Package ‘RGAN’

January 20, 2025
Title Generative Adversarial Nets (GAN) in R
Version 0.1.1

Description An easy way to get started with Generative Adversarial Nets (GAN) in R. The GAN algo-
rithm was initially
described by Goodfellow et al. 2014 <https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf>. A GAN can be used to learn the joint distribution of complex data by
comparison. A GAN consists of two neural networks a Generator and a Discrimina-
tor, where the two
neural networks play an adversarial minimax game.
Built-in GAN models make the training of GANSs in R possible in one line and make it easy to
experiment with different design choices (e.g. different network architectures, value func-
tions, optimizers).
The built-in GAN models work with tabular data (e.g. to produce synthetic data) and image data.
Methods to post-
process the output of GAN models to enhance the quality of samples are available.

License MIT + file LICENSE
URL https://github.com/mneunhoe/RGAN

BugReports https://github.com/mneunhoe/RGAN/issues

Encoding UTF-8

RoxygenNote 7.1.2

Imports cli, torch, viridis

NeedsCompilation no

Author Marcel Neunhoeffer [aut, cre] (<https://orcid.org/0000-0002-9137-5785>)
Maintainer Marcel Neunhoeffer <marcel . neunhoeffer@gmail .com>

Repository CRAN

Date/Publication 2022-03-29 18:30:06 UTC

Contents

data_transformer e 2

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://github.com/mneunhoe/RGAN
https://github.com/mneunhoe/RGAN/issues
https://orcid.org/0000-0002-9137-5785

2 data_transformer

DCGAN_Discriminator v v v v e e e e e e e e e e e e e 5
DCGAN_GENEerator v v v v e e e e e e e e e e e 6
Discriminator e e e e e e e e e e e 7
expert_sample_synthetic_data 7
GAN_ITAINET . .« . v v v vt e e e e e e e e e e e e e e e e e e e 8
GAN_update_plot e e 10
GAN_update_plot_image 11
gan_update_Step e e e e e e 12
GAN _value fct e 13
Generator e e e e e e e e e 14
KLWGAN value_fct e e 14
Kkl fake e 15
KLgen e e 15
Kl real e 16
sample_synthetic_data 16
sample_toydata L e e 17
torch_rand_ab 18
WGAN_value_fct e 19
WGAN_weight_clipper e 19
Index 20
data_transformer Data Transformer
Description

Provides a class to transform data for RGAN. Method $new() initializes a new transformer, method
$fit(data) learns the parameters for the transformation from data (e.g. means and sds). Methods
$transform() and $inverse_transform() can be used to transform and back transform a data set
based on the learned parameters. Currently, DataTransformer supports z-transformation (a.k.a. nor-
malization) for numerical features/variables and one hot encoding for categorical features/variables.
In your call to fit you just need to indicate which columns contain discrete features.

Value

A class to transform (normalize or one hot encode) tabular data for RGAN

Methods
Public methods:

e data_transformer$new()

e data_transformer$fit_continuous()

e data_transformer$fit_discrete()

e data_transformer$fit()

* data_transformer$transform_continuous()
* data_transformer$transform_discrete()

data_transformer 3

e data_transformer$transform()

e data_transformer$inverse_transform_continuous()
e data_transformer$inverse_transform_discrete()

e data_transformer$inverse_transform()

e data_transformer$clone()

Method new(): Create a new data_transformer object

Usage:
data_transformer$new()

Method fit_continuous():

Usage:
data_transformer$fit_continuous(column = NULL, data = NULL)

Method fit_discrete():
Usage:
data_transformer$fit_discrete(column = NULL, data = NULL)

Method fit(): Fita data_transformer to data.
Usage:
data_transformer$fit(data, discrete_columns = NULL)
Arguments:
data The data set to transform
discrete_columns Column ids for columns with discrete/nominal values to be one hot en-
coded.
Examples:

data <- sample_toydata()
transformer <- data_transformer$new()
transformer$fit(data)

Method transform_continuous():

Usage:
data_transformer$transform_continuous(column_meta, data)

Method transform_discrete():

Usage:
data_transformer$transform_discrete(column_meta, data)

Method transform(): Transform data using a fitted data_transformer. (From original format to
transformed format.)

