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Abstract

Assessing potential output and the output gap is essential for policy-making
and fiscal surveillance. The European Commission proposes a production function
methodology that involves the estimation of two classes of Gaussian state space
models. This paper presents the R package RGAP which features a flexible mod-
eling framework for the appropriate bivariate unobserved component models and
offers frequentist as well as Bayesian estimation techniques. Additional functional-
ities include direct access to the AMECO database and automated model selection
procedures. Multiple illustrative examples outline data preparation, model specifi-
cation, and estimation processes using RGAP.
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1 Introduction

Monitoring potential output and its difference to actual output – the output gap – is vital

for economic policy-making and fiscal surveillance.1 While potential output quantifies

the level of sustainable and non-inflationary output, the output gap measures short-

term fluctuations from it (Hall and Taylor, 1991). A positive output gap indicates an

overheating of the economy imposing inflationary pressure, a negative one suggests an

economic downturn.

The estimation of potential output and the output gap is a challenge, since both

quantities are unobservable. Many univariate as well as multivariate filtering techniques

have been proposed (Watson, 1986; Laxton and Tetlow, 1992; Kuttner, 1994; Hodrick

and Prescott, 1997; Blagrave et al., 2015). Since 2002, the European Commission (EC)

has been using a Cobb-Douglas production function methodology to estimate the output

gap for its member states (Havik et al., 2014). Potential output is split up into three

components: non-financial capital stock, trend labor input, and the trend of total factor

productivity (TFP). Total factor productivity represents the part of output that cannot

be explained by the quantitative use of the production factors labor and capital and

includes both the efficiency level and the degree of utilization of these two production

factors. The potential labor supply is defined as the level of labor input consistent with the

non-accelerating wage rate of unemployment (NAWRU), i.e., the level of unemployment

at which increases in wage inflation do not accelerate inflation.

In this production function framework, computation of potential output essentially

boils down to estimating the TFP trend and the NAWRU by applying the Kalman filter to

two bivariate state space models. Since the resulting estimates in turn play a major role in

setting budgetary constraints, transparency and reliability of the estimation techniques

and results are essential. For the computation of the output gap, the EC offers the

1Under the Treaty on Stability, Coordination and Governance, member countries of the European
Union (EU) are obliged to maintain a balanced budget, i.e., general and structural budget deficits shall
not exceed certain thresholds. An estimate of the output gap is used to extract the structural budget
deficit.
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program GAP, which consists of an Excel interface, a Matlab-based graphical interface

for Bayesian estimation methods, and a Fortran program which operates all routines.

In addition, a similar implementation in Python has been published by the EC in 2021

(Blondeau et al., 2021). Compared to GAP, the Excel user interface has been simplified,

enabling the computation of the NAWRU, the TFP trend and finally the output gap in

one Excel file.

RGAP aims at complementing the existing tools for the estimation of the output

gap using the EC production function methodology. The package is user-friendly and

offers flexible model specifications to cope with differences across countries. RGAP

provides both Maximum Likelihood Estimation (MLE) as well as a Bayesian Markov

chain Monte Carlo (MCMC) procedures to obtain estimates of the latent state variables

and the involved model parameters in the EC methodology. In addition, the package

offers two alternative estimation methods: A model-based approach suggested by Kuttner

(1994) and a univariate filtering procedure (Hodrick and Prescott, 1997). Finally, this

documenation provides a comprehensive and rigorous overview of the methodology and

the applied estimation techniques, and it serves as a detailed guide for package users.

The main difference to the existing tools by the EC are the user operability options.

While the EC tools rely on graphical user interfaces in Excel, the R package RGAP is

used within R and focuses on user-friendliness, flexibility and integratability into existing

routines. The package offers direct access to the AMECO database, emphasizing its easy

applicability. RGAP is suitable for both beginners and advanced R users. If desired, the

package can automatically select and estimate suitable models based on the data.

Section 2 discusses the production function methodology and two involved state space

model families. The two alternative approaches are presented in Section 3. Section 4

describes basic theory regarding Gaussian state space modeling, Kalman filtering and

smoothing, constrained MLE, and gives a brief derivation of the posterior distributions

for the Bayesian approach. In Section 5, the general functionality of RGAP is outlined

and Section 6 illustrates its usage by applying it to different European countries. Section
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7 makes a short comparison between RGAP and the EC software GAP and Section 8

concludes.

2 The production function methodology

In this section, we outline the production function methodology to compute the output

gap, with particular emphasis on the method employed by the European Commission

(Havik et al., 2014). In some instances, we deviate from the EC method to allow for

useful generalizations.

The output gap is defined as the percentage difference between realized output yt and

potential or trend output yt, i.e.,

gapt :=
yt
yt

− 1.

A positive output gap indicates that an economy is performing above its potential, while

a negative output gap signals a downturn, possibly resulting in deflationary pressure.

Let lt be labor input and kt capital input. By (cul, cuk)t we denote the degree of

capacity utilization and by (el, ek)t the degree of efficiency for both labor and capital.

Output is modeled via a Cobb-Douglas production function, i.e.,

yt = lαt · k1−α
t · tfpt (1)

= (l · cul · el)αt (k · cuk · ek)1−α
t ,

where tfpt = (cul · el)αt (cuk · ek)1−α
t denotes total factor productivity and α and 1 − α

represent the output elasticity of labor and capital, respectively.2 Potential output yt is

defined as the trend level of output, i.e.,

yt =
(
lt
)α · (kt)

1−α · tfpt,

where henceforth the bar indicates the respective trends series. Since capital stock en-

ters without transformation, i.e. kt = kt, the estimation of potential output essentially

2The EC suggests the usage of α = 0.65 for all member countries. Under the assumption of competitive
markets these represent the labor share in national income.
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breaks down to removing the cyclical component from both labor input and total factor

productivity.3

2.1 Trend labor

Labor input is modeled as the total number of hours worked which can be decomposed

into

lt =
(
popwt · partst ·

(
1 − urt

100

)
+ lfndt

)
· ahourst,

where popwt denotes the population of working age, partst the labor participation rate,

urt the unemployment rate, and ahourst the average number of hours worked. The

domestic labor force is given by popwt · partst whereas lfndt represents workers without

residency, such as cross-border commuters.4 Labor input at the trend level is given by

lt =
(
popwt · partst ·

(
1 − nawrut

100

)
+ lfndt

)
· ahourst,

where the nawrut denotes the non-accelerating wage rate of unemployment, i.e., the level

of unemployment at which increases in wages do not accelerate inflation.

All trend components except for the nawrut are computed using the Hodrick-Prescott

(HP) filter (Hodrick and Prescott, 1997). The nawrut is estimated using an unobserved

component model. Thereby, the unemployment rate splits up into the sum of a trend

component pt and a cycle ct, i.e.,

urt = pt + ct. (2)

Given the time series properties of the unemployment rate, the EC proposes to model the

trend component pt as a local linear trend model.5 The cycle component ct is modeled

as an autoregressive (AR) process of order two. The supplementary equations are given

3Potential factor use of capital can simply be seen as the full utilization of existing capital stock in
the economy (Havik et al., 2014). In addition, the contribution of capital to potential output is relatively
stable, as the fraction of new investments to existing capital stock is small.

4Originally, the EC does not distinguish between residents and non-residents. In many economies,
the effect of the part of the labor force without residency is negligible since the balance between outflow
to and inflow from neighboring countries is small. Seeing that particularly small open economies might
rely heavily on the inflow of labor, we include this feature.

5Local linear trend models are sometimes referred to as second order random walks.
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by

pt = pt−1 + ηt−1 + εp,t, εp,t ∼ N
(
0, σ2

p

)

ηt = ηt−1 + εη,t, εη,t ∼ N
(
0, σ2

η

)

ct = ϕc,1ct−1 + ϕc,2ct−2 + εc,t, εc,t ∼ N
(
0, σ2

c

)
(3)

where εp,t, εη,t, εc,t are independent. Some variations are possible, e.g., the trend could

be modeled as random walk with constant drift, setting εη,t = 0 for all t. Moreover, the

cycle could instead be modeled as an AR(1) process.

To facilitate the identification of the unobserved components, the cycle – or unemploy-

ment gap – is captured through a Phillips curve equation. The EC proposes two general

specifications for the Phillips curve, a traditional one and a new Keynesian one. Under

the traditional approach, the indicator builds on nominal unit labor costs nulct defined

by the compensation per employee relative to labor productivity. The relationship may

include additional exogenous variables zt. The backward-looking Philliüs curve is given

by

∆2 log nulct = µ+ βc,0ct + ϑ′zt + εnulc,t, εnulc,t ∼ N
(
0, σ2

nulc

)
(4)

where ϑ is a vector of the same size as zt. Possible modifications include additional cycle

lags.

Under the New-Keynesian approach, the traditional relationship is altered to include

forward-looking behavior in wage setters. This hybrid version of the Phillips curve consid-

ers real unit labor costs rulct as wage indicator, i.e., nulct is additionally adjusted for the

price level. Contrary to above, the equation does not include additional exogenous vari-

ables. Depending on the autoregressive structure of the cycle term, the forward-solution

of the Phillips curve implies parameter restriction on the the first cycle lag. Given an

AR(2) cycle, we have

∆ log rulct = µ+ ξ∆ log rulct−1 + βc,0ct + δβc,0ϕc,2ct−1 + εnulc,t,

εnulc,t ∼ N
(
0, σ2

nulc

)
,

(5)

where δ denotes the consumption discount factor and ξ measures the degree of backward-
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ness.6 For an AR(1) cycle, the cycle lag drops from the equation. For a derivation of the

forward-solution shown in Equation (5), see Appendix A.1.

Havik et al. (2014) propose to stabilize the estimation of the NAWRU across vintages

by setting an anchor for the medium to long term. The EC estimates the anchors in a

panel regression across European countries using several labor market variables deter-

mining structural developments. The implementation of the anchor in the estimation of

the NAWRU is detailed in Section 4.2.

2.2 Trend of total factor productivity

Total factor productivity is obtained as the residual of Equation (1). Also using Equation

(1), we have that

log tfpt = α log (culel)t + (1 − α) log (cukek)t . (6)

The degree of capacity utilization (cul, cuk) is measured by the aggregate indicator ca-

pacity utilization business sentiment (CUBS) which contains both a trend and a cyclical

component (Havik et al., 2014). The goal is to estimate the efficiency terms (el, ek) which

do not contain cyclical movements. Hence, Equation (6) can be simplified, i.e.,

log tfpt = pt + ct, (7)

where pt := α log el,t + (1 − α)ek,t is the unobserved permanent component and ct :=

α log cul,t + (1 − α) log cuk,t is the cyclical one. A key assumption is that cubst and cuk,t

are highly correlated (i.e., cubst ≈ cuk,t) and that there exists a correlation between cuk

and cul of the form

cul,t = γcuk,t + εt,

with 0 < γ < 1. Then,

cubst ≈ 1

1 − α+ αγ
ct + αεt (8)

with 1/1−α+αγ > 1.

6The discount factor δ is set to 0.99 (see e.g. Hristov et al., 2017).
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In order to extract the trend component pt in Equation (7), the relationship in Equa-

tion (8) can be used to estimate a second bivariate unobserved component model. The

EC proposes to model the trend component as a damped drift and the cycle as a re-

parameterized AR(2) process, i.e.,

pt = pt−1 + ηt−1 + εp,t, εp,t ∼ N
(
0, σ2

p

)

ηt = (1 − ϕη)ω + ϕηηt−1 + εη,t, εη,t ∼ N
(
0, σ2

η

)

ct = ϕc,1ct−1 + ϕc,2ct−2 + εc,t, εc,t ∼ N
(
0, σ2

c

)
(9)

where ϕc,1 = 2A cos (2π/τ) and ϕc,2 = −A2 with mean cycle periodicity τ and amplitude

A. This re-parametrization imposes complex conjugate roots and thereby implies that

the autocorrelation function is an exponentially damped oscillation.

Building on Equation (8), the cyclical component is linked to the capacity utilization

economic sentiment indicator cubst via a second measurement equation

cubst = µ+
p̃∑

j=1

ϕcubs,jcubst−j +
p∑

j=0

βc,jct−j + ε̂t,

ε̂t =
i∑

j=1

ϕε̂,j ε̂t−j + εcubs,t, εcubs,t ∼ N
(
0, σ2

cubs

)
.

(10)

The baseline model suggested by the EC consists of Equations (7) - (10) with p̃, p, i = 0

and βc,0 > 1 as implied by Equation (8). Yet, certain model variations are possible.

For instance, the cycle may be modeled as an ordinary AR(1) or AR(2) process and the

trend as a local linear trend or a random walk with drift. Moreover, for quarterly data,

additional cycle or autoregressive lags in the CUBS equation might improve the model

fit.

3 Alternative frameworks

Since potential output and the output gap are unobservable, an empirical validation of

the obtained estimates is not possible and their interpretation demands caution. A com-

parison to other modeling frameworks is helpful in assessing the certainty of the estimates.

We consider two popular alternative methodologies for the estimation of potential out-
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put and the output gap. The first one is the standard HP-filter (Hodrick and Prescott,

1997), which is a univariate filtering procedure based solely on observed output, thereby

ignoring economic links between output, inflation and unemployment. The second one

is the bivariate unobserved component model by Kuttner (1994). In contrast, the latter

model connects deviations of output from its potential with inflation. To be more precise,

potential output is defined as the level of output for which inflation is constant.

