An object of class Mods specifying assumed dose-response models. This is used
in the MCPMod method at the end of this study.

A positive integer value. The total number of subjects.

A positive integer vector in which each element is greater than or equal to 2.
The number of subjects initially assigned to each dose.
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N_block

outcome_type

sd_normal

alpha

n_sim

seed

Value

A positive integer value. The number of subjects allocated adaptively in each
round.

A character value specifying the outcome type. Possible values are "continuous"
(default), and "binary".

A positive numeric value. The standard deviation of the observation noise.
When outcome_type is "continuous", sd_normal must be specified.

A positive numeric value. The original significance level. Default is 0.025.

A positive integer value. The number of simulation studies to calculate the ad-
justed significance level. Default is 10000.

An integer value. Random seed for data generation in the simulation studies.

A positive numeric value specifying adjusted significance level.

Examples

library(RLoptimal)

doses <- c(0, 2,

4,6, 8

models <- DoseFinding: :Mods(

doses = doses,
linear = NULL,

maxEff = 1.65,
emax = 0.79, sigEmax = c(4, 5)

)

## Not run:

allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous”, sd_normal = sqrt(4.5),

seed = 123, rl_config = rl_config_set(iter = 1000),

alpha = 0.025
)

# Simulation-based adjustment of the significance level using “allocation_rule”
adjusted_alpha <- adjust_significance_level(
allocation_rule, models,

N_total = 150, N_ini = rep(10@, 5), N_block = 10,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
alpha = 0.025, n_sim = 10000, seed = 123

)
## End(Not run)
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AllocationRule Allocation Rule Class

Description

This class represents an allocation rule that generates a next allocation.

Public fields

policy The RLIib policy that is a Python object.

dir Directory path of the allocation rule (policy).

dirpath Full path to the directory of the allocation rule.
created_at Created time of this object.

info Information when learning the allocation rule.

input Inputs for learning the allocation rule.

log The log of scores during the learning of the allocation rule.
checkpoints The integer vector of iteration counts for checkpoints.

checkpoints_paths The paths to the directories where each checkpoint is stored.

Methods

Public methods:

e AllocationRule$new()

e AllocationRule$opt_allocation_probs()
e AllocationRule$resume_learning()

e AllocationRule$set_info()

e AllocationRule$print()

e AllocationRule$clone()

Method new(): Create a new AllocationRule object.

Usage:
AllocationRule$new(dir = "latest”, base_dir = "allocation_rules")

Arguments:
dir A character value. A directory name or path where an allocation rule is outputted. By
default, the latest allocation rule is searched in ’base_dir’.

base_dir A character value. A directory path that is used as the parent directory if the ’dir’
argument is a directory name and is not used otherwise.

Method opt_allocation_probs(): Compute optimal allocation probabilities using the ob-
tained allocation rule for dose and response data.

Usage:
AllocationRule$opt_allocation_probs(data_doses, data_resps)
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Arguments:

data_doses A numeric vector. The doses actually administered to each subject in your clinical
trial. It must include all previous doses.

data_resps A numeric vector. The values of responses corresponding to each subject for the
’data_doses’ argument.

Returns: A vector of the probabilities of the doses.

Method resume_learning(): Resume learning the allocation rule. This function updates the
original AllocationRule object.

Usage:

AllocationRule$resume_learning(iter)

Arguments:

iter A number of additional iterations.

Returns: An updated AllocationRule object.

Method set_info(): Setinformation when learning the allocation rule.

Usage:

AllocationRule$set_info(info, input, log, checkpoints)

Arguments:

info Information when learning the allocation rule.

input Inputs for learning the allocation rule.

log The log of scores during the learning of the allocation rule.

checkpoints The paths to the directories where each checkpoint is stored.

Method print(): Print function for AllocationRule object

Usage:
AllocationRule$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AllocationRule$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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clean_python_settings Clean the Python Virtual Environment

Description

Clean the Python Virtual Environment

Usage

clean_python_settings(envname = "r-RLoptimal”)
Arguments

envname Python virtual environment name.

learn_allocation_rule Build an Optimal Adaptive Allocation Rule using Reinforcement

Learning

Description

Build an Optimal Adaptive Allocation Rule using Reinforcement Learning

Usage

learn_allocation_rule(

models,

N_total,

N_ini,

N_block,

Delta,

outcome_type = c("continuous”, "binary"),
sd_normal = NULL,

optimization_metric = c("MAE", "power", "TD", "power and MAE"),

rl_models = models,
rl_models_prior = NULL,

seed = NULL,
rl_config = rl_config_set(),
alpha = 0.025,

selModel = c("AIC", "maxT", "aveAIC"),
Delta_range = c(0.9, 1.1) x Delta,

output_dir = format(Sys.time(), "%Y%m%d_%H%EM%S"),

output_base_dir = "allocation_rules”,
checkpoint_dir = "checkpoints”
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Arguments

models An object of class Mods specifying assumed dose-response models. When
outcome_type is "binary", models should be specified on the logit scale.

N_total A positive integer value. The total number of subjects.