Usage:

data_transformer$transform(data)

Arguments:

data The data set to transform

4 data_transformer

Examples:

data <- sample_toydata()

transformer <- data_transformer$new()
transformer$fit(data)

transformed_data <- transformer$transform(data)

Method inverse_transform_continuous():
Usage:
data_transformer$inverse_transform_continuous(meta, data)

Method inverse_transform_discrete():
Usage:
data_transformer$inverse_transform_discrete(meta, data)

Method inverse_transform(): Inverse Transform data using a fitted data_transformer. (From
transformed format to original format.)

Usage:
data_transformer$inverse_transform(data)

Arguments:

data The data set to transform

Examples:

data <- sample_toydata()

transformer <- data_transformer$new()

transformer$fit(data)

transformed_data <- transformer$transform(data)

reconstructed_data <- transformer$inverse_transform(transformed_data)

Method clone(): The objects of this class are cloneable with this method.
Usage:
data_transformer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

Before running the first time the torch backend needs to be installed
torch::install_torch()

Load data

data <- sample_toydata()

Build new transformer

transformer <- data_transformer$new()

Fit transformer to data

transformer$fit(data)

Transform data and store as new object
transformed_data <- transformer$transform(data)
Train the default GAN

DCGAN_Discriminator 5

trained_gan <- gan_trainer(transformed_data)

Sample synthetic data from the trained GAN

synthetic_data <- sample_synthetic_data(trained_gan, transformer)
Plot the results

GAN_update_plot(data = data,

synth_data = synthetic_data,

main = "Real and Synthetic Data after Training")

End(Not run)

et
Method ~data_transformer$fit”
H m o

data <- sample_toydata()
transformer <- data_transformer$new()
transformer$fit(data)

oo
Method ~data_transformer$transform”
H m o

data <- sample_toydata()

transformer <- data_transformer$new()
transformer$fit(data)

transformed_data <- transformer$transform(data)

H m o
Method ~data_transformer$inverse_transform”
e

data <- sample_toydata()

transformer <- data_transformer$new()

transformer$fit(data)

transformed_data <- transformer$transform(data)

reconstructed_data <- transformer$inverse_transform(transformed_data)

DCGAN_Discriminator DCGAN Discriminator

Description

Provides a torch::nn_module with a simple deep convolutional neural net architecture, for use as
the default architecture for image data in RGAN. Architecture inspired by: https://pytorch.
org/tutorials/beginner/dcgan_faces_tutorial.html

Usage

DCGAN_Discriminator(
number_channels = 3,

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

6 DCGAN_Generator

ndf = 64,
dropout_rate = 0.5,
sigmoid = FALSE

)

Arguments

number_channels

The number of channels in the image (RGB is 3 channels)
ndf The number of feature maps in discriminator
dropout_rate The dropout rate for each hidden layer

sigmoid Switch between a sigmoid and linear output layer (the sigmoid is needed for the
original GAN value function)

Value

A torch::nn_module for the DCGAN Discriminator

DCGAN_Generator DCGAN Generator

Description

Provides a torch::nn_module with a simple deep convolutional neural net architecture, for use as
the default architecture for image data in RGAN. Architecture inspired by: https://pytorch.
org/tutorials/beginner/dcgan_faces_tutorial.html

Usage

DCGAN_Generator(
noise_dim = 100,
number_channels = 3,

ngf = 64,
dropout_rate = 0.5
)
Arguments
noise_dim The length of the noise vector per example

number_channels
The number of channels in the image (RGB is 3 channels)

ngf The number of feature maps in generator

dropout_rate The dropout rate for each hidden layer

Value

A torch::nn_module for the DCGAN Generator

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

Discriminator 7

Discriminator Discriminator

Description

Provides a torch::nn_module with a simple fully connected neural net, for use as the default archi-
tecture for tabular data in RGAN.