Let yt denote real output and let πt be a measure of inflation. Then, Kuttner’s model

is given by

log yt = pt + ct

pt = µp + pt−1 + εp,t, εp,t ∼ N
(
0, σ2

p

)

ct = ϕ1ct−1 + ϕ2ct−2 + εc,t, εc,t ∼ N
(
0, σ2

c

)

∆πt = µπ + γ∆ log yt−1 + βc,0ct−1 + επ,t

+ δ1επ,t−1 + δ2επ,t−2 + δ3επ,t−3, επ,t ∼ N
(
0, σ2

π

)

where pt and ct again denote the trend and cycle components, respectively. The cycle is

modeled as an AR(2) process and the trend as a random walk with drift. The inflation

equation features a third order moving average innovation process, lagged output growth,

and the lagged cycle component. Analogously to the TFP and NAWRU estimation of the

production function methodology, the Kuttner model can be estimated using the Kalman

filter and maximum likelihood estimation.

4 Gaussian state space models and estimation

The unobserved component models outlined in the previous section can be cast into a

bivariate state space representation and subsequently estimated using the Kalman filter.

RGAP provides simple tools to define the appropriate state space models within the

production function framework. It thereby uses the extensive state space modeling im-

plemented in KFAS (Helske, 2017). In this section, we briefly summarize key aspects of
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Gaussian state space modeling, mostly adopting the notation used by Durbin and Koop-

man (2012) on which KFAS to a large extent builds. In addition, we formulate state

space representations for certain specifications of the NAWRU and TFP model.

We consider the linear Gaussian state space model

yt = Ztαt + εy,t, εy,t ∼ i.i.d N (0, Ht) ,

αt+1 = Ttαt +Rtεα,t, εα,t ∼ i.i.d N (0, Qt) ,

(11)

for t = 1, . . . , n with E

[
εy,tε

′
α,t

]
= 0, α1 ∼ N (a1, P1) and where yt is the p×1 observation

vector and αt is the unobserved m × 1 state vector. The dimensions of all vectors and

matrices are given in Table 1. We call the first equation of (11) observation equation and

the second equation is called state equation. The m× r matrix Rt is included to ensure

that the covariance matrix Qt is positive definite. Rt is usually a subset of the columns

of Im and is therefore called selection matrix.

State space model Kalman filter an smoother
Vector Matrix Vector Matrix

yt p× 1 Zt p×m at m× 1 Pt m×m
αt m× 1 Tt m×m at|t m× 1 Pt|t m×m
εy,t p× 1 Ht p× p α̂t m× 1 Vt m×m
εα,t r × 1 Qt r × r vt p× 1 Ft p× p

Rt m× r Kt m× p
a1 m× 1 P1 m×m

Table 1: Dimensions of the state space model in Equation (11) and of the Kalman filter and smoother recursions
in Equations (12) – (14).

Note that for our purposes, the time-varying feature of the system matrices is in most

cases obsolete. However, we incorporate exogenous variables to the observation equation

via the time-varying matrix Zt.

4.1 Kalman filtering and smoothing

Kalman filtering and smoothing is performed to obtain the unobserved variables stored in

α. Filtering gives the one-step-ahead predictions, prediction errors and their respective

covariance matrices

at+1 = E

[
αt+1

∣∣∣yt
]
, Pt+1 = var

(
αt+1

∣∣∣yt
)
,
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vt = yt − Ztat, Ft = var
(
vt
∣∣∣yt−1

)
= ZtPtZ

′
t +Ht,

where by yt we denote the set of past information {y1, . . . , yt}. Backward smoothing then

yields

α̂t = E [αt|yn] , Vt = var (αt|yn) .

Standard results on the multivariate Normal distribution yield the following Kalman

recursion for the state space model in Equation (11).7 The prediction step of the Kalman

filter is given by

at = Ttat−1|t−1 + c, Pt = TtPt−1|t−1T
′
t +RtQtR

′
t,

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

(12)

and the updating step by

at|t = E

[
αt
∣∣∣yt
]

= at +Ktvt,

Pt|t = var
(
αt
∣∣∣yt
)

= Pt −KtZtPt,

(13)

for t = 1, . . . , n, where the matrix Kt = PtZ
′
tF

−1
t is called Kalman gain. The distribution

of the initial state αt is assumed to be known. The fixed interval smoother based on the

entire sample is given by the backward recursion

α̂t = E[αt|yn] = at|t + Pt|tT
′
tP

−1
t+1(α̂t+1 − at+1),

Vt = var(αt|yn) = Pt|t + Pt|tT
′
tP

−1
t+1(Vt+1 − Pt+1)P

−1
t+1TtPt|t

(14)

for t = n − 1, . . . , 1 with α̂n = an and Vn = Pn. The dimensions of all vectors and

matrixed involved in the Kalman filter and smoother equations (12), (13), and (14) are

summarized in Table 1.

The Kalman filter recursions in Equations (12) and (13) are stated under the assump-

tion that a1 and P1 are known. In practice, some or all of the elements of a1 and P1 are

unknown, e.g. in the case where the state vector contains non-stationary elements. We

therefore use the exact diffuse initialization method presented by Durbin and Koopman

(2012) and de Jong and Mackinnon (1988) and implemented in KFAS.

7We refrain from giving a detailed derivation of the filtering and smoothing recursions and refer the
interested reader to Durbin and Koopman (2012).
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4.2 Conditional updating

The NAWRU model outlined in Section 2 is supplemented by an anchor sn+h at time n+h,

where h denotes the horizon beyond the end of sample n. Under the assumption that

there is no policy change, the NAWRU is supposed to converge to the anchor representing

structural unemployment. In an application to EU member states, Hristov et al. (2017)

find that anchoring the NAWRU results in more moderate pro-cyclicality and in less

pronounced revisions between estimations. The anchor itself is estimated via a panel

regression of unemployment in EU countries on several structural labor market indicators

(Orlandi, 2012).

In this section, we present the framework for updating the smoothed estimates of the

NAWRU. In principle, this method can be applied to any component of the state vector,

and is thus also available for the TFP and Kuttner model. We denote the state component

to be anchored by α̂i,t = riα̂t. Similar to the selection matrix R, the 1×m selection vector

ri contains a one in column i and zeros elsewhere, loading the state variable. The anchored

smoothed state variable is defined by α̂ai,t = E [αi,t|yn, αi,n+h = sn+h].

Given that the state space model we consider is Gaussian, it holds that



α̂i,t

α̂i,n+h




∣∣∣∣∣∣
yn ∼ N







E [αi,t|yn]

E [αi,n+h|yn]


 ,Σ




where

Σ =




var (αi,t|yn) cov (αi,t, αi,n+h|yn)

cov (αi,t, αi,n+h|yn) var (αi,n+h|yn)


 .

Standard results on the multivariate Gaussian distribution imply that

α̂ai,t = E [αi,t|yn, αi,n+h = sn+h]

= E [αi,t|yn] +
cov (αi,t, αi,n+h|yn)

var (αi,n+h|yn)
(sn+h − E [αi,n+h|yn]) .

and thus, the anchor is equal to the smoothed estimate adjusted by the weighted difference

between the anchor and the conditional forecast at horizon h given yn. Naturally, the

weights wt := cov(αi,t,αi,n+h|yn)/var(αi,n+h|yn) decrease exponentially for t ≤ n + h and for

12



t = n+ h, wt = 1.

The weights wt and the conditional expectation E [αi,n+h|yn] can be retrieved from

the Kalman smoother. For k ∈ Z we have that

E [αi,n+k|yn] = riE [αn+h|yn] = riT
k
E [αn|yn] = riT

kα̂n,

var (αi,n+k|yn) = ri var (αn+k|yn) r′
i

= ri var (Tαn+k−1 +Rtεα,n+k−1|yn) r′
i

= ri (T var (αn+k−1|yn)T ′ +RtQR
′
t) r

′
i

= ri

(
T k var (αn|yn)T k

′
+

h−1∑

i=0

T iRtQR
′
tT

i′

)
r′
i

= ri

(
T kPn|nT

k ′
+

h−1∑

i=0

T iRtQR
′
tT

i′

)
r′
i, (15)

where by convention T 0 = I, and similarly

cov (αi,t, αi,n+h|yn) = ri cov (αt, αn+h|yn) r′
i

= ri cov (αt, Tαn+h−1 +Rtεα,n+h−1|yn) r′
i

and thus

cov (αi,t, αi,n+h|yn) =





r cov (αt, αn|yn)T h
′
r′ if 1 ≤ t < n,

r var (αt|yn)T h−t+n′
r′ if n ≤ t ≤ n+ h.

The second case we already know from Equation (15). For the first case, using the results

of de Jong and Mackinnon (1988), we have that

cov (αt, αn|yn) =





At cov (αt+1, αn|yn) if t < n,

cov (αt, αn−1|yn)T ′
n−1 if n ≤ t,

where At = Pt|tT
′P−1
t+1 for t < n. Hence, for t < n, cov (αt+1, αn|yn) can be computed via

a backward recursion with starting value cov (αn, αn|yn) = var (αn|yn) = Pn|n.

Summing up, the anchored state component α̂ai,t is given by

α̂ai,t = α̂i,t +
rAt cov (αt+1, αn|yn)T h

′
r′

r var (αn+h|yn) r′

(
sn+h − rT hα̂n

)
, t < n,
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and

α̂ai,t = rT t−nα̂n +
r cov (αt, αn+h|yn) r′

r var (αn+h|yn) r′

(
sn+h − rT hα̂n

)
, n ≤ t ≤ n+ h.

Detailed recursions are given in Appendix A.4.

4.3 Constrained MLE

The filtering equations in Equations (12) and (13) enable the specification of the like-

lihood function and the model parameters can be obtained by Maximum Likelihood

Estimation (MLE). Using the estimated parameters and corresponding filtered states,

applying Equation (14) gives the smoothed states.

The considered models involve several parameter constraints. The cycle component

is assumed to be stationary and so is the trend drift in case of the damped trend model.

While all system variances need to be positive, RGAP applies box constraints to ensure

identifiable solutions. Moreover, the theoretical derivations of the Phillips curve as well

as the CUBS equation imply additional parameter constraints (see Equation (8) and

Appendix A.1).

In order to report the appropriate standard errors for the constrained optimization

problem, we apply the delta method. For any function g : Rk → Θ that maps to the

k-dimensional parameter space Θ and for which ∇g (θ) exists,

√
n
(
g
(
θ̂
)

− g (θ)
)

D−−→ N
(
0,∇g (θ)′ Σ∇g (θ)

)

(see e.g. Kim and Nelson, 1999). The fitting routines supplied by RGAP minimize

the negative log-likelihood function, implying that the Hessian matrix returned by the

optimization algorithm has a negative sign and thus the Fisher information matrix is

equal to the returned Hessian. Hence, the covariance matrix Σ can be approximated by

the inverse of the Hessian.

The specific transformation functions alongside their derivatives can be found in Ap-

pendix A.2.
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4.4 Bayesian estimation

As suggested by Havik et al. (2014), the model for total factor productivity can be esti-

mated using Bayesian estimation methods. Informative priors allow for the inclusion of

information based on macroeconomic theory, enabling a more precise and robust estima-

tion compared to MLE. An additional advantages of applying Bayesian methods is the

avoidance of the identification problem causing zero variance estimates. In what follows,

we adopt and extend the propositions made in Havik et al. (2014). In addition, we pro-

vide prior distributions and methods to obtain their posterior for a general set of model

specifications such that the NAWRU can also be estimated by Bayesian methods, which

ist currently not possible with alternative software by the EC.

4.4.1 Prior distribution

To complete the Bayesian TFP and NAWRU models, it remains to specify prior distri-

butions for the model parameters. Let θp, θc, and θind, ind ∈ {cubs, pci} denote the set of

parameters involved in the trend equation, cycle equation, and CUBS or Phillips curve

indicator (pci) equation, respectively. Assuming a block independence structure, we have

that

p (θ) = p (θp) p (θc) p (θind) .

For θind = (β, ϕε̂, σ
2
ind) with β = (µ, ϕind,1, . . . , ϕind,p̃, βc,0, . . . , βc,p)

′ and ϕε̂ = (ϕε̂,1, . . . , ϕε̂,i)
′,

we assume that

p (θind) = p
(
β, σ2

ind

)
p (ϕε̂)

p
(
β, σ2

ind

)
= N IG (β0, Qβ0, sind0, νind0) Iind

p (ϕε̂) = N (ϕε̂0, Vϕε̂0) Iϕε̂

where N IG denotes the Normal-Inverse-Gamma distribution with precision Qβ0 and the

sets Iind and Iϕε̂
comprise the parameter and stationarity constraints.

For the trend model specification, we set σ2
p = 0 which simplifies the analysis and
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additionally results in a relatively smooth trend. For convenience, we restate the first

trend equation pt = pt−1 + ηt−1 for which ηt alongside all prior distributions is specified

in Table 2.8

Random walk with drift Local linear trend Damped trend

ηt = ω + εη,t

θp =
(
ω, σ2

η

)

p (θp) = p (ω) p
(
σ2
η

)

p
(
σ2
η

)
= IG (sη0, νη0) Iσ2

η

p (ω) = N (ω0, Vω0) Iω

ηt = ηt−1 + εη,t

θp = σ2
η

p (θp) = p
(
σ2
η

)

p
(
σ2
η

)
= IG (sη0, νη0) Iσ2

η

ηt = (1 − ϕη)ω + ϕηηt−1 + εη,t

θp =
(
ω, ϕησ

2
η

)

p (θp) = p (ω) p (ϕη) p
(
σ2
η

)

p
(
σ2
η

)
= IG (sη0, νη0) Iσ2

η

p (ω) = N (ω0, Vω0) Iω

p (ϕη) = N
(
ϕη0, Vϕη0

)
Iϕη

Table 2: Trend prior specifications. The first trend equation is given by pt = pt−1 + ηt−1. For the error term we
assume εη,t ∼ N

(
0, σ2

η

)
. IG denotes the Inverse-Gamma distribution.

For the cycle equation, we consider three different specifications, namely, stationary

autoregressive processes of order 1 and 2, and a re-parametrized AR(2) with complex

conjugate roots. The specifications and respective prior distributions are given in Table

3.

