
Response-Adaptive Randomization in Clinical Trials

Chuyao Xu, Thomas Lumley, Alain Vandal

RARtrials is designed for simulating some popular response-adaptive randomization methods in the literature
with comparisons of each treatment group to a control group under no delay and delayed (time between
treatment and outcome availability) scenarios. All the designs are based on one-sided tests with a choice from
values of ‘upper’ and ‘lower’. The general assumption is that binary outcomes follow Binomial distributions,
while continuous outcomes follow normal distributions. Additionally, the number of patients accrued in the
population follows a Poisson process and users can specify the enrollment rate of patients enrolled in the
trial. The methods included in this R package are as follows:

• The Randomized Play-the-Winner rule for binary outcomes in two-armed trials (Wei and Durham
1978);

• The doubly adaptive biased coin design targeting Neyman allocation and RSIHR allocation using
minimal variance strategy for binary outcomes in trials with up to five arms (A. Biswas and Mandal
2004; Atkinson and Biswas 2013);

• The doubly adaptive biased coin design targeting Neyman allocation and RSIHR allocation using
maximal power strategy for binary outcomes in trials with up to five arms and up to three arms
respectively (Tymofyeyev, Rosenberger, and Hu 2007; Jeon and Hu 2010; Bello and Sabo 2016);

• Neyman allocation (Aa-optimal allocation and A-optimal allocation) and generalised RSIHR alloca-
tion subject to constraints for continuous outcomes with known and unknown variances in trials with
up to five arms (Sverdlov and Rosenberger 2013; A. Biswas and Mandal 2004; Atkinson and Biswas
2013);

• Bayesian response-adaptive randomization using the Thall & Wathen method for binary outcomes
and continuous outcomes with known and unknown variances in trials with up to five arms (Thall and
Wathen 2007);

• The forward-looking Gittins Index rule and controlled the forward-looking Gittins Index rule for
binary outcomes and continuous outcomes with known and unknown variances in trials with up to five
arms (Villar, Wason, and Bowden 2015; Williamson and Villar 2019).

The Randomized Play-the-Winner Rule for Binary Outcomes

The famous Randomized Play-the-Winner rule, proposed by Wei and Durham (1978), has been well studied
over the past decades. Some properties can be summarized as follows:

1.nA/n → qB/(qA + qB) almost surely, with nA representing the random variable for the number of
participants on treatment A, n representing the total sample size, qA and qB representing the probabilities
of failure under treatments A and B, respectively;

2. The maximum likelihood estimators following the Randomized Play-the-Winner rule satisfy
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(convergence in distribution), with pA and pB the probabilities of success under treatments A and B, respec-
tively;
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3. Inference following the Randomized Play-the-Winner rule can be done using standard asymptotic tests.
For a difference of two proportions, we can use a Z2 test statistic, given by

Z2 =
(p̂A − p̂B)2

p̂Aq̂A

nA
+ p̂B q̂B

nB

∣

∣

∣

∣

∣

nA, nB
d→ χ2

1, with nA + nB = n, n → ∞.

When the sample size is large enough,the chi-squared distribution will approximate the distribution of the
test statistic, allowing the selection of a cut-off value to control the type I error and calculate the power.

library(RARtrials)

## Loading required package: pins

#Example: RPTW(1,1) with the first 1 represents the initial number of balls for

#each treatment group in the urn and the second 1 represents the number of balls

#added to the urn when result of each participant becomes available.

#The function call below selects the cut-off value to control the type I error.

set.seed(12345)

sim1a<-lapply(1:5000, function(x){

sim_RPTW(Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=1,na0=1,nb0=1,na1=1,nb1=1,

h=c(0.5,0.5),N2=192,side='upper')})

sum(sapply(sim1a, "[[", 2)>1.988,na.rm=T)/5000 #0.025

#Select a cut-off value to attain type I error 0.025 using the sample size 192

sim1b<-lapply(1:5000, function(x){

sim_RPTW(Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=1,na0=1,nb0=1,na1=1,nb1=1,

h=c(0.5,0.7),N2=192,side='upper',Z=1.988)})

sum(sapply(sim1b, "[[", 1)==1)/5000

#Using the selected cut-off value 1.988, we obtain power 0.7938, which is close to 0.8

#Example: RPTW(1,1) with the first 1 represents the initial number of balls for

#each treatment group in the urn and the second 1 represents the number of balls

#added to the urn when result of each participant becomes available.