Usage

Discriminator(
data_dim,
hidden_units = list(128, 128),
dropout_rate = 0.5,
sigmoid = FALSE
)

Arguments

data_dim The number of columns in the data set

hidden_units A list of the number of neurons per layer, the length of the list determines the
number of hidden layers

dropout_rate The dropout rate for each hidden layer

sigmoid Switch between a sigmoid and linear output layer (the sigmoid is needed for the
original GAN value function)

Value

A torch::nn_module for the Discriminator

expert_sample_synthetic_data
Sample Synthetic Data with explicit noise input

Description

Provides a function that makes it easy to sample synthetic data from a Generator

Usage

expert_sample_synthetic_data(g_net, z, device, eval_dropout = FALSE)

8 gan_trainer

Arguments
g_net A torch::nn_module with a Generator
z A noise vector
device The device on which synthetic data should be sampled (cpu or cuda)

eval_dropout Should dropout be applied during inference

Value

Synthetic data

gan_trainer gan_trainer

Description

Provides a function to quickly train a GAN model.

Usage
gan_trainer(
data,
noise_dim = 2,
noise_distribution = "normal”,
value_function = "original”,

data_type = "tabular”,
generator = NULL,
generator_optimizer = NULL,
discriminator = NULL,
discriminator_optimizer = NULL,
base_lr = 1e-04,

ttur_factor = 4,

weight_clipper = NULL,
batch_size = 50,

epochs = 150,
plot_progress = FALSE,
plot_interval = "epoch”,

eval_dropout = FALSE,

synthetic_examples = 500,
plot_dimensions = c(1, 2),
device = "cpu

n

gan_trainer 9

Arguments
data Input a data set. Needs to be a matrix, array, torch::torch_tensor or torch::dataset.
noise_dim The dimensions of the GAN noise vector z. Defaults to 2.

noise_distribution
The noise distribution. Expects a function that samples from a distribution and
returns a torch_tensor. For convenience "normal" and "uniform" will automati-
cally set a function. Defaults to "normal".

value_function The value function for GAN training. Expects a function that takes discriminator
scores of real and fake data as input and returns a list with the discriminator loss
and generator loss. For reference see: . For convenience three loss functions
"original", "wasserstein" and "f-wgan" are already implemented. Defaults to

"original".
data_type "tabular” or "image", controls the data type, defaults to "tabular”.
generator The generator network. Expects a neural network provided as torch::nn_module.

Default is NULL which will create a simple fully connected neural network.

generator_optimizer
The optimizer for the generator network. Expects a torch::optim_xxx function,
e.g. torch::optim_adam(). Default is NULL which will setup torch: :optim_adam(g_net$parameters,
1r =base_1r).

discriminator The discriminator network. Expects a neural network provided as torch::nn_module.
Default is NULL which will create a simple fully connected neural network.
discriminator_optimizer
The optimizer for the generator network. Expects a torch::optim_xxx function,
e.g. torch::optim_adam(). Default is NULL which will setup torch: :optim_adam(g_net$parameters,
1r =base_1lr x ttur_factor).

base_1r The base learning rate for the optimizers. Default is 0.0001. Only used if no
optimizer is explicitly passed to the trainer.

ttur_factor A multiplier for the learning rate of the discriminator, to implement the two time
scale update rule.

weight_clipper The wasserstein GAN puts some constraints on the weights of the discriminator,
therefore weights are clipped during training.

batch_size The number of training samples selected into the mini batch for training. De-
faults to 50.

epochs The number of training epochs. Defaults to 150.
plot_progress Monitor training progress with plots. Defaults to FALSE.

plot_interval Number of training steps between plots. Input number of steps or "epoch".
Defaults to "epoch".

eval_dropout Should dropout be applied during the sampling of synthetic data? Defaults to
FALSE.

synthetic_examples
Number of synthetic examples that should be generated. Defaults to 500. For
image data e.g. 16 would be more reasonable.