AR(1) AR(2) Re-parameterized AR(2)

ct = ϕc,1ct−1 + εc,t

θc =
(
ϕc,1, σ

2
c

)

p (θc) = p (ϕc,1) p
(
σ2
c

)

p
(
σ2
c

)
= IG (sc0, νc0) Iσ2

c

p (ϕc,1) = N
(
ϕc,1,0, Vϕc,10

)
Iϕc,1

ct = ϕc,1ct−1 + ϕc,2ct−2 + εc,t

θc =
(
ϕc, σ

2
c

)
, ϕc = (ϕc,1, ϕc,2)

p (θc) = p (ϕc) p
(
σ2
c

)

p
(
σ2
c

)
= IG (sc0, νc0) Iσ2

c

p (ϕc) = N (ϕc0, Vϕc0) Iϕc

ct = 2A cos (2π/τ) ct−1 − A2ct−2 + εc,t

θc =
(
A, τ, σ2

c

)

p (θc) = p (A) p (τ)

p
(
σ2
c

)
= IG (sc0, νc0) Iσ2

c
p
(
σ2
c

)

p (A) = B (αA0, βA0) IA

p (τ) = B (ατ0, βτ0) Iτ

Table 3: Cycle prior specifications. For the error term we assume εc,t ∼ N
(
0, σ2

c

)
. IG denotes the Inverse-

Gamma distribution and B the beta distribution.

4.4.2 Posterior distribution

Given the model specification and the prior distributions, we now outline a procedure to

obtain the posterior distribution of the parameters and the states.

Let now yt = (y1,t, indt)
′ , t = 1, . . . n be the observed data and define yn := (y1, . . . , yn).9

Analogously, for the state vector, αn := (α1, . . . , αn). The posterior distribution p (αn, θ|yn)

8For details on the parameterization of the Inverse-Gamma distribution, see Appendix A.5.4.
9In case of the TFP model, y1,t = log tfpt, for the NAWRU model, y1,t = urt.

16



is not given in closed form and thus, we use a Gibbs sampling procedure to obtain draws

from it. For the posterior, it holds that

p (αn, θ|yn) = p (αn|θ, yn) p (θ|αn, yn) . (16)

Samples from the first term on the right-hand side can be readily obtained by applying the

Kalman filter and smoother conditional on the model parameters and the data (Carter

and Kohn, 1994). To see that, we can factorize

p (αn|θ, yn) = p (αn|θ, yn)
n−1∏

t=d+1

p (αt|αt+1, θ, y
n)

d∏

t=1

p (αt|αt+1, θ, y
n) ,

where d denotes the number of non-stationary states.10 The first and second term are

given by the Kalman smoother while the third term depends on the applied initialization

of the filter, see Section 4.1.

Obtaining samples from the second term in Equation (16) is more challenging. Using

the block independence assumption, we obtain that

p (θ|αn, yn) = p (θ|cn, pn, yn)

= p (θp|pn) p (θc|cn) p (θind|cn, indn) . (17)

A detailed description of how to draw from each of the three conditionals in Equation

(17) is given in Appendix A.5.

4.5 Prediction

Obtaining predictions for the filtered and smoothed state vector as well as the observation

vector is straightforward.

For maximum likelihood estimation, predictions for the state vector can be made

using the recursion in Equation (12) with the MLE estimates of the parameter matrices.

For a forecast horizon of h ∈ Z, we have that

an+h|n = α̂n+h = E [αn+h|yn] = E [Tn+hαn+h−1 +Rn+hεα,n+h−1|yn] = Tn+hαn+h−1|n,

10The number of non-stationary states d depends on the model specification. For instance, if pt follows
a damped trend, then d = 1.
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Pn+h|n = Vn+h = var (αn+h|yn) = Tn+hPn+h−1|nT
′
n+h +Rn+hQn+hR

′
n+h.

Note that predictions for the filtered and smoothed state for points in time n+h coincide.

Similarly, for the observation equation, it holds that

E [yn+h|yn] = E [Zn+hαn+h + εy,n+h|yn] = Zn+hα̂n+h,

var (yt+h|yn) = Zn+hPn+h|nZ
′
n+h +Hn+h.

For Bayesian estimation, the posterior predictive densities for the state and the ob-

servation vector are given by

p (αn+h|yn) :=
∫

Θ
p (αn+h|θ, yn) p (θ|αn, yn) dθ,

p (yn+h|yn) :=
∫

Θ×A
p (yn+h|αn+h, θ, y

n) p (αn+h|θ, yn) p (θ|αn, yn) dθdαn+h,

where Θ and A denote the respective parameter spaces. Intuitively, each draw from Θ

produces a draw from A for which prediction is straightforward using the usual recursions.

4.6 Example of a NAWRU specification

In this example, we consider a traditional Phillips curve with two cycle terms and addi-

tionally include one exogenous variable zt, namely the wage share. We assume the cycle

follows a stationary AR(2) process and impose a local linear trend.

Given Equations (2), (3) and (4), this specific NAWRU model can be rewritten in

state space representation by defining the observation and state vectors and the system

matrices

yt =




urt

∆2 log nulct


 Zt =




0 1 0 1 0 0 0

zt βc,0 βc,1 0 0 µ 1


 , H =



0 0

0 0


 ,
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αt+1 =




ϑ

ct+1

ct

pt+1

ηt+1

1

εnulc,t+1




T =




1 0 0 0 0 0 0

0 ϕc,1 ϕc,2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0




, R =




0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1




and Q = diag
(
σ2
c , σ

2
p, σ

2
η, σ

2
nulc

)
. The parameters to be estimated are

θ :=
(
βc,0, βc,1, µ, ϑ, ϕc,1, ϕc,2, σ

2
c , σ

2
p, σ

2
η, σ

2
nulc

)

with restrictions

βc,0 < 0,

ϕc,2 − ϕc,1 < 1, ϕc,2 + ϕc,1 < 1, |ϕc,2| < 1,

σ2
g , σ

2
c , σ

2
p, σ

2
η > 0.

Using RGAP, this model can easily be defined by

R> data("gap")

R> tsList <- amecoData2input(gap[["France"]], alpha = 0.65)

R> exoType <- initializeExo(varNames = "ws", D = 2, L = 0)

R> model <- NAWRUmodel(tsl = tsList, trend = "RW2", cycle = "AR2",

+ type = "TKP", cycleLag = 0:1, exoType = exoType)

R> model

The function NAWRUmodel defines all system vectors and matrices and checks the va-

lidity of the specified model. The first input is a list of time series objects that includes

the observations ur and nulc and the exogenous variable ws, if applicable. All remain-

ing inputs specify the model features. For instance, cycleLag = 0:1 means that cycle

components up to lag 1 are included in the Phillips curve, i.e., ct and ct−1. NAWRUmodel

returns an object of class ‘NAWRUmodel’ which can in turn be used to estimate the model

using the function fit. Printing the obtained model gives an overview of the model

features.

Call:
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NAWRUmodel(tsl = tsList, trend = "RW2", cycle = "AR2", type = "TKP",

cycleLag = 0:1, exoType = exoType)

State space model object of class NAWRUmodel

cycle AR2

trend RW2

phillips curve

type TKP

cycle lag 0,1

error term iid normal

exogenous variables pcddws

anchor

value -

horizon -

dimensions

number of observations 59

period 1962 - 2020

frequency annual

Object is a valid object of class NAWRUmodel.

4.7 Example of a TFP specification

In this example, we consider a re-parameterized AR(2) cycle process and a damped

trend. We assume that the CUBS error term follows an AR(1) process and that σ2
p = 0.

Equations (7) - (10) cast into state space representations yields

yt =



log tfpt

cubst


 , Z =




1 0 1 0 0 0

βc,0 0 0 0 µ 1


 , H =



0 0

0 0


 ,

αt+1 =




ct+1

ct

pt+1

ηt+1

1

ε̂t+1




, T =




2A cos (2π/τ) −A2 0 0 0 0

1 0 0 0 0 0

0 0 1 1 0 0

0 0 0 ϕη (1 − ϕη)ω 0

0 0 0 0 1 0

0 0 0 0 0 ϕε̂




, R =




1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1




,

and Q = diag
(
σ2
c , σ

2
η, σ

2
cubs

)
. The parameters to be estimated are

θ :=
(
βc,0, µ, ω, ϕη, A, τ, ϕε̂, σ

2
c , σ

2
η, σ

2
cubs,

)
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with restrictions

βc,0 > 1,

|ϕη|, |ϕε̂| < 1,

σ2
c , σ

2
η, σ

2
cubs > 0.

RGAP offers a simple way of defining this model via

R> data("gap")

R> tsList <- amecoData2input(gap[["Italy"]], alpha = 0.65)

R> model <- TFPmodel(tsl = tsList, trend = "DT", cycle = "RAR2",

+ cycleLag = 0, cubsErrorARMA = c(1, 0))

R> model

The function TFPmodel defines all state space system matrices given the specified

model features. Here, "DT" denotes a damped trend and "RAR2" the re-parametrized

AR(2) cycle. Moreover, the CUBS equation has an AR(1) error as indicated by cubsErrorARMA

= c(1, 0). A summary of the model features can be printed.

Call:

TFPmodel(tsl = tsList, trend = "DT", cycle = "RAR2", cycleLag = 0,

cubsErrorARMA = c(1, 0))

State space model object of class TFPmodel

cycle RAR2

trend DT

cubs

cycle lags 0

error term ARMA(1,0)

exogenous variables -

anchor

value -

horizon -

dimensions

number of observations 36

period 1985 - 2020

frequency annual

Object is a valid object of class TFPmodel.

5 Functionality of RGAP

The EC output gap estimation with RGAP is done in a simple, multi-step procedure.

The first step concerns the data preparation process. RGAP offers several tools

to compute and prepare the necessary data from a set of base data. The base data can
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either be provided by the user or be fetched from the AMECO database using the function

fetchAMECOdata. The base data comprises the variables in the upper part of Table 4.

Using the base data, the function amecoData2input computes all remaining input data

for the estimation, with the exception of the CUBS indicator. Given the necessary survey

and corresponding value added series, the function cubs computes the CUBS indicator.

If the base data was retrieved using fetchAMECOdata, the CUBS indicator is already

included. The output from amecoData2input and cubs (if not already included) amount

to the input data for the EC output gap estimation. The before mentioned data related

functions are intended to simplify the data preparation process, but can be neglected if

the prepared data is already at hand.

In a second step, the modeling functions NAWRUmodel and TFPmodel provide a simple

framework for the definition of the two unobserved component models. More precisely,

they use the trend and cycle specification, and the attributes for the second observation

equation to initialize the appropriate system matrices of the state space models. For the

NAWRU model, the list of time series has to contain at least the unemployment rate urt

and a Phillips curve indicator variable, i.e., for the traditional Phillips curve the indicator

nulct and for the New-Keynesian type the indicator rulct. Additionally, for NAWRUmodel,

an anchor value and horizon can be provided. Similarly, for the TFP model, the list of

time series needs to contain total factor productivity tfpt and the indicator cubst. The

modeling functions return objects of class ‘NAWRUmodel’ and ‘TFPmodel’, respectively.

The model specifications can be printed via the S3 method print.

Third, based on the objects of class ‘NAWRUmodel’ and ‘TFPmodel’, the corresponding

estimation function fit applies the Kalman filter and smoother and estimate the state

space models via maximum-likelihood estimation (method = "MLE") or Bayesian methods

(method = "bayesian"). In the former case, parameter constraints can be initialized

using the function initializeRestr. They can subsequently be modified and passed

on to the optimization routines via the input variable parRestr. If left unspecified,
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the routines apply a general set of parameter constraints.11 Using Bayesian estimation

techniques, Markov chain Monte Carlo (MCMC) sampling via a nested Gibbs procedure

is applied. The necessary prior distributions and complementary box constraints can

be initialized using the function initializePrior and subsequently modified. If left

unspecified, a default set of prior distributions is used.

These fitting functions are wrappers around functions in KFAS and provide the

necessary updating routines for the involved constrained parameter estimation. The es-

timation functions return objects of class ‘NAWRUfit’ and ‘TFPfit’, respectively. RGAP

provides S3 methods for both objects to print and plot the result. print displays model

specifications, estimation results and basic model fit criteria. plot displays the smoothed

state variable of interest and some residual diagnostic plots in the MLE case. Alterna-

tively, by setting posterior = TRUE, posterior diagnostic plots for each parameter can

be obtained. In addition, all involved observation and state series can be predicted using

the S3 method predict.

Last, the production function output gap and potential output can be computed by

passing on the estimation objects and the input data to the function gapProd. This

function also applies the HP-filter to obtain the trend of the appropriate labor series, for

which the smoothing constant can be set. RGAP also offers S3 printing and plotting

methods for the returned object ‘gap’. For comparison, the output gap can also be com-

puted with the standard HP filter using the function gapHP or an alternative unobserved

component framework using fit (see Kuttner, 1994).

6 Computing the output gap with RGAP

This section details procedures to estimate the output gap using RGAP. The NAWRU

and TFP trend are estimated using both MLE and Bayesian methods. The use of the

11See Section A.6 in the Appendix for details on the variance constraints. Leaving the variances
unconstrained may pose an identification problem. In particular, the variability is often assigned to
either the circle or the trend, leaving the respective other process with zero variance.
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most important auxiliary functions is presented, for instance those concerning parameter

restrictions and prior distributions.