N_ini A positive integer vector in which each element is greater than or equal to 2.
The number of subjects initially assigned to each dose.

N_block A positive integer value. The number of subjects allocated adaptively in each
round.

Delta A positive numeric value. The clinically relevant target effect. When outcome_type

is "binary", Delta should be specified on the logit scale. See TD for details.

outcome_type A character value specifying the outcome type. Possible values are "continuous"
(default), and "binary".

sd_normal A positive numeric value. The standard deviation of the observation noise.
When outcome_type is "continuous", sd_normal must be specified.
optimization_metric
A character value specifying the metric to optimize. Possible values are "M AE"
(default), "power", "TD", or "power and MAE". See Section 2.2 of the original
paper for details. "power and MAE" shows performance between "power" and
"MAE" by setting the reward based on MAE to 0 when not significant.

rl_models An object of class Mods. True dose-response models in simulations for rein-
forcement learning. The default is the same as the “'models’ argument. Empir-
ically, the inclusion of a wide variety of models tends to stabilize performance
(See RL-MAE incl. exp in the supporting information of the original paper).

rl_models_prior
A positive numeric vector. The probability or weight with which each model in
rl_models is selected as the true model in the simulation. The default is NULL,
which specifies equal probability for each model.

seed An integer value. Random seed for reinforcement learning.

rl_config A list. Other settings for reinforcement learning. See rl_config_set for details.

alpha A positive numeric value. The significance level. Default is 0.025.

selModel A character value specifying the model selection criterion for dose estimation.
Possible values are "AIC" (default), "maxT", or "aveAIC". See MCPMod for
details.

Delta_range A numeric vector of length 2. The lower and upper bounds of Delta where the

estimated target dose is correct. Defaultis c(0.9, 1.1) * Delta.

output_dir A character value. Directory name or path to store the built allocation rule.
Default is the current datetime.

output_base_dir
A character value. Parent directory path where the built allocation rule will
be stored. Valid only if ’output_dir’ does not contain ’/°. Default is "alloca-
tion_rules".

checkpoint_dir A character value. Parent directory path to save checkpoints. It enables you to
resume learning from that point onwards. Default is "checkpoints".
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Value

An AllocationRule object.

Examples
library(RLoptimal)
doses <- c(0, 2, 4, 6, 8)

# We build the dose-response models to be used in the MCPMod method,
# which we plan to execute at the end of the clinical trial.
models <- DoseFinding: :Mods(

doses = doses, maxEff = 1.65,

linear = NULL, emax = 0.79, sigEmax = c(4, 5)

# We obtain an optimal adaptive allocation rule by executing
# ~learn_allocation_rule()” with the “models™.

## Not run:
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(1@, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)

## End(Not run)

# It is recommended that the models used in reinforcement learning include
# possible models in addition to the models used in the MCPMod method.
# Here, we add the exponential model according to the supporting information
# in the original paper.
rl_models <- DoseFinding: :Mods(

doses = doses, maxEff = 1.65,

linear = NULL, emax = @.79, sigEmax = c(4, 5), exponential = 1

)
# Then, we specify the argument “rl_models™ in ~learn_allocation_rule™ function.
## Not run:
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(1@, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
seed = 123, rl_models = rl_models, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)

## End(Not run)
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rl_config_set Configuration of Reinforcement Learning

Description
Mainly settings for the arguments of the training() function. Not compatible with the new API stack
introduced in Ray 2.10.0.

Usage

rl_config_set(
iter = 1000L,

save_start_iter = NULL,
save_every_iter = NULL,
cores = 4L,
gamma = 1,
1r = 5e-05,

train_batch_size = 10000L,
model = rl_dnn_config(),
sgd_minibatch_size = 200L,
num_sgd_iter = 20L,

Arguments

iter A positive integer value. Number of iterations.

save_start_iter, save_every_iter
An integer value. Save checkpoints every ’save_every_iter’ iterations starting
from ’save_start_iter’ or later.

cores A positive integer value. Number of CPU cores used for learning.

gamma A positive numeric value. Discount factor of the Markov decision process. De-
fault is 1.0 (not discount).
1r A positive numeric value. Learning rate (default 5e-5). You can set a learning
schedule instead of a learning rate.
train_batch_size
A positive integer value. Training batch size. Deprecated on the new API stack.
model A list. Arguments passed into the policy model. See rl_dnn_config for details.
sgd_minibatch_size
A positive integer value. Total SGD batch size across all devices for SGD.
Deprecated on the new API stack.
num_sgd_iter A positive integer value. Number of SGD iterations in each outer loop.

Other settings for training(). See the arguments of the training() function in the
source code of RLIib. https://github.com/ray-project/ray/blob/master/rllib/algorithms/algorithm_config.p:
https://github.com/ray-project/ray/blob/master/rllib/algorithms/ppo/ppo.py
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Value

A list of reinforcement learning configuration parameters

Examples

## Not run:
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
seed = 123,
# We change ~iter” to 200 and ~cores™ for reinforcement learning to 2
rl_config = rl_config_set(iter = 200, cores = 2),
alpha = 0.025

)
## End(Not run)

rl_dnn_config DNN Configuration for Reinforcement Learning

Description

DNN (deep neural network) configuration for reinforcement learning. For detail, see Section 3.2.6
of the original paper.