10

plot_dimensions

device

Value

GAN_update_plot

If you monitor training progress with a plot which dimensions of the data do
you want to look at? Defaults to c(1, 2), i.e. the first two columns of the tabular
data.

Input on which device (e.g. "cpu" or "cuda") training should be done. Defaults
to "cpu".

gan_trainer trains the neural networks and returns an object of class trained_ RGAN that contains
the last generator, discriminator and the respective optimizers, as well as the settings.

Examples

Not run:

Before running the first time the torch backend needs to be installed
torch::install_torch()

Load data

data <- sample_toydata()

Build new transformer

transformer <- data_transformer$new()

Fit transformer to data

transformer$fit(data)

Transform data and store as new object
transformed_data <- transformer$transform(data)
Train the default GAN

trained_gan <- gan_trainer(transformed_data)

Sample synthetic data from the trained GAN
synthetic_data <- sample_synthetic_data(trained_gan, transformer)
Plot the results

GAN_update_plot(data = data,

synth_data

synthetic_data,

main = "Real and Synthetic Data after Training")

End(Not run)

GAN_update_plot

GAN_update_plot

Description

Provides a function to send the output of a DataTransformer to a torch tensor, so that it can be
accessed during GAN training.

Usage

GAN_update_plot(data, dimensions = c(1, 2), synth_data, epoch, main = NULL)

GAN_update_plot_image 11

Arguments
data Real data to be plotted
dimensions Which columns of the data should be plotted
synth_data The synthetic data to be plotted
epoch The epoch during training for the plot title
main An optional plot title
Value
A function
Examples
Not run:

Before running the first time the torch backend needs to be installed
torch::install_torch()

Load data

data <- sample_toydata()

Build new transformer

transformer <- data_transformer$new()

Fit transformer to data

transformer$fit(data)

Transform data and store as new object

transformed_data <- transformer$transform(data)

Train the default GAN

trained_gan <- gan_trainer(transformed_data)

Sample synthetic data from the trained GAN

synthetic_data <- sample_synthetic_data(trained_gan, transformer)
Plot the results

GAN_update_plot(data = data,

synth_data = synthetic_data,

main = "Real and Synthetic Data after Training")

End(Not run)

GAN_update_plot_image GAN_update_plot_image

Description
Provides a function to send the output of a DataTransformer to a torch tensor, so that it can be
accessed during GAN training.

Usage

GAN_update_plot_image(mfrow = c(4, 4), synth_data)

12 gan_update_step

Arguments

mfrow The dimensions of the grid of images to be plotted

synth_data The synthetic data (images) to be plotted

Value

A function

gan_update_step gan_update_step

Description

Provides a function to send the output of a DataTransformer to a torch tensor, so that it can be
accessed during GAN training.

Usage

gan_update_step(
data,
batch_size,
noise_dim,
sample_noise,
device = "cpu”,
g_net,
d_net,
g_optim,
d_optim,
value_function,
weight_clipper

)
Arguments
data Input a data set. Needs to be a matrix, array, torch::torch_tensor or torch::dataset.
batch_size The number of training samples selected into the mini batch for training. De-
faults to 50.
noise_dim The dimensions of the GAN noise vector z. Defaults to 2.

sample_noise A function to sample noise to a torch::tensor

device Input on which device (e.g. "cpu" or "cuda") training should be done. Defaults
to "cpu".
g_net The generator network. Expects a neural network provided as torch::nn_module.

Default is NULL which will create a simple fully connected neural network.

d_net The discriminator network. Expects a neural network provided as torch::nn_module.
Default is NULL which will create a simple fully connected neural network.

GAN_value_fct 13

g_optim The optimizer for the generator network. Expects a torch::optim_xxx function,
e.g. torch::optim_adam(). Default is NULL which will setup torch: :optim_adam(g_net$parameters,
1r =base_1r).

d_optim The optimizer for the generator network. Expects a torch::optim_xxx function,

e.g. torch::optim_adam(). Default is NULL which will setup torch: :optim_adam(g_net$parameters,
1r =base_1r x ttur_factor).

value_function The value function for GAN training. Expects a function that takes discriminator
scores of real and fake data as input and returns a list with the discriminator loss
and generator loss. For reference see: . For convenience three loss functions
"original", "wasserstein" and "f-wgan" are already implemented. Defaults to
"original".

weight_clipper The wasserstein GAN puts some constraints on the weights of the discriminator,
therefore weights are clipped during training.