6.1 Data

The data necessary to compute the output gap using the production function methodology

is given in Table 4. The variables in the lower part of the table are computed based on

the variables in the upper part which is done by supplying the latter to the function

amecoData2input. The name of the function originates from the fact that all involved

variables are provided by the AMECO data base. As such, the units and names of the

data needs to be as specified in Table 4. The input data using the AMECO vintage

‘Autumn 2018’ can be retrieved by

R> data("gap")

R> tsList <- amecoData2input(gap[["Germany"]], alpha = 0.65)

The second function input alpha represents the output elasticity of labor. Under the EC

output gap methodology, it is currently set to 0.65 for all countries.

Additionally, for the computation of the TFP trend, the CUBS indicator needs to be

at hand. It can be computed with RGAP using the function cubs. Two time series

lists need to be passed on to cubs. One with the indicator series for the industry sector,

the service sector, and the building sector (see Table 5). The second one comprises the

respective value added series in the same order. The indicator series can be provided

at a higher frequency than the value added series and will in that case be temporally

aggregated during the procedure. CUBS can be computed by

R> namesCubs <- c("indu","serv", "buil")

R> namesVACubs <- paste0("va", namesCubs)

R> tscubs <- cubs(tsCU = gap[["Germany"]][, namesCubs],

+ tsVA = gap[["Germany"]][, namesVACubs])

R> tsList <- c(tsList, tscubs)

The package contains two data sets for illustrative purposes. The first one is called gap

and includes the AMECO data vintage ‘Autumn 2018’. All relevant variables are provided

on yearly frequency, including the indicator series to compute CUBS. The second set of
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data is called indicator and contains only the indicator series at their natural frequency,

i.e., either monthly or quarterly. The data is taken from the EC business and consumer

surveys. For more details, see ?gap and ?indicator.

A fast way to retrieve the latest relevant AMECO data is via fetchAMECOdate. By

default, the CUBS indicator is computed during the procedure. By specifying the input

variable country, the data is only downloaded for one country. If left unspecified, a list

with all available countries is returned. For instance, data for Germany can be fetched

and transformed by

R> tslBase <- fetchAMECOdata(country = "Germany")

R> tsList <- amecoData2input(tslBase, alpha = 0.65)

Variables Short Description Description Unit AMECO

gdp real gdp Gross domestic product at constant prices Bn National currency ovgd
ngdp nominal gdp Gross domestic product at current prices Bn National currency uvgd
k capital stock Net capital stock at constant prices: total economy Bn National currency oknd
l total hours worked Total annual hours worked: total economy million hours nlht
et employment Employment, persons: all domestic industries (National

accounts)
1000 persons netd (fetd)

etd domestic employment Employment, persons: total economy (National ac-
counts)

1000 persons netn

eet employees Employees, persons: all domestic industries (National
accounts)

1000 persons nwtd (fwtd)

popw population of working age Population: 15 to 64 years 1000 persons npan
wtotal total wages of employees Compensation of employees: total economy Bn National currency uwcd
ur unemployment rate Unemployment rate: total, Member States: definition

EUROSTAT
Percentage of active
population

zutn

pconsp consumption deflator Price deflator private final consumption expenditure National currency pcph
nulc nominal unit labor costs Nominal unit labour costs: total economy (Ratio of com-

pensation per employee to real GDP per person em-
ployed.)

National currency plcd

gdpdefl gdp deflator Price deflator gross domestic product National currency pvgd
tfp total factor productivity Cobb-Douglas residual total factor productivity
lfnd labor force non-domestic unit: 1000 persons
parts participation rate labor participation rate (ratio)
ahours average hours worked Average annual hours worked per person employed hours (nlha)
prod labor productivity labor productivity, unit: real output per person em-

ployed
M

tot terms of trade Terms of trade: consumption deflator per price deflator (ratio)
ws wage share wage/labor share, unit: compensation of employees per

unit of nominal output
(ratio)

winfl wage inflation growth rate of compensation of employees per employee
rulc real unit labor costs nominal unit labor costs adjusted for consumption National currency

Table 4: List of variables used to compute the output gap according to the EC production function approach.
The descriptions are partly taken from the AMECO data base. Domestic concept indicates that residents and
non-resident who work for resident producer units are included. The top panel comprises the base data based on
which the variables in the bottom panel can be computed.
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Variables Short description Survey

indu Capacity utilization in industry Quarterly industry sector survey
serv Confidence indicator in the service industry Monthly service sector survey
buil Confidence indicator in the bulding and construction industry Monthly building and construction sector survey
vaindu Value added industry
vaserv Value added service industry
vabuil Value added construction

Table 5: List of variables for the computation of the capacity utilization economic sentiment indicator (CUBS).

6.2 Estimating the NAWRU

The NAWRU model as specified in Section 2.1 can be cast into state space representation

(see Section 4.6). The first observation equation describes the unemployment rate which

is decomposed into a trend (the NAWRU) and a cyclical part. The second observation

equation contains the Phillips curve – either a traditional Keynesian modeling approach

(TKP) or a New-Keynesian, forward looking curve (NKP).

In the example below, we compute the NAWRU for France based on the AMECO

Autumn 2018 vintage. The model equations are given by

urt = pt + ct.

∆2 log nulct = µ+ βc,0ct + ϑ∆2wst + εnulc,t, εnulc,t ∼ N
(
0, σ2

nulc

)

pt = pt−1 + ηt−1 + εp,t, εp,t ∼ N
(
0, σ2

p

)

ηt = ηt−1 + εη,t, εη,t ∼ N
(
0, σ2

η

)

ct = ϕc,1ct−1 + ϕc,2ct−2 + εc,t, εc,t ∼ N
(
0, σ2

c

)

i.e., the trend is modeled as second order random walk (RW2), the cycle as an AR(2) pro-

cess. The model features a traditional Phillips curve that includes the second difference

of the wage share. The above specification can be defined in RGAP by the following

code:

R> data("gap")

R> tsList <- amecoData2input(gap[["France"]], alpha = 0.65)

R> exoType <- initializeExo(varNames = "ws", D = 2, L = 0)

R> model <- NAWRUmodel(tsl = tsList, trend = "RW2", cycle = "AR2",

+ type = "TKP", cycleLag = 0, exoType = exoType)

The function NAWRUmodel is supplied with a time series list of data, the trend and
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cycle specification, and additional features of the Phillips curve such as its type, ex-

ogenous variables and the number of cycle lags that should be included. The function

initializeExo returns a three dimensional array that allows the user to specify the

difference and lag order of the exogenous variables.

R> exoType

, , difference

ws

[1,] 2

, , lag

ws

[1,] 0

The columns of the array represent the exogenous variables that are included in the

model. The number of rows represent different transformations. NA entries are simply

ignored. Here, only one variable and only one specification of that variable is included:

the second difference of the wage share.

In order to estimate the model using MLE, some parameter restrictions are necessary.

Stationarity restrictions are applied to the appropriate variables if no box constraints

are specified. The function initializeRestr initializes the box constraints and returns

a list of matrices with constraints for each equation, i.e., the cycle, the trend and the

second observation equation.12

R> parRestr <- initializeRestr(model = model, type = "hp")

R> parRestr

$cycle

cPhi1 cPhi2 cSigma

LB NA NA 0.01276674

UB NA NA 0.51927755

$trend

tSigma tdSigma

LB 0 0.001861214

UB 0 0.081948136

12The names of the parameters are chosen such that they are easily assignable to the respective
equations. For instance, cPhi1 and cPhi2 correspond to the autoregressive parameters of the cycle
equation φc,0, φc,1. tSigma denotes the trend variance σ2

p and tdSigma the variance of the trend drift
σ2

η. For the Phillips curve equation pcInd (or second observation equation E2), pcConst denotes the
constant µ and pcC0 the parameter on the contemporaneous cycle βc,0. The coefficient of the exogenous
variable ∆2wst is denoted by pcddws.
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$pcInd

pcddws pcConst pcC0 E2Sigma

LB NA NA NA 1.950937e-05

UB NA NA NA 8.716629e-04

NA indicates that no additional box constraints are applied, though the stationarity con-

straints remain in place (if applicable). The list can be modified before supplying it to the

fitting function fit alongside the model object. fit performs filtering and smoothing,

and estimates the parameters of the supplied state space model by MLE.

R> f <- fit(model = model, parRestr = parRestr)

R> plot(f)

After the optimization is done, the model specification as well as the estimation results

are printed.

Call:

fit.NAWRUmodel(model = model, parRestr = parRestr)

State space model object of class NAWRUmodel

cycle AR2

trend RW2

phillips curve

type TKP

cycle lag 0

error term iid normal

exogenous variables pcddws

anchor

value -

horizon -

dimensions

number of observations 59

period 1962 - 2020

frequency annual

Maximum likelihood estimation results

cycle

Coefficient Standard Error t-statistic p-value

cPhi1 1.254 0.1291 9.707 0.00e+00

cPhi2 -0.393 0.4645 -0.846 3.98e-01

cSigma 0.208 0.0404 5.164 2.42e-07

trend

Coefficient Standard Error t-statistic p-value

tdSigma 0.00227 0.0017 1.33 0.182

phillips curve

Coefficient Standard Error t-statistic p-value

pcC0 -0.003575 1.52e-03 -2.3510 1.87e-02

pcConst 0.000045 2.05e-03 0.0219 9.83e-01

pcddws 0.985955 9.70e-02 10.1672 0.00e+00
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pcSigma 0.000122 2.28e-05 5.3417 9.21e-08

RMSE: 0.0116

R2: 0.628

Box-Ljung test: X-squared = 20.9, df = 10, p-value = 0.022

loglik AIC BIC HQC

138.8665 -261.7330 -245.1127 -255.2452

signal-to-noise

0.0109

fit returns an object of class ‘NAWRUfit’ for which S3 methods provide some plots, see

Figures 1 and 2. The diagnostic plots of the Phillips curve suggest that the model fit is

quite satisfactory. There is no autocorrelation in the recursive residuals and the histogram

suggests that they are approximately normal. On a 10% level, the H0 of the Box-Ljung

test cannot be rejected, indicating that the residuals are independent. The R2 is equal

to 0.63, underpinning the good model fit. Figure 1 shows the unemployment rate and

the estimated NAWRU alongside 95% confidence intervals. From the beginning of the

sample in 1962 until the turn of the millennium, the NAWRU for France has been steadily

increasing. Thereafter, it has remained on a relatively high plateau of a little over 9%.

Figure 1: The unemployment rate and the estimated NAWRU for France.
Notes: The underlying unobserved component model was estimated using the Kalman filter and maximum
likelihood estimation. The NAWRU follows a local linear trend and the corresponding cycle an AR(2) process.
The traditional Phillips curve includes a contemporaneous cycle term and the second difference of the wage share.
The shaded area denotes the 95% confidence interval. The AMECO Autumn 2018 vintage was used.

The object ‘NAWRUfit’ is a list that contains several items regarding model fit, the

resulting time series, the used parameter restrictions, the estimated parameters, and the

‘NAWRUmodel’ object itself, among others.
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Figure 2: The Phillips curve indicator and diagnostic plots for France.
Notes: The top left panel shows the Phillips curve, the top right panel the recursive residuals, the bottom left
panel their autocorrelation and the bottom right panel the corresponding histogram. The underlying unobserved
component model was estimated using the Kalman filter and maximum likelihood estimation. The NAWRU
follows a local linear trend and the corresponding cycle an AR(2) process. The traditional Phillips curve includes
a contemporaneous cycle term and the second difference of the wage share. The shaded area in the top left panel
denotes the 95% confidence interval. The AMECO Autumn 2018 vintage was used.

When defining the model using NAWRUmodel, an anchor and its corresponding hori-

zon can be supplied. Alternatively, the anchored series can be computed based on the

previously fitted object f by

R> f <- trendAnchor(fit = f, anchor = 8, h = 10, returnFit = TRUE)

R> plot(f)

The anchored NAWRU is shown in Figure 3.
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Figure 3: The unemployment rate, the estimated NAWRU, and the anchored NAWRU for France.
Notes: The underlying unobserved component model was estimated using the Kalman filter and maximum
likelihood estimation. The NAWRU follows a local linear trend and the corresponding cycle an AR(2) process.
The traditional Phillips curve includes a contemporaneous cycle term and the second difference of the wage share.
The anchor is set to 8% after 10 years. The shaded area denotes the 95% confidence interval. The AMECO
Autumn 2018 vintage was used.

6.3 Estimating the TFP trend

For the estimation of the trend of TFP, a second state space model is fitted. To that end,

the TFP model from Section 2.2 is cast into state space representation and estimated by

the use of the Kalman filter. As for the NAWRU, the TFP trend splits into a permanent

component (its trend) and a cyclical one. The CUBS indicator helps to separate trend

and cycle via a second observation equation.

We compute the TFP trend for Italy based on the AMECO Autumn 2018 vintage.

The model equations are given by

log tfpt = pt + ct,

cubst = µ+ βc,0ct + εcubs,t, εcubs,t ∼ N
(
0, σ2

cubs

)

pt = pt−1 + ηt−1,

ηt = (1 − ϕη)ω + ϕηηt−1 + εη,t, εη,t ∼ N
(
0, σ2

η

)

ct = 2A cos (2π/τ) ct−1 − A2ct−2 + εc,t, εc,t ∼ N
(
0, σ2

c

)

i.e., the CUBS equation only includes the contemporaneous cycle, the trend is modeled

as a damped trend, and the cycle as a re-parametrized AR(2) process. This specification

can be modeled and fitted in RGAP by

R> data("gap")

R> tsList <- amecoData2input(gap[["Italy"]], alpha = 0.65)
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R> model <- TFPmodel(tsl = tsList, trend = "RW2", cycle = "RAR2",

+ cycleLag = 0, cubsErrorARMA = c(0,0))

R> parRestr <- initializeRestr(model = model, type = "hp")

R> f <- fit(model = model, parRestr = parRestr)

R> plot(f)

After the optimization is completed, the model setup and the results are printed.

