RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning
An implementation to compute an optimal dose escalation rule
    using deep reinforcement learning in phase I oncology trials
    (Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>).
    The dose escalation rule can directly optimize the percentages of correct
    selection (PCS) of the maximum tolerated dose (MTD).
| Version: | 1.0.3 | 
| Imports: | glue, R6, nleqslv, reticulate, stats, utils, zip | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2025-10-07 | 
| DOI: | 10.32614/CRAN.package.RLescalation | 
| Author: | Kentaro Matsuura  [aut, cre, cph] | 
| Maintainer: | Kentaro Matsuura  <matsuurakentaro55 at gmail.com> | 
| BugReports: | https://github.com/MatsuuraKentaro/RLescalation/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/MatsuuraKentaro/RLescalation | 
| NeedsCompilation: | no | 
| Language: | en-US | 
| Materials: | README, NEWS | 
| CRAN checks: | RLescalation results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=RLescalation
to link to this page.