Value

A function

GAN_value_fct GAN Value Function

Description

Implements the original GAN value function as a function to be called in gan_trainer. The function
can serve as a template to implement new value functions in RGAN.

Usage

GAN_value_fct(real_scores, fake_scores)

Arguments
real_scores The discriminator scores on real examples ($D(x)$)
fake_scores The discriminator scores on fake examples ($D(G(z))$)
Value

The function returns a named list with the entries d_loss and g_loss

14 KILWGAN value_fct

Generator Generator

Description

Provides a torch::nn_module with a simple fully connected neural net, for use as the default archi-
tecture for tabular data in RGAN.

Usage

Generator(
noise_dim,
data_dim,
hidden_units = 1list(128, 128),
dropout_rate = 0.5

)

Arguments
noise_dim The length of the noise vector per example
data_dim The number of columns in the data set

hidden_units A list of the number of neurons per layer, the length of the list determines the
number of hidden layers

dropout_rate The dropout rate for each hidden layer

Value

A torch::nn_module for the Generator

KLWGAN_value_fct KIWGAN Value Function

Description

Provides a function to send the output of a DataTransformer to a torch tensor, so that it can be
accessed during GAN training.

Usage

KLWGAN_value_fct(real_scores, fake_scores)

Arguments

real_scores The discriminator scores on real examples ($D(x)$)

fake_scores The discriminator scores on fake examples ($D(G(z))$)

kl_fake 15

Value

The function returns a named list with the entries d_loss and g_loss

kl_fake KL WGAN loss on fake examples

Description
Utility function for the kIl WGAN loss for fake examples as described in https://arxiv.org/
abs/1910.09779 and implemented in python in https://github.com/ermongroup/f-wgan.
Usage
kl_fake(dis_fake)

Arguments

dis_fake Discriminator scores on fake examples ($D(G(z))$)

Value

The loss

kl_gen KL WGAN loss for Generator training

Description
Utility function for the kl WGAN loss for Generator training as described in https://arxiv.org/
abs/1910.09779 and implemented in python in https://github.com/ermongroup/f-wgan.
Usage
kl_gen(dis_fake)

Arguments

dis_fake Discriminator scores on fake examples ($D(G(z))$)

Value

The loss

https://arxiv.org/abs/1910.09779
https://arxiv.org/abs/1910.09779
https://github.com/ermongroup/f-wgan
https://arxiv.org/abs/1910.09779
https://arxiv.org/abs/1910.09779
https://github.com/ermongroup/f-wgan

16 sample_synthetic_data

kl_real KL WGAN loss on real examples

Description

Utility function for the kl WGAN loss for real examples as described in https://arxiv.org/abs/
1910.09779 and implemented in python in https://github.com/ermongroup/f-wgan.

Usage

kl_real(dis_real)

Arguments

dis_real Discriminator scores on real examples ($D(x)$)

Value

The loss

sample_synthetic_data Sample Synthetic Data from a trained RGAN

Description

Provides a function that makes it easy to sample synthetic data from a Generator

Usage

sample_synthetic_data(trained_gan, transformer = NULL)

Arguments

trained_gan A trained RGAN object of class "trained_RGAN"

transformer The transformer object used to pre-process the data

Value

Function to sample from a

https://arxiv.org/abs/1910.09779
https://arxiv.org/abs/1910.09779
https://github.com/ermongroup/f-wgan

sample_toydata

Examples

Not run:

Before running the first time the torch backend needs to be installed
torch::install_torch()

Load data

data <- sample_toydata()

Build new transformer

transformer <- data_transformer$new()

Fit transformer to data

transformer$fit(data)

Transform data and store as new object

transformed_data <- transformer$transform(data)

Train the default GAN

trained_gan <- gan_trainer(transformed_data)

Sample synthetic data from the trained GAN

synthetic_data <- sample_synthetic_data(trained_gan, transformer)
Plot the results

GAN_update_plot(data = data,

synth_data = synthetic_data,

main = "Real and Synthetic Data after Training")

End(Not run)

sample_toydata Sample Toydata

Description

Sample Toydata to reproduce the examples in the paper.