Call:

fit.TFPmodel(model = model, parRestr = parRestr)

State space model object of class TFPmodel

cycle RAR2

trend DT

cubs

cycle lags 0

error term iid normal

exogenous variables -

anchor

value -

horizon -

dimensions

number of observations 36

period 1985 - 2020

frequency annual

Maximum likelihood estimation results

cycle

Coefficient Standard Error t-statistic p-value

cA 5.35e-01 1.53e-01 3.49 0.000479

cSigma 8.75e-05 2.27e-05 3.86 0.000115

cTau 8.78e+00 3.39e+00 2.59 0.009516

trend

Coefficient Standard Error t-statistic p-value

tdOmega 5.14e-03 4.19e-03 1.23 0.219

tdPhi 9.16e-01 8.50e-02 10.78 0.000

tdSigma 6.32e-06 4.93e-06 1.28 0.200

cubs

Coefficient Standard Error t-statistic p-value

cuC0 2.697632 0.281942 9.568 0.00000

cuConst 0.002346 0.009228 0.254 0.79932

cuSigma 0.000157 0.000055 2.860 0.00423

RMSE: 0.029

R2: 0.363

Box-Ljung test: X-squared = 2.15, df = 7.2, p-value = 0.957

loglik AIC BIC HQC

192.83313 -367.66627 -353.41460 -362.69205

signal-to-noise

0.07224

The H0 of the Box-Ljung test cannot be rejected, indicating that the residuals are inde-
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pendent. With 36 observations, the sample is rather small. Yet, the R2 of 0.36 for the

CUBS equation is satisfactory. The diagnostic plots of the CUBS equation in Figure 5

suggest that there is no autocorrelation in the recursive residuals, further supporting the

model choice. Figure 4 shows the growth rate of TFP and its estimated trend with 95%

confidence intervals. While the TFP trend growth has been positive until 2002, it turns

negative thereafter and only recovers into positive territory in 2016, yet with increased

uncertainty, as indicated by the wide confidence intervals at the end of the sample.

Figure 4: Total factor producticity and its estimated trend for Italy.
Notes: The left panel shows the level series and the right panel the growth rate in percent. The underlying
unobserved component model was estimated using the Kalman filter and maximum likelihood estimation. The
permanent component of the TFP follows a damped trend and the corresponding cycle a re-parameterized AR(2)
process. The CUBS equation features a contemporaneous cycle term. The shaded area denotes the 95% confidence
interval. The AMECO Autumn 2018 vintage was used.

Predictions can be made using the function predict for which specific S3 plotting

methods are available (see Figure 6).

R> fPred <- predict(object = f, n.ahead = 10)

R> plot(fPred, alpha = 0.1)

Alternatively, Bayesian methods can be used to estimate the TFP model. To that

end, prior distributions and additional parameter restrictions need to be specified via

the function initializePrior. They can subsequently be modified manually. All prior

distributions are defined through their mean and standard deviation. All variance priors

are Inverse-Gamma distributions. If the cycle is reparametrized, its parameters A and τ

follow the Beta distribution. All remaining priors are normal.

R> prior <- initializePrior(model = model)

R> prior
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Figure 5: The CUBS equation and diagnostic plots for Italy.
Notes: The top left panel shows the CUBS and its fitted values, the top right panel the recursive residuals, the
bottom left panel their autocorrelation and the bottom right panel the corresponding histogram. The underlying
unobserved component model was estimated using the Kalman filter and maximum likelihood estimation. The
permanent component of the TFP follows a damped trend and the corresponding cycle a re-parameterized AR(2)
process. The CUBS equation features a contemporaneous cycle term. The shaded area in the top left panel
denotes the 95% confidence interval. The AMECO Autumn 2018 vintage was used.

$cycle

cA cTau cSigma

mean 0.42 8.00 3.825118e-05

std 0.17 3.50 3.825118e-05

LB 0.01 2.01 0.000000e+00

UB 0.99 31.99 NA

$trend

tdOmega tdPhi tdSigma

mean 0.015 0.80 1.46797e-06

std 0.010 0.24 1.46797e-06

LB NA 0.00 0.00000e+00

UB NA 0.99 NA

$cubs

cuConst cuC0 E2Sigma

mean 0.00 1.4 0.0007073872

std 0.03 0.7 0.0007073872

LB NA NA 0.0000000000

UB NA NA NA

The above initialization is based on the suggestions by the EC (Havik et al., 2014). Only

for the variances, we deviate and use a similar procedure as for MLE. Alternatively,
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Figure 6: Prediction of total factor producticity and its estimated trend for Italy.
Notes: The left panel shows the level series and the right panel the growth rate in percent. The shaded area
denotes the forecast window. The underlying unobserved component model was estimated using the Kalman
filter and maximum likelihood estimation. The permanent component of the TFP follows a damped trend and
the corresponding cycle a re-parameterized AR(2) process. The CUBS equation features a contemporaneous
cycle term. The shaded area denotes the 95% confidence interval. The AMECO Autumn 2018 vintage was used.

by setting MLE = TRUE and additionally supplying the MLE fitted object fit, the prior

distributions can be initialized using the previously estimated MLE coefficients.

Having specified the prior distributions, an MCMC procedure is performed via the

function fit by setting method = "bayesian".

R> fBayes <- fit(model = model, method = "bayesian", prior = prior,

+ R = 5000, thin = 2, MLEfit = f)

R> plot(f, posterior = TRUE)

In our example, the fitted MLE object fit is supplied to the fitting function for ini-

tialization. After the MCMC procedure is done, the model specification alongside the

parameter estimates (e.g. posterior means) are printed. For each parameter, its estimate

(e.g. mean), standard deviation and lower and upper bound of the chosen highest poste-

rior density interval (HPDI) are printed. Similar to the MLE fitted object, the returned

object of class ‘TFPfit’ is a list containing various settings and time series as well as

the applied prior distributions and Geweke convergence test results (Geweke, 1991). The

procedure fit returns

Call:

fit.TFPmodel(model = model, method = "bayesian", prior = prior, R = 5000,

thin = 2, MLEfit = fit)

State space model object of class TFPmodel

cycle RAR2

trend DT
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cubs

cycle lags 0

error term iid normal

exogenous variables -

anchor

value -

horizon -

dimensions

number of observations 36

period 1985 - 2020

frequency annual

MCMC estimation results

cycle

Mean Median 85% HPDI-LB 85% HPDI-UB

cA 0.416167 0.406912 1.68e-01 6.57e-01

cSigma 0.000158 0.000126 6.29e-05 2.23e-04

cTau 7.997208 7.442340 3.29e+00 1.27e+01

trend

Mean Median 85% HPDI-LB 85% HPDI-UB

tdOmega 6.61e-03 6.44e-03 1.08e-03 1.16e-02

tdPhi 9.81e-01 9.84e-01 9.73e-01 9.90e-01

tdSigma 6.52e-07 6.13e-07 3.62e-07 8.91e-07

cubs

Mean Median 85% HPDI-LB 85% HPDI-UB

cuC0 1.40e+00 1.40e+00 1.382999 1.425066

cuConst 1.62e-05 5.38e-06 -0.000842 0.000920

cuSigma 4.36e-04 4.18e-04 0.000274 0.000558

MRMSE signal-to-noise

0.033540 0.004114

The option posterior = TRUE when plotting returns diagnostic plots for each parameter.

Figure 7 exemplifies such diagnostic plots for the cycle variance σ2
c . The trace plot (lower

right) suggests that for this parameter, the chain has converged, while the plot of the

ACF (lower right) indicates that the draws are not auto-correlated and thus that the

applied thinning was sufficient.
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Figure 7: Posterior diagnostic plots for the cycle variance σ2
c in the TFP trend estimation for Italy using Bayesian

methods.
Notes: The top left panel shows a histogram of the posterior draws, the top right panel the prior and posterior
densities, the bottom left panel a trace plot of the draws and the bottom right panel the autocorrelation of the
draws. The underlying unobserved component model was estimated using the Kalman filter and a Bayesian
MCMC procedure. The cycle process follows a re-parameterized AR(2) process.

6.4 Estimating the output gap

This example deals with the output gap estimation for the Netherlands. For the NAWRU

model we choose an AR(2) cycle, a local linear trend, and a TKP curve with six exogenous

variables. The TFP model contains a damped trend, a re-parameterized AR(2) cycle,

and a standard CUBS equation. The following code specifies the two models in RGAP:

R> data("gap")

R> tsList <- amecoData2input(gap[["Netherlands"]], alpha = 0.65)

R> model <- parRestr <- prior <- fit <- list()

R> D <- matrix(c(2, 2, 2, 1, 1, 1), 2, 3, byrow = TRUE)

R> L <- matrix(c(0, 0, 0, 1, 1, 1), 2, 3, byrow = TRUE)

R> exoType <- initializeExo(varNames = c("ws", "prod","tot"), D = D, L = L)

R> model$nawru <- NAWRUmodel(tsl = tsList, trend = "RW2", cycle = "AR2",

+ type = "TKP", cycleLag = 0, exoType = exoType)

R> model$tfp <- TFPmodel(tsl = tsList, trend = "DT", cycle = "RAR2",

+ cycleLag = 0, cubsErrorARMA = c(0,0))

We estimate both models using MLE and compute the output gap using the function

gapProd:
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R> parRestr$nawru <- initializeRestr(model = model$nawru, type = "hp")

R> fits$nawru <- fit(model = model$nawru, parRestr = parRestr$nawru)

R> parRestr$tfp <- initializeRestr(model = model$tfp, type = "hp")

R> fits$tfp <- fit(model = model$tfp, parRestr = parRestr$tfp)

R> fits$gap <- gapProd(tsl = tsList, NAWRUfit = fits$nawru,

R> TFPfit = fits$tfp, lambda = 100, alpha = 0.65)

R> plot(fits$gap)

gapProd returns an object of class ‘gapProd’ that consists of the fitted NAWRU and

TFP objects as well as a time series list which contains all original and estimated time

series. Moreover, an S3 plotting method is available for ‘gapProd’. Figure 8 presents

potential GDP growth (left panel) and the output gap (right panel) for the Netherlands.

Potential output was well above 2% prior to the dot-com bubble and declined considerably

thereafter. After the financial crisis hit in 2008, another decline can be observed and only

recently, the gap returned to levels of around 1%. The corresponding output gap appears

very cyclical and over the past decades, negative gaps have become more extreme.

Figure 8: GDP and potential output growth, and the corresponding output gap for the Netherlands.
Notes: The two underlying unobserved component models were estimated using the Kalman filter and maximum
likelihood estimation. The AMECO Autumn 2018 vintage was used.

Optionally, the contributions to both potential growth and the output gap can be

plotted by

R> plot(fits$gap, contribution = TRUE)

The output is shown in Figure 9. The contribution of average hours worked to potential

growth was negative until 2011 and positive thereafter. The working population, total

factor productivity and the capital stock show a sizable and positive contribution. For

the output gap, the contribution of the capital stock is zero since the model imposes that
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it coincides with its trend. The negative gap preceding the Global Financial Crisis of

2007-2008 is mainly accounted for by total factor productivity, which is then superseded

by the negative contribution of the working population.

Figure 9: Contributions to potential GDP and to the corresponding output gap for the Netherlands.
Notes: The two underlying unobserved component models were estimated using the Kalman filter and maximum
likelihood estimation. The AMECO Autumn 2018 vintage was used.

Additionally, RGAP provides two alternative estimation procedures detailed in Sec-

tion 3. Kuttner’s model can be specified and estimated by

R> tsList <- as.list(gap[["Netherlands"]][,c("cpih","gdp")])

R> tsList$infl <- diff(tsList$cpih)

R> model <- KuttnerModel(tsl = tsList, trend = "RW2",

+ cycleLag = 1, cycle = "AR2")

R> parRestr <- initializeRestr(model = model, type = "hp", q = 0.1)

R> gapKuttner <- fit(model = model, parRestr = parRestr)

The input parameter q = 0.1 indicates the quantile of the Inverse-Gamma distribution

used to specify bounds for the variance parameters. KuttnerModel and fit return objects

of class ‘KuttnerModel’ and ‘KuttnerFit’, respectively, for which S3 printing methods

are available. As for previous models, plots regarding model fit and the resulting time

series are also accessible via S3 plotting methods.

The HP-filtered output gap can be obtained using gapHP, for which the smoothing

parameter lambda can optionally be set:

R> gapHPfilter <- gapHP(tsList$gdp, lambda = 100)

The function gapHP returns an object of class ‘gapHP’ for which potential output growth

and the output gap can be plotted using S3 methods.
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Figure 10 shows the output gaps computed with the presented methods, i.e., EC the

production function methodology (dashed), Kuttner’s model (dotted), and the HP-filter

(solid). Although the pathway of the three output gaps is similar, the differences are at

times sizable, underlining the influence of model choice and parameters.

Figure 10: Comparison of different output gap estimation methods for the Netherlands.
Notes: The underlying unobserved component models were estimated using the Kalman filter and maximum
likelihood estimation. The smoothing constant for the HP-filtered gap is set to λ = 10. The AMECO Autumn
2018 vintage was used.

Last, RGAP enables the fast computation of the output gap for a set of different

countries. We consider the following set of countries:

R> countries <- c("Belgium", "Denmark", "Finland", "France",

+ "Germany", "Greece", "Italy", "Luxembourg",

+ "Netherlands", "Portugal", "Sweden", "United Kingdom")

For each country k in countries, we run

R> tsl <- amecoData2input(gap[[k]])

R> fit <- autoGapProd(tsl = tsl, type = "hp", fast = TRUE, nModels = 5, q = 0.1)

The function autoGapProd choses the best NAWRU and TFP trend model according

to the Bayesian Information Criterion (BIC). The parameter fast = TRUE indicates that

there is a fast pre-selection of nModels suitable models by first estimating the trend

and cycle series by the HP-filter and subsequently choosing the best models equation

by equation. The resulting subset of models is then estimated in the usual state space

framework. For the initialization of the parameter restrictions, type is passed on to the

function initializeRestr. Finally, the best models according to the BIC are chosen and

the output gap is computed.13 If fast = FALSE, a variety of possible models is estimated

13The set of tested models is extensive but not exhaustive. The best model is solely based on con-
vergence and the chosen criterion (BIC or RMSE). A manual check of the results is therefore highly
recommended.
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via the Kalman filter, which greatly increases computing time.