#Directly using asymptotic chi-square test which is equivalent to Z test statistics

set.seed(12345)

sim1<-lapply(1:5000, function(x){

sim_RPTW(Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=1,na0=1,nb0=1,na1=1,nb1=1,

h=c(0.5,0.7),N2=192,side='upper')})

sum(sapply(sim1, "[[", 1)==1)/5000

#Using Z test statistics from normal distribution, we obtain power of 0.8038

The doubly Adaptive Biased Coin Design for Binary Outcomes

The doubly adaptive biased coin design is a parametric response-adaptive randomization method from a
frequentist perspective (Rosenberger and Lachin 2015), which can attain any desired allocation ratio R∗.
Hu and Zhang (2004) proposed the formula below with a tuning parameter γ > 0 (with a larger γ reducing
the adaptiveness) to calculate allocation probabilities in two-armed trials, in which ρ(p̂A,t−1, p̂B,t−1) is the
probabilty of allocation to arm A at time t given the estimated probabilities of success in each arm at time
t − 1:

f (0, ρ(p̂A,t−1, p̂B,t−1)) = 1,
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f (1, ρ(p̂A,t−1, p̂B,t−1)) = 0,
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with the generalization to K-armed trials given below
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In Hu & Zhang’s formula, ρ̂∗
k,t−1 is the optimal allocation ratio of arm k up to time t, which can apply the

generalized Neyman allocation to minimize the total sample size given as
√

piqi/
∑K

i=1

√
piqi (A. Biswas and

Mandal 2004; Atkinson and Biswas 2013) or the generalized RSIHR1 allocation to minimize the expected

number of failures given as
√

pk/
∑K

i=1

√
pi (Rosenberger and Lachin 2015). Those formulas can be gener-

alized to K-armed trials from two-armed trials by employing a minimization variance strategy, which aims
to minimize the sum of the variances of the test statistics for all comparisons to the control group. This
package contains functions that return the allocation probabilities given data accumulated at each specified
time point, as well as functions to simulate an actual trial data set.

#Example: The doubly adaptive biased coin design with five arms targeting

#RSIHR allocation using minimal variance strategy with return of allocation

#probabilities before applying Hu \& Zhang's formula.

dabcd_min_var(NN=c(20,23,18,25,27),Ntotal1=c(54,65,72,60,80),armn=5,type='RSIHR',

dabcd=FALSE,gamma=2)

## [1] 0.3014955 0.1942672 0.0960814 0.2887962 0.1193597

#The function call return values:0.3014955 0.1942672 0.0960814 0.2887962 0.1193597

#The doubly adaptive biased coin design with five arms targeting RSIHR

#allocation using minimal variance strategy with return of allocation

#probabilities after applying Hu \& Zhang's formula.

dabcd_min_var(NN=c(20,23,18,25,27),Ntotal1=c(54,65,72,60,80),armn=5,type='RSIHR',

dabcd=TRUE,gamma=2)

## [1] 0.2076180 0.2029166 0.1717949 0.2195535 0.1981169

#The function call return values:0.2076180 0.2029166 0.1717949 0.2195535 0.1981169

The other methods targeting generalized Neyman and RSIHR allocations are given in Tymofyeyev, Rosen-
berger, and Hu (2007) and Jeon and Hu (2010), with modifications in Bello and Sabo (2016), employing a
maximal power strategy, which maximizes the marginal power of a single comparison selected from amongst
all comparisons to the control group. All those methods are implemented without smoothing, contrary to the
original papers referenced in this package, because the smoothing technique does not function as indicated.