Usage

rl_dnn_config(
fcnet_hiddens = c(256L, 256L),
fcnet_activation = c("relu”, "tanh”, "swish”, "silu”, "linear"),

Arguments

fcnet_hiddens A positive integer vector. Numbers of units of the intermediate layers.
fcnet_activation

A character value specifying the activation function. Possible values are "ReLU"
(default), "tanh", "Swish" (or "SiLU"), or "linear".

Other configurations. See source code of RLIib. https://github.com/ray-project/ray/blob/master/rllib/modk

Value

A list of DNN configuration parameters
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Examples

## Not run:
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,

outcome_type = "continuous”, sd_normal = sqrt(4.5),
seed = 123,

rl_config = rl_config_set(

iter = 1000,

# We change the DNN model

model = rl_dnn_config(fcnet_hiddens = c(512L, 512L), fcnet_activation = "tanh")

)Y
alpha = 0.025
)
## End(Not run)

setup_python Setting up a Python Virtual Environment

Description

Setting up a Python virtual environment for the Ray package, which includes the RLIib library for
reinforcement learning.

Usage

setup_python(envname = "r-RLoptimal")

Arguments
envname Python virtual environment name.
simulate_one_trial Simulate One Trial Using an Obtained Optimal Adaptive Allocation
Rule
Description

Simulate One Trial Using an Obtained Optimal Adaptive Allocation Rule
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Usage

simulate_one_trial

simulate_one_trial(
allocation_rule,

models,

true_response,

N_total,
N_ini,
N_block,
Delta,

outcome_type = c("continuous”, "binary"),
sd_normal = NULL,

alpha = 0.025,

selModel = c("AIC", "maxT", "aveAIC"),

seed = NULL,

eval_type =

Arguments

allocation_rule

models

true_response

N_total

N_ini

N_block

Delta

outcome_type

sd_normal

alpha

selModel

seed

C(”all”, ”pVal")

An object of class AllocationRule specifying an obtained optimal adaptive allo-
cation rule.

An object of class Mods specifying assumed dose-response models. When
outcome_type is "binary", models should be specified on the logit scale. This
is used in the MCPMod method at the end of this trial.

A numeric vector specifying the true response values of the true model. When
outcome_type is "binary", true_response should be specified on the logit
scale.

A positive integer value. The total number of subjects.

A positive integer vector in which each element is greater than or equal to 2.
The number of subjects initially assigned to each dose.

A positive integer value. The number of subjects allocated adaptively in each
round.

A positive numeric value. The clinically relevant target effect. When outcome_type
is "binary", Delta should be specified on the logit scale. See TD for details.

A character value specifying the outcome type. Possible values are "continuous”
(default), and "binary".

A positive numeric value. The standard deviation of the observation noise.
When outcome_type is "continuous", sd_normal must be specified

A positive numeric value. The significance level. Default is 0.025.

A character value specifying the model selection criterion for dose estimation.
Possible values are "AIC" (default), "maxT", or "aveAIC". See MCPMod for
details.

An integer value. Random seed for data generation in this trial.
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eval_type A character value specifying the evaluation type. Possible values are "all" (de-
fault) and "pVal". "all" returns all metrics, which contain the minimum p value,
the selected model name, the estimated target dose, and the MAE. "pVal" returns
only the minimum p value without fitting models.

Value
A list which contains the minimum p value, the selected model name, the estimated target dose, the

MAE, and the proportions of subjects allocated to each dose.

Examples
library(RLoptimal)
doses <- c(@, 2, 4, 6, 8)

models <- DoseFinding: :Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5)

)
## Not run:
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(1@, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)

# Simulation-based adjustment of the significance level using “allocation_rule”
adjusted_alpha <- adjust_significance_level(
allocation_rule, models,
N_total = 150, N_ini = rep(1@, 5), N_block = 10,
outcome_type = "continuous”, sd_normal = sqrt(4.5),
alpha = 0.025, n_sim = 10000, seed = 123
)
## End(Not run)

eval_models <- DoseFinding: :Mods(

doses = doses, maxEff = 1.65,

linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1, quadratic = - 1/12
)
true_response_matrix <- DoseFinding::getResp(eval_models, doses = doses)
true_response_list <- as.list(data.frame(true_response_matrix, check.names = FALSE))

true_model_name <- "emax"

# Simulate one trial using the obtained “allocation_rule® When the true model is "emax"
## Not run:
res_one <- simulate_one_trial(

allocation_rule, models,
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true_response = true_response_list[[true_model_namel],
N_total = 150, N_ini = rep(10, 5), N_block = 10,
Delta = 1.3, outcome_type = "continuous"”, sd_normal = sqrt(4.5),
alpha = adjusted_alpha, seed = 123, eval_type = "all”
)
## End(Not run)
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