Figure 11 shows the resulting output gaps. Though there are substantial differences

between countries, to some extend, the gaps move in tandem. Most strikingly, all but two

output gaps turn negative in 2009 after the global Financial crisis of 2008. For Greece,

the crisis triggered a decade-long recession with large negative gaps. The gaps for some

of the remaining countries return to positive territory only for the second half of the 2020

decade.

Figure 11: Comparison of the production function output gap for different countries.
Notes: The underlying unobserved component models were estimated using the Kalman filter and maximum
likelihood estimation. The AMECO Autumn 2018 vintage was used.

7 Comparison to GAP Version 5.0 of the EC

We will now briefly compare RGAP and the software GAP Version 5.0 provided by the

EC. In GAP, the data, model specification and parameter restrictions are set using an

Excel interface. All estimations are done in Fortran and for graphical output related to

Bayesian analysis a Matlab-based interface is used.

We re-estimate the NARWU specification detailed in Section 6.2 with the same pa-

rameter restrictions as in GAP. Figure 12 shows the NAWRU estimated with RGAP

(solid) and GAP (dashed), respectively. The parameter estimates are shown in Table

6. The differences between the two trend estimates and the corresponding parameter

estimates are negligible.14

14One possible cause for differences in the results are differences in the applied transformation func-
tions which deploy parameter constraints. For instance, for the constraints on the autoregressive cycle
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Figure 12: Comparison between the NAWRU using RGAP and EC GAP Version 5.0.
Notes: The NAWRU model specifications and parameter restrictions are as in Section 6.2. The AMECO Autumn
2018 vintage was used.

RGAP GAP Version 5.0

cPhi1 ϕc,0 1.2637 1.2618
cPhi2 ϕc,1 −0.4050 −0.3980
cSigma σ2

c 2.097e−01 2.098e−01
E2Sigma σ2

nulc 1.216e−04 1.217e−04
pcC0 βc,0 −0.0035 −0.0035
pcConst µ −0.0011 5.024e−05
pcddws ϑ 1.0087 0.9859
tdSigma σ2

η 1.861e−03 2.008e−03

Table 6: Comparison between the NAWRU parameter estimates using RGAP and EC GAP Version 5.0.
Notes: The NAWRU model specifications and parameter restrictions are as in Section 6.2. The AMECO Autumn
2018 vintage was used.

8 Concluding remarks

Output gap estimation is essential in the identification of the current economic position

in the business cycle. In this paper, we introduce the R package RGAP with focus

on the Cobb-Douglas production function methodology as suggested by the EC. The

focus of this package is to provide a reliable, transparent, and feasible setting for the

estimation of the output gap and potential output. The package functionalities cover

data processing, model definition and estimation, prediction, as well as tailored plotting

options for the results. The modeling framework is kept general such that a variety of

model specifications are captured. The trend of total factor productivity and the non-

accelerating wage-rate of unemployment can be retrieved via two unobserved component

models that are cast in state space representation and estimated using the Kalman filter,

either by maximum likelihood or Bayesian methods. All other trend series are retrieved

parameters, GAP imposes box constraints while RGAP imposes stationarity constraints.
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through the HP-filter. The resulting estimates of potential output and the output gap

can be decomposed into the contributions of input factors regarding labor, capital and

productivity, which facilitates an economic interpretation and thus policy-making.

The most prominent advantage of the package RGAP – compared to the existing

software by the European Commission – is its simple and flexible handling in the R

environment for both beginners and advanced R users. Pre- and postprocessing of involved

data can be easily incorporated. The data supply and preparation processes embedded

in RGAP enable its usage without any other input for a wide range of countries.
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A Appendix

A.1 Phillips curve

Without loss of generality, we consider a hybrid form of the Phillips curve, i.e.,

πt = λbπt−1 + λfEt [πt+1] + θct + επ,t, (18)

ct = ϕ1ct−1 + ϕ2ct−2 + εc,t, (19)

where for notational simplicity, πt is the Phillips curve indicator and

λb =
ξ

1 + δξ
, λf =

δ

1 + δξ
,

where ξ ∈ (0, 1) denotes the degree of backwardness and δ ∈ (0, 1) the discount factor on

future consumption. Rewriting Equation (19) yields


ct

ct−1


 =



ϕ1 ϕ2

1 0




︸ ︷︷ ︸
:=Φ



ct−1

ct−2


+



εc,t

0




and we know that for the eigenvalues λ of Φ it holds that |λ| < 1 since ct is stationary.

Hence, I2 − ΦL is invertible. Moreover, from Equation (18) we get that

(
1 − λbL− λfL−1

)
πt =

(
θ 0

)


ct

ct−1


+ επ,t.

It can be readily shown that

(
1 − λbL− λfL−1

)
=
λf

δ
(1 − ξL)

(
1 − δL−1

)

and thus the roots of the polynomial
(
1 − λbz − λfz−1

)
are given by

z1 = δ < 1, z2 =
1

ξ
> 1. (20)

Using the fact that (1 − δL−1) is invertible due to Equation (20), we obtain

(1 − ξL)
(
1 − δL−1

)
πt =

δ

λf

(
θ 0

)


ct

ct−1


+

δ

λf
επ,t
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⇔ (1 − ξL)πt =
δ

λf

(
θ 0

) ∞∑

i=0

δiL−i



ct

ct−1


+

δ

λf

∞∑

i=0

δiL−iεπ,t

=
δ

λf

(
θ 0

) ∞∑

i=0

δiEt



ct+i

ct+i−1


+

δ

λf

∞∑

i=0

δiEt [επ,t+i]

=
δ

λf

(
θ 0

) ∞∑

i=0

δiΦi



ct

ct−1


+

δ

λf
επ,t

=
δ

λf

(
θ 0

)
(I2 − δΦ)−1



ct

ct−1


+ (1 + δξ) επ,t

=
δ

λf

(
θ 0

)
1

1 − δϕ1 − δ2ϕ2




1 δϕ2

δ 1 − δϕ1






ct

ct−1


+ ε̃π,t

=
δ

λf
θ

1 − δϕ1 − δ2ϕ2

(
1 δϕ2

)


ct

ct−1


+ ε̃π,t

where ε̃π,t := (1 + ηξ) επ,t. Finally, defining θ̃ := θ(1+δξ)/(1−δϕ1−δ2ϕ2), we get that

πt = ξπt−1 + θ̃ct + θ̃δϕ2ct−1 + ε̃π,t.

If Equation (18) had an intercept µ, we get the additional term

δ

λf
µ

1 − δ
= µ

1 + ξδ

1 − δ
.

If the cycle was instead an AR(1) process, we obtain

πt = ξπt−1 + θ̃ct + ε̃π,t,

where θ̃ = 1/(1−ϕ1δ). In the purely forward looking case, we have ξ = 0 and thus the

autoregressive term drops.

A.2 Optimization constraints

In the following, let Θ ⊂ R
k, k ∈ Z be the constrained parameter space. Moreover, let

θ ∈ Θ and ψ ∈ R
k denote the constrained and unconstrained parameter, respectively. To
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apply the delta method, for each constraint, we define a transformation function

g : Rk → Θ, g (ψ) = θ.

For box constraints Θ = [a, b], we employ

g[a,b] (ψ) = a+ (b− a)
1

1 + e−ψ
Dg[a,b] (ψ) = (b− a)

1

1 + e−ψ

(
1 − 1

1 + e−ψ

)

as limψ→−∞ g[a,b] (ψ) = a and limψ→∞ g[a,b] (ψ) = b.

For a stationary AR(p) process, the roots of the characteristic polynomial need to lie

outside the unit circle. For p = 1, this implies that Θ = (−1, 1) and thus we employ box

constraints with a = −1 + ε, b = 1 − ε, and ε = 0.01. For p = 2, the parameter space is

given by Θ = {θ ∈ R
2 : θ2 − θ1 < 1, θ2 + θ1 < 1, |θ2| < 1} for which we have

g (ψ) =




ψ1

1+|ψ1|
+ ψ2

1+|ψ2|

− ψ1

1+|ψ1|
ψ2

1+|ψ2|



,

Dg (ψ) =




−|ψ1|

(1+ψ1)2 + 1
1+|ψ1|

−|ψ2|

(1+ψ2)2 + 1
1+|ψ2|

− ψ2

1+|ψ2|

(
−|ψ1|

(1+ψ1)2 + 1
1+|ψ1|

)
− ψ1

1+|ψ1|

(
−|ψ2|

(1+ψ2)2 + 1
1+|ψ2|

)



.

Note that for complex conjugate eigenvalues of the companion matrix it holds that |λ| <
1/4

(
ψ1

1+|ψ1|
+ ψ2

1+|ψ2|

)
< 1.15 For real eigenvalues, |λ1| = |ψ1|

1+|ψ1|
< 1 and |λ2| = |ψ2|

1+|ψ2|
< 1,

and thus, the stationary criteria are fulfilled in either case. Recall the re-parameterized

AR(2), i.e., ct = ϕc,1ct−1 + ϕc,2ct−2 + εc,t with

ϕc,1 = 2A cos (2π/τ) ,

ϕc,2 = −A2.

The complex conjugate roots z1, z2 of the characteristic polynomial Φ (z) = 1−2A cos (2π/τ) z+

A2z2 are given by

z1/2 = A−1
(

cos (2π/τ) ± i
√

1 − cos2 (2π/τ)
)

15If the eigenvalues of an AR(2) process are complex, they are in fact complex conjugates (Hamilton,
1994, Chapter 1).
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and thus

∣∣∣z1/2

∣∣∣ = A−1
√

cos2 (2π/τ) + sin2 (2π/τ) = A−1.

Hence, for stationarity we need that |A| < 1. Since the cosine is periodic, the first

autoregressive coefficient 2A cos (2π/τ) is not unique for τ ∈ R. For computational ease,

we therefore restrict τ to lie in the interval (2,∞) which implies that cos (2π/τ) is strictly

monotonically decreasing and that cos (2π/τ) ∈ (−1, 1). Note that if 2π/τ ∈ πZ, the roots

were in fact real. Define θ = (ϕc,1, ϕc,2). Finally, we have

g (ψ) =




2g(−1,1) (ψ2) cos
(

2π
g(2,∞)(ψ1)

)

−
(
g(−1,1) (ψ2)

)2




and

Dg (ψ) =




−4π
g(−1,1)(ψ2)Dg(2,∞)(ψ1)

(g(2,∞)(ψ1))
2 sin

(
2π

g(2,∞)(ψ1)

)
2Dg(−1,1) (ψ2) cos

(
2π

g(2,∞)(ψ1)

)

0 −2g(−1,1) (ψ2)Dg(−1,1) (ψ1)


 .

A.3 Constraints in Bayesian analysis

We use two different techniques to draw samples from the constrained posterior distri-

bution. The simplest way of enacting parameter constraints is by rejecting draws that

do not meet the criteria. We use this procedure for draws from the multivariate Normal

distribution and to meet stationarity criteria if applicable. For draws from the Normal

distribution, the Beta distribution and the Inverse-Gamma distribution, we directly draw

from the constrained distribution. Let F be the posterior distribution of some parameter

θ and let the parameter space be given by Θ = [a, b]. Let u be a draw from the standard

Uniform distribution U(0, 1). Then, θ drawn from F−1 (F (a) + u (F (b) − F (a))) is a

draw from the constrained full conditional (Gelfand et al., 1992).

Note that for the Inverse-Gamma distribution, we have that θ = 1/x ∼ IG (α, β)

where x ∼ G (α, 1/β) from which drawing is more convenient. Moreover, θ ∈ Θ = [a, b] is

equivalent to x ∈ [1/b, 1/a] and thus

θ =
1

x
, x ∼ F−1 (F (1/b) + u (F (1/a) − F (1/b)))
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gives a draw from the constrained Inverse-Gamma distribution.

A.4 Anchor recursions

Recall the definitions

at+1 = E [αt+1|Yt] , Pt+1 = var (αt+1|Yt) ,

at|t = E[αt|Yt], Pt|t = var(αt|Yt),

α̂t = E [αt|Yn] , Vt = var (αt|Yn) ,

the filtering recursions for t = 1, . . . , n,

at = Tat−1|t−1 + c, Pt = TPt−1|t−1T
′ +RQR′,

vt = yt − Zat −Dzt, Ft = ZPtZ
′ +H,

Kt = PtZ
′F−1
t ,

at|t = at +Ktvt, Pt|t = Pt −KtZPt,

and the backwards smoothing recursion for t = n, . . . , 1,

α̂t = at|t + Pt|tT
′P−1
t+1(α̂t+1 − at+1),

Vt = Pt|t + Pt|tT
′P−1
t+1(Vt+1 − Pt+1)P

−1
t+1TPt|t.

To compute the anchored values of a smoothed state component α̂i,t = rα̂t, where r is

a 1 × m selection vector, we perform a backward and a forward recursion. By T̃k we

denote the matrix exponential T k. Furthermore, we define Ck = var (αn+k|Yn) and by

Gk =
∑k
i=0 T

iRnQR
′
nT

i′ we denote the innovation part of the conditional variance Ck.