Usage

sample_toydata(n = 1000, sd = 0.3, seed = 20211111)

Arguments
n Number of observations to generate
sd Standard deviation of the normal distribution to generate y
seed A seed for the pseudo random number generator

Value

A matrix with two columns x and y

18 torch_rand _ab

Examples

Not run:

Before running the first time the torch backend needs to be installed
torch::install_torch()

Load data

data <- sample_toydata()

Build new transformer

transformer <- data_transformer$new()

Fit transformer to data

transformer$fit(data)

Transform data and store as new object

transformed_data <- transformer$transform(data)

Train the default GAN

trained_gan <- gan_trainer(transformed_data)

Sample synthetic data from the trained GAN

synthetic_data <- sample_synthetic_data(trained_gan, transformer)
Plot the results

GAN_update_plot(data = data,

synth_data = synthetic_data,

main = "Real and Synthetic Data after Training")

End(Not run)

torch_rand_ab Uniform Random numbers between values a and b

Description

Provides a function to sample torch tensors from an arbitrary uniform distribution.

Usage
torch_rand_ab(shape, a = -1, b =1, ...)
Arguments
shape Vector of dimensions of resulting tensor
a Lower bound of uniform distribution to sample from
b Upper bound of uniform distribution to sample from
Potential additional arguments
Value

A sample from the specified uniform distribution in a tensor with the specified shape

WGAN _value_fct 19

WGAN_value_fct WGAN Value Function

Description

Implements the Wasserstein GAN (WGAN) value function as a function to be called in gan_trainer.
Note that for this to work properly you also need to implement a weight clipper (or other procedure)
to constrain the Discriminator weights.

Usage

WGAN_value_fct(real_scores, fake_scores)

Arguments
real_scores The discriminator scores on real examples ($D(x)$)
fake_scores The discriminator scores on fake examples ($D(G(z))$)
Value

The function returns a named list with the entries d_loss and g_loss

WGAN_weight_clipper WGAN Weight Clipper

Description

A function that clips the weights of a Discriminator (for WGAN training).

Usage
WGAN_weight_clipper(d_net, clip_values = c(-0.01, 0.01))

Arguments
d_net A torch::nn_module (typically a discriminator/critic) for which the weights should
be clipped
clip_values A vector with the lower and upper bound for weight values. Any value outside
this range will be set to the closer value.
Value

The function modifies the torch::nn_module weights in place

Index

data_transformer, 2
DCGAN_Discriminator, 5
DCGAN_Generator, 6
Discriminator, 7

expert_sample_synthetic_data, 7

gan_trainer, 8
GAN_update_plot, 10
GAN_update_plot_image, 11
gan_update_step, 12
GAN_value_fct, 13
Generator, 14

kl_fake, 15
kl_gen, 15
kl_real, 16
KLWGAN_value_fct, 14

sample_synthetic_data, 16
sample_toydata, 17

torch_rand_ab, 18

WGAN_value_fct, 19
WGAN_weight_clipper, 19

20

	data_transformer
	DCGAN_Discriminator
	DCGAN_Generator
	Discriminator
	expert_sample_synthetic_data
	gan_trainer
	GAN_update_plot
	GAN_update_plot_image
	gan_update_step
	GAN_value_fct
	Generator
	KLWGAN_value_fct
	kl_fake
	kl_gen
	kl_real
	sample_synthetic_data
	sample_toydata
	torch_rand_ab
	WGAN_value_fct
	WGAN_weight_clipper
	Index