We first rely on the auxiliary recursion for k = 1, . . . , h,

T̃k = T T̃k−1,

Gk = Gn + TGk−1T
′,

Ck = r
(
T̃kPn|nT̃

′
k +Gk

)
r′,
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where we use the initialization G0 = RnQR
′
n, C0 = Pn|n and T̃0 = T 0 = I. Let Pt,n|n =

cov (αt, αn|Yn) with Pn,n|n = Pn|n. Then, the backward recursion for t = n − 1, . . . , d is

given by

At = Pt|tT
′P−1
t+1,

Pt,n|n = AtPt+1,n|n,

wt =
(
rPt,n|nT̃hr

′
)
/ (rChr

′) ,

α̂ai,t = rα̂t + wt
(
sn+h − rT̃hα̂n

)
.

For the diffuse phase t = d− 1, . . . , 1, the first equality changes to

At = Pt|tT
′
t (Pt+1 + P∞,t+1)

−1 ,

where P∞,t+1 contains the variance covariance matrix of the diffuse states, with zeros

elsewhere. Last, the forward recursion for t = n, . . . , n+ h is given by

wt =
(
rCn−tT̃n−tr

′
)
/ (rChr

′) ,

α̂ai,t = rα̂nT̃t−n + wt
(
sn+h − rT̃hα̂n

)
.

If the state vector contains a constant, the respective row and column is removed from

all system matrices to ensure invertibility.

A.5 Posterior distributions for Bayesian analysis

A.5.1 Posterior of p (θc|cn)

We start by looking at the second term in Equation (17) involving the cycle. Let now

ϕ = (ϕ1, . . . , ϕp)
′ and ct =

∑p
i=1 ϕict−i + εc,t. Note that this model specification includes

all three cycle models, namely an AR(1) or AR(2) process and a re-parametrized AR(2).

It holds that

p
(
ϕ, σ2

c

∣∣∣cn
)

= p
(
ϕ
∣∣∣σ2
c , c

n
)
p
(
σ2
c

∣∣∣ϕ, cn
)
.
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For each of the three models, a Gibbs step is implemented to draw the second term on

the right hand side, p (σ2
c |ϕ, cn). We have that

p
(
σ2
c

∣∣∣ϕ, cn
)

∝ p
(
c1, . . . , cp

∣∣∣ϕ, σ2
c

) n∏

t=p+1

p
(
ct
∣∣∣ϕ, σ2

c , c
t−1
)
p
(
σ2
c

)
,

where

c1, . . . , cp
∣∣∣ϕ, σ2

c ∼ N
(
0,Σϕ,σ2

c

)
,

n∏

t=p+1

ct
∣∣∣ϕ, σ2

c , c
t−1 ∼ N




n∑

t=p+1

p∑

i=1

ϕict−i, σ
2
c




and Σϕ,σ2
c

denotes the variance covariance matrix of (c1, . . . , cp) conditional on ϕ and σ2
c .

By conjugacy, we have that

p
(
σ2
c

∣∣∣ϕ, cn
)

= IG (sc∗, νc∗)

with

νc∗ = νc0 + n,

sc∗ = sc0 + (c1, . . . , cp)
(
Σϕ,σ2

c
σ−2
c

)−1
(c1, . . . , cp)

′ +
n∑

t=1+p

(
ct −

p∑

i=1

ϕict−i

)2

.

In contrast, sampling ϕ varies between the three models. For the AR(1) cycle, an ana-

lytical solution is available. Similar to above, it holds that

p
(
ϕ
∣∣∣σ2
c , c

n
)

∝ p
(
c1

∣∣∣ϕ, σ2
c

) n∏

t=2

p
(
ct
∣∣∣ϕ, σ2

c , c
t−1
)
p (ϕ) . (21)

Given that all three conditionals in Equation (21) are normal, it can be easily deduced

that

p
(
ϕ
∣∣∣σ2
c , c

n
)

= N (ϕ∗, Vϕ∗)

with

Vϕ∗
=

(∑n
t=2 c

2
t−1 − c2

1

σ2
c

+
1

Vϕ0

)−1

,

ϕ∗ = Vϕ∗

(∑n
t=2 ctct−1

σ2
c

+
ϕ0

Vϕ0

)
.

Summing up, for the AR(1) cycle specification, we draw sequentially from

ϕk
∣∣∣σ2
c
k−1 ∼ N (ϕ∗, Vϕ∗) Iϕ,
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σ2
c
k
∣∣∣ϕk ∼ IG (sc∗, νc∗) Iσ2

c
,

where the superscript k denotes the k-th draw.

If the cycle is instead specified to be a stationary AR(2) process with autoregressive

parameters ϕ1, ϕ2, we can partially make use of the Normal conjugate framework. We

assume the prior p (ϕ) = p (ϕ1, ϕ2) = N (µ0, Vµ0) , µ0 ∈ Θ ⊂ R
2, Vµ0 ∈ R

2
+, where Θ

indicates the stationary region. Note that we cannot apply the NIG conjugate framework

since that would require known starting values c−1, c0. Instead, to obtain draws from

ϕ1, ϕ2|σ2
c , c

n, we can implement a Metropolis-Hastings step with proposal density g given

by

T∏

t=3

p
(
ct
∣∣∣ϕ1, ϕ2, σ

2
c , c

t−1
)
p (ϕ1, ϕ2) = N (µ∗, Vµ∗) Iϕ

with

Vµ∗ =

(
X ′X

σ2
c

+ V −1
µ0

)−1

,

µ∗ = Vµ0

(
X ′y

σ2
c

+ V −1
µ0 µ0

)
,

as implied by conjugacy with y := (c3, . . . , cn)′ , X :=
(
(c2, . . . , cn−1)

′ , (c1, . . . , cn−2)
′
)
.

Given the target density P (ϕ) = p (ϕ|σ2
c , c

n), the acceptance probability simplifies to

α = min



1,

P (ϕk)g
(
ϕk−1

∣∣∣ϕk
)

P (ϕk−1)g (ϕk|ϕk−1)





= min



1,

p
(
c1, c2

∣∣∣ϕk, σ2
c

)
g
(
ϕk
∣∣∣ϕk−1

)
g
(
ϕk−1

∣∣∣ϕk
)

p (c1, c2|ϕk−1, σ2
c ) g (ϕk−1|ϕk) g (ϕk|ϕk−1)





= min



1,

p
(
c1, c2

∣∣∣ϕk, σ2
c

)

p
(
c1, c2

∣∣∣ϕk−1
1 , σ2

c

)





= min





1,

∣∣∣Σϕk−1,σ2
c

∣∣∣
1/2

∣∣∣Σϕk,σ2
c

∣∣∣
1/2

exp
{

1

2
(c1, c2)

(
Σ−1
ϕk−1,σ2

c
− Σ−1

ϕk,σ2
c

)
(c1, c2)

′
}




where Σϕ,σ2
c

denotes the 2 × 2 covariance matrix of (c1, c2) as a function of the involved
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parameters ϕ1, ϕ2, σ
2
c . Hence, for the AR(2) cycle specification, we draw sequentially from

ϕk =





ϕ̃ if u ≤ α

ϕk−1 if u ≤ α

ϕk
∣∣∣σ2
c
k−1 ∼ N (µ∗, Vµ∗) Iϕ,

u ∼ U [0, 1],

σ2
c
k
∣∣∣ϕk ∼ IG (sc∗, νc∗) Iσ2

c
.

Last, we elaborate on the re-parametrized version of the cycle equation. We have that

p
(
A, τ, σ2

c

∣∣∣cn
)

= p
(
A
∣∣∣τ, σ2

c , c
n
)
p
(
τ
∣∣∣A, σ2

c , c
n
)
p
(
σ2
c

∣∣∣A, τ, cn
)
.

For the third term on the right-hand-side, we can draw analogously to above with ϕ1 =

2A cos (2π/τ) and ϕ2 = −A2. For the remaining two parameters A and τ it holds that

p
(
A
∣∣∣τ, σ2

c , c
n
)

∝ p
(
c1, c2

∣∣∣A, τ, σ2
c

) T∏

t=3

p
(
ct
∣∣∣A, τ, σ2

c , c
t−1
)
p (A) ,

p
(
τ
∣∣∣A, σ2

c , c
n
)

∝ p
(
c1, c2

∣∣∣A, τ, σ2
c

) T∏

t=3

p
(
ct
∣∣∣A, τ, σ2

c , c
t−1
)
p (τ) .

Since the prior of A and τ is a Beta distribution and the starting values c1, c2 are un-

known, we cannot sample directly from these conditionals. However, in each case, all

three involved densities are readily available. Havik et al. (2014) use the adaptive rejec-

tion Metropolis scheme (ARMS) introduced by Gilks et al. (1995), which we also adopt

here. ARMS essentially combines adaptive rejection sampling (ARS) with an additional

Metropolis-Hastings step in order to cope with possibly non-log-concave functions. If the

target density is in fact log-concave, the Metropolis-Hastings step will always accept and

ARMS falls back to ARS.

A.5.2 Posterior of p (θp|pn)

For the posterior derivation of the trend equation, we start by considering the random

walk with drift for which θp =
(
ω, σ2

η

)
. The posterior can be obtained via a Gibbs step,

i.e., we first sample from ω|σ2
η and subsequently from σ2

η|ω. We have that

p
(
ω
∣∣∣σ2
η, p

n
)

=
n∏

t=2

p
(
∆pt

∣∣∣ω, σ2
η

)
p (ω) ∝ N (ω∗, Vω∗)
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with

Vω∗ =

(
n− 1

σ2
η

+
1

Vω0

)−1

,

ω∗ = Vω∗

(∑n
t=2 ∆pt
σ2
η

+
ω0

Vω0

)
,

since p
(
∆pt

∣∣∣ω, σ2
η

)
∝ N

(
ω, σ2

η

)
and p (ω) = N (ω0, Vω0) . For the variance σ2

η, we impose

p
(
σ2
η

)
= IG (sη0, νη0) and thus we can deduce that

p
(
σ2
η

∣∣∣ω, pn
)

=
n∏

t=2

p
(
∆pt

∣∣∣ω, σ2
η

)
p
(
σ2
η

)
∝ IG (sη∗, νη∗)

with

νη∗ = νη0 + 1,

sη∗ = sη0 +
n∑

t=2

(∆pt − ω)2 .

In summary, for a random walk with constant drift, we draw from

ωk
∣∣∣σ2
η
k−1 ∝ N (ω∗, Vω∗) Iω,

σ2
η
k
∣∣∣ωk ∝ IG (sη∗, νη∗) Iσ2

η
.

For a local linear trend model, the only parameter is θp = σ2
η and thus no Gibbs step

is necessary. Analogously to above, it holds that

p
(
σ2
η

∣∣∣pn
)

=
n∏

t=3

p
(
∆2pt

∣∣∣σ2
η

)
p
(
σ2
η

)
∝ IG (sη∗, νη∗)

with

νη∗ = νη0 + 1,

sη∗ = sη0 +
n∑

t=3

(
∆2pt

)2
.

It remains to specify the posterior in the case of a damped trend with θp =
(
ω, ϕη, σ

2
η

)
.

Draws can be obtained using Gibbs and Metropolis-Hastings steps. Note that the NIG

conjugate framework cannot be applied directly because we do not have given starting

values for the autoregressive process, i.e., ∆p1 is not available. For the autoregressive

parameter ϕη, a Metropolis-Hastings step is implemented. For the target density, we
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have that

p
(
ϕη
∣∣∣ω, σ2

η, p
n
)

∝ p
(
pn
∣∣∣ϕη, ω, σ2

η

)
p (ϕη)

∝ p
(
∆p2

∣∣∣ϕη, ω, σ2
η

)
p
(
p3, . . . , pn

∣∣∣ϕη, ω, σ2
η

)
p (ϕη)

∝ p
(
∆p2

∣∣∣ϕη, ω, σ2
η

) n−1∏

t=3

p
(
∆pt

∣∣∣ϕη, ω, σ2
η,∆pt−1

)
p (ϕη) . (22)

The first term is readily given due to stationary of the trend drift and the second reflects

the likelihood function of ∆pt, t = 3, . . . , n. We have

p
(
∆p2

∣∣∣ϕη, ω, σ2
η

)
= N


ω,

σ2
η(

1 − ϕ2
η

)


 , (23)

n−1∏

t=3

p
(
∆pt

∣∣∣ϕη, ω, σ2
η,∆pt−1

)
= N

(
T∑

t=3

(1 − ϕη)ω + ϕη∆pt−1, σ
2
η

)
. (24)

Hence, for the Metropolis-Hastings step, we can use the proposal distribution

n−1∏

t=3

p
(
∆pt

∣∣∣ϕη, ω, σ2
η,∆pt−1

)
p (ϕη) ∝ N

(
ϕη∗, Vϕη∗

)
Iϕη

,

where

Vϕη∗ =

(∑T
t=3 (∆pt−1 − ω)2

σ2
η

+
1

Vϕη0

)−1

,

ϕη∗ = Vϕη∗

(∑T
t=3 (∆pt − ω) (∆pt−1 − ω)

σ2
η

+
ϕη0

Vϕη0

)

can be readily derived. Using similar arguments as above, the acceptance probability

simplifies to

α = min



1,

P (ϕkη)g
(
ϕk−1
η

∣∣∣ϕkη
)

P (ϕk−1
η )g

(
ϕkη
∣∣∣ϕk−1
η

)





= min



1,

p
(
∆p2

∣∣∣ϕkη, ω, σ2
η

)

p
(
∆p2

∣∣∣ϕk−1
η , ω, σ2

η

)





= min

{
1, exp

{(
ϕ2
η
k − ϕ2

η
k−1

) (∆p2 − ω)2

2σ2
η

}}

where the superscript k again denotes the k-th draw and P (ϕη) = p
(
ϕη
∣∣∣ω, σ2

η, p
n
)

the

target density. Recall that we assumed parameter independence, thus, using Equations

(23) and (24) and due to conjugacy of the Normal distribution,

p
(
ω
∣∣∣ϕη, σ2

η, p
n
)

= N (ω∗, Vω∗) ,
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where

Vω∗ =


1 − ϕ2

η + (n− 2) (1 − ϕη)
2

σ2
η

+
1

Vω0




−1

,

ω∗ = Vω∗

(
(1 − ϕη) (∆p2 + ∆pn) + (1 − ϕη)

2∑n−1
t=3 ∆pt

σ2
η

+
ω0

Vω0

)
.

Similarly, using the conjugacy of the Inverse-Gamma distribution and a similar factor-

ization as in Equation (22), we have that

p
(
σ2
η

∣∣∣ϕη, ω, pn
)

= IG (s∗, ν∗) ,

where

ν∗ = ν0 + n− 1,

s∗ = s0 +
(
1 − ϕ2

η

)
(∆p2 − ω)2 +

T∑

t=3

(
∆pt − ω

(
1 − ϕ2

η

)
− ϕη∆pt−1

)2
.

Summing up, to obtain a sample from the conditional p
(
ω, ϕη, σ

2
η

∣∣∣pn
)
, we draw sequen-

tially, i.e.,

ωk
∣∣∣ϕk−1
η , σ2

η
k−1

, pn ∼ N (ω∗, Vω∗)

ϕkη =





ϕ̃η if u ≤ α

ϕk−1
η if u > α

ϕ̃η
∣∣∣ωk, σ2

η
k−1

, pn ∼ N
(
ϕη∗, Vϕη∗

)
,

u ∼ U [0, 1],

σ2
η
k
∣∣∣ϕkη, ω

k, pn ∼ IG (s∗, ν∗) .

A.5.3 Posterior of p (θind|cn, indn)

For the third term in Equation (17), we start by considering the simplest case, for which

the indicator equation does not involve cycle or autoregressive lags.16 Thus, we can resort

to conjugacy results of the Normal-Inverse-Gamma distribution. Let xt := (1, ct)
′ , X :=

(x1, . . . , xn)′ , Y := (ind1, . . . , indn)′ and β := (µ, βc,0)
′. It holds that

p
(
β, σ2

ind

∣∣∣cn, indn
)

= NIG (β∗, Qβ∗, sind∗, νind∗)

16All derivations that follow also hold when exogenous variables enter the indicator equation.
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where

Q∗ = Q0 +X ′X,

β∗ = Q−1
∗ (Q0β0 +X ′Y ) ,

ν∗ = ν0 + T,

s∗ = s0 + Y ′Y + β′
0Q0β0 − β′

∗Q∗β∗

(e.g. Fahrmeir et al., 2007). Hence, by the definition of the Normal-Inverse-Gamma

distribution, we can draw sequentially from

σ2
ind ∼ IG (s∗, ν∗) ,

β|σ2
ind ∼ N

(
β∗, σ

2
indQ∗

)
.

In the case that the error is specified as an AR(1) process, i.e., ε̂t = ϕε̂ε̂t−1 + εind,t, we

can factorize

p
(
β, ϕε̂, σ

2
ind

∣∣∣cn, indn
)

= p
(
β, σ2

ind

∣∣∣ϕε̂, cn, indn
)
p
(
ϕε̂
∣∣∣β, σ2

ind, c
n, indn

)

and sample from p (ϕε̂|β, σ2
ind, c

n, indn) in a second Gibbs step. It holds that

p
(
ϕε̂
∣∣∣β, σ2

ind, c
n, indn

)
∝ p

(
ε̂1

∣∣∣ϕε̂, σ2
ind

) T∏

t=2

p
(
ε̂t
∣∣∣ε̂t−1, ϕε̂, σ

2
ind

)
p (ϕε̂)

and all three conditionals are normal. Thus, as for the autoregressive coefficient in the

AR(1) cycle equation above, it can be easily deduced that

p
(
ϕε̂
∣∣∣β, σ2

ind, c
n, indn

)
= N (ϕε̂∗, Vϕε̂∗)

with

Vϕε̂∗ =

(∑T
t=2 ε̂

2
t−1 − ε̂2

1

σ2
ind

+
1

Vϕε̂0

)−1

,

ϕε̂∗ = Vϕε̂∗

(∑T
t=2 ε̂tε̂t−1

σ2
ind

+
ϕε̂0
Vϕε̂0

)
,

and ε̂ = indt − µ− βc,0ct. For an AR(2) error process, posterior draws are obtained in a

Metropolis-Hastings step, analogously as for the AR(2) cycle above.

Last, we consider the most general case with autoregressive terms and cycle lags
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included in the indicator equation. To obtain a sample of the posterior, we implement

a Metropolis-Hastings step. Let indt−1, . . . , indt−p̃ and ct, . . . , ct−p, p̃, p ∈ Z be included in

the equation with coefficients ϕ1, . . . , ϕp̃, βc,0, . . . , βc,p. Define β = (µ, ϕ1, . . . , ϕp̃, βc,0, . . . , βc,p)

and q = max {p, p̃}. The posterior with iid Normal error term factorizes, i.e.,

p
(
β, σ2

ind

∣∣∣ϕε̂, cn, indn
)

∝ p
(
indq

∣∣∣cq, β, σ2
ind

) n∏

t=q+1

p
(
indt

∣∣∣cn, indn−1, β, σ2
ind

)
p
(
β, σ2

ind

)

∝ p
(
indq

∣∣∣β, σ2
ind

)
p (cp)

n∏

t=q+1

p
(
indt

∣∣∣cn, indn−1, β, σ2
ind

)
p
(
β, σ2

ind

)
.

NIG conjugacy can be applied to the second and third term on the right hand side and

thus the product of two terms can be used as proposal distribution g. Let P denote the

target density. The acceptance probability simplifies to

α = min



1,

p
(
indq

∣∣∣βk−1, σ2
ind

k−1
)

p
(
indq

∣∣∣βk, σ2
ind

k
)



 .

It remains to specify mean and variance of the Normal vector indq|β, σ2
ind. For all t ∈ Z,

µind = E

[
indt|β, σ2

ind

]
=

µ

1 −∑p̃
i=1 ϕi

Σindp := cov
(
indq|β, σ2

ind

)
.

For a derivation of Σindp , see Appendix A.8. Hence, the acceptance probability is given

by

α = min





1,

∣∣∣Σk
indp

∣∣∣
−1/2

exp
{

−1/2

(
indp − µkindp

)′
Σ−1
indp

k
(
indp − µkindp

)}

∣∣∣Σk−1
indp

∣∣∣
−1/2

exp
{

−1/2

(
indp − µk−1

indp

)′
Σ−1
indp

k−1
(
indp − µk−1

indp

))




.

A.5.4 Inverse-Gamma distribution

For some x ∼ IG (s, ν) , where s denotes the location and ν the degrees of freedom, the

density function is given by

cg (s, ν)−1 x− 1
2

(ν+2) exp {−s/2x}
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where cg (s, ν) := Γ
(
ν
2

) (
2
s

)ν/2

. Under this parametrization, we have that

E [x] =
s

ν − 2
, var (x) =

s

ν − 4

(
s

ν − 2

)2

,

which implies that

ν =
2E [x]2

var (x)
+ 4, s = E [x] (ν − 2) .

Note that if E [x] =
√

var (x) we have that ν = 6.

Alternatively, it can be specified via shape α = ν/2 and scale β = s/2, i.e., x ∼

IG (α, β) , with density function

c̃g (α, β)x−(α+1) exp {−β/x}

where c̃g (α, β) := βα/Γ(α). Here, it holds that

E [x] =
β

α− 1
for α > 1,

var (x) =
β2

(α− 1)2 (α− 2)
for α > 2,

from which it follows that

α =
E [x]2

var (x)
+ 2, β = E [x] (α− 1) .

Note that if E [x] =
√

var (x) we have that α = 3.

A.6 Variance restrictions

RGAP initializes variance restrictions using information obtained from the supplied

data. For simplicity, the trend variance is set to zero in case of a damped trend or local

linear trend specification. In those cases, the trend variation originates from the trend

drift innovations. Thus, restrictions on three innovation variances are necessary.

The function initializeVar offers two methods to initialize the variance restrictions.

If type = "basic" is specified, the upper bound of the trend and cycle variances is

set to the sample variance of the differenced first observation series v̂ar (∆yn1 ), where

yni = (yi,1, . . . , yi,n) and yi,t denotes the i-th component of the observation vector at time
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t. Similarly, the upper bound for the second equation innovation variance is set to the

sample variance of the second equation series v̂ar (yn2 ). The lower bounds are set to zero.

If type = "hp", the HP-filter is used to obtain a trend and cycle series of the first

observation equation. For both series, estimates of the innovation variance are acquired

through appropriate ARIMA models.17 For the second observation equation, the inno-

vation variance is obtained by OLS using the HP-cycle as explanatory variable. Given

these estimated variances σ̂2
i , i ∈ {1, 2, 3} , the box constraints for the variance are set

to the 80% confidence interval of an Inverse-Gamma distributed variable with mean and

standard deviation σ̂i.

A.7 Signal-to-noise ratio

One way to impose variability on the cycle and thereby smoothness on the trend when

applying MLE is to put tight box constraints on the variance parameters. Alternatively,

a specific smoothness can be achieved by fixing the signal-to-noise ratio q :=
σ2

p+σ2
η

σ2
c

.

RGAP allows to specify q instead of estimating all variances separately. If q is specified,

σ2
p will be set to zero if both σ2

p and σ2
η are present in the model specification. During

optimization, the cycle variance σ2
c is estimated while the (remaining) trend variance is

set to qσ2
c .

A.8 Variance covariance matrix of ind

The indicator equation is given by indt = µ +
∑p̃
i=1 ϕiindt−i +

∑p
j=0 βjct−i + εt with

εt ∼ N (0, σ2
ind) and ct follows a stationary AR(pc) process. Let q = max{p, p̃}. Define

γ (k) := cov (indt, indt−k) = E [(indt − µind) (indt−k − µind)] = γ (−k) ,

γ̃ (k − ℓ) := cov (ct−ℓ, indt−k) = E [ct−ℓ (indt−k − µind)] .

17For the damped trend and for the cycle, suitable AR(p) models are estimated. For a random walk
with constant or stochastic drift, a suitable ARIMA(0, k, 0) model is estimated.
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The Yule-Walker equations are given by

γ (0) = E [(indt − µind) (indt − µind)]

= E




µ+

p̃∑

i=1

ϕiindt−i +
p∑

j=0

βjct−j + εt − µind


 (indt − µind)




=
p̃∑

i=1

ϕiγ (−i) +
p∑

j=0

βj γ̃ (−j) ,

γ (k) =
p̃∑

i=1

ϕiγ (k − i) +
p∑

j=0

βj γ̃ (k − j) .

We have that ΦΓ0:q = y, where Γ0:q := (γ (0) , . . . , γ (q))′ and

Φ :=




Φ1,p̃+1×p̃+1 0p̃+1×q−p̃

0q−p̃×1 Φ2,q−p̃×q




with

Φ1 =




1 −ϕ1 −ϕ2 · · · −ϕp̃

−ϕ1 1 − ϕ2 −ϕ3 · · · −ϕp̃

−ϕ2 −ϕ1 − ϕ3 1 − ϕ4 · · · −ϕp̃
...

. . .

...
. . .

−ϕp̃−1 −ϕp̃ − ϕp̃−2 −ϕp̃−3 −ϕ1 1 0

−ϕp̃ −ϕp̃−1 −ϕp̃−2 −ϕ1 1




,

Φ2 =




−ϕp̃ −ϕp̃−1 · · · −ϕ1 1

. . . . . .

−ϕp̃ −ϕp̃−1 · · · −ϕ1 1



,

y =
(
∑p
j=0 βj γ̃ (−j) + σ2

ind

∑p
j=0 βj γ̃ (1 − j) · · · ∑p

j=0 βj γ̃ (q − j)

)′

,

which implies Γ0:q = Φ−1y. It remains to specify the covariances between the indicator

and cycle processes γ̃ (k) for k = −p, . . . , q. As above, the covariances can be obtained

using the Yule-Walker equations, i.e.,

γ̃ (0) = E [ct (indt − µind)]
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= E


ct


µ+

p̃∑

i=1

ϕiindt−i +
p∑

j=0

βjct−i + εt − µind






=
p̃∑

i=1

ϕiγ̃ (−i) +
p∑

j=0

βjγc (−j) ,

γ̃ (k) =
p̃∑

i=1

ϕiγ̃ (i+ k) +
p∑

j=0

βjγc (j + k) =
pc∑

j=1

ϕc,j γ̃ (k − j) .

The cycle covariance funtion γc (k) is given by the parameters of the cycle process. We

have that Φ̃Γ̃−p:q = ỹ where Γ̃−p:q := (γ̃ (−p) , . . . , γ̃ (q))′ and

Φ̃ :=




Φ̃1,p+1×p+1+p̃ 0p+1×q−p̃

0q×p+1−pc
Φ̃2,q×pc+q




with

Φ̃1 =




1 −ϕ1 −ϕ2 · · · −ϕp̃
. . . . . .

1 −ϕ1 −ϕ2 · · · −ϕp̃



,

Φ̃2 =




−ϕc,pc
−ϕc,pc−1 · · · −ϕc,1 1

. . . . . .

−ϕc,pc
−ϕc,pc−1 · · · −ϕc,1 1



,

ỹ =
(
∑p
j=0 βjγc (j − p) · · · ∑p

j=0 βjγc (j) 01×q

)′

.

Note that we must have 1 − pc ≥ −p ⇔ p ≥ pc − 1 to be able to retrieve all covariances.

However, if this requirement is not fulfilled, we can simply extend Φ̃1. Finally, Γ̃−p:q =

Φ̃−1ỹ.
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