1Each letter of RSIHR represents the first character of the names of the individuals who first proposed this rule.
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#Example: The doubly adaptive biased coin design with three arms targeting

#Neyman allocation using maximal power strategy with return of allocation

#probabilities before applying Hu \& Zhang's formula.

dabcd_max_power(NN=c(20,60,60),Ntotal1=c(86,90,90),armn=3,BB=0.1, type='Neyman',dabcd=FALSE)

## [1] 0.4741802 0.2629099 0.2629099

#The function call return values:0.4741802 0.2629099 0.2629099

dabcd_max_power(NN=c(20,33,34),Ntotal1=c(86,78,90),armn=3,BB=0.1, type='Neyman',dabcd=FALSE)

## [1] 0.4433424 0.4566576 0.1000000

#The function call return values:0.4433424 0.4566576 0.1000000

#The doubly adaptive biased coin design with three arms targeting Neyman

#allocation using maximal power strategy with return of allocation

#probabilities after applying Hu \& Zhang's formula.

dabcd_max_power(NN=c(20,60,60),Ntotal1=c(86,90,90),armn=3,BB=0.1, type='Neyman',dabcd=TRUE)

## [1] 0.7626214 0.1186893 0.1186893

#The function call return values:0.7626214 0.1186893 0.1186893

dabcd_max_power(NN=c(20,33,34),Ntotal1=c(86,78,90),armn=3,BB=0.1, type='Neyman',dabcd=TRUE)

## [1] 0.427536837 0.567983270 0.004479893

#The function call return values:0.427536837 0.567983270 0.004479893

A-optimal Allocation, Aa-optimal Allocation and Generalized

RSIHR Allocation for Continuous Outcomes

A-optimal allocation (Sverdlov and Rosenberger 2013) is Neyman allocation for continuous outcomes, which
minimizes the overall variance, and the formula for the probability of allocation to arm k is

ρk =
σk

∑K
i=1 σi

, with k = 1, .., K.

A modification to A-optimal allocation with higher allocation probabilities to the control group is known as
Aa-optimal allocation (Sverdlov and Rosenberger 2013), with formula

ρ1 =
σ1

√
K − 1

σ1

√
K − 1 +

∑K
i=2 σk

, ρk =
σk

σ1

√
K − 1 +

∑K
i=2 σk

, with k = 2, .., K.

The generalized RSIHR allocation for continuous outcomes minimizes

K
∑

i=1

niΨi
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with constraints
σ2

1

n1
+

σ2
k

nk

≤ C, where k = 2, ..., K.

In this formula, Ψi indicates a measure of treatment effectiveness of the i-th treatment, K stands for the
total number of arms and C is some fixed value. The optimal allocation probabilities are given by

ρ1 =

√

w1

Ψ1

√

∑k
i=2 Ψiwi

√

w1

Ψ1

√

∑k
i=2 Ψiwi + w2 + ... + wk

,

ρk =
wk

√

w1

Ψ1

√

∑k
i=2 Ψiwi + w2 + ... + wk

, with k = 2, ..., K.

This package is built on Ψi = P (Xi ≤ c) = Φ[(µA − c)/σA] and wk = σk (Atkinson and Biswas 2013;
Atanu Biswas, Mandal, and Bhattacharya 2011). All of those methods can be applied to scenarios with
either known and unknown variances. In cases where variances are unknown, the unknown parameters are
estimated from the available data.

#Example: Generalized RSIHR optimal allocation with known variances in three-armed trials

set.seed(12345)

#Under the null hypothesis

sim2a<-lapply(1:5000,function(x){sim_RSIHR_optimal_known_var(Pats=10,nMax=50000,

TimeToOutcome=expression(rnorm( length( vStartTime ),30,3)), enrollrate=0.1,N1=12,N2=132,

armn=3,mean=c(9.1/100,9.1/100,9.1/100),sd=c(0.009,0.009,0.009),alphaa=0.025,

armlabel = c(1,2,3),cc=mean(c(9.1/100,9.1/100,9.1/100)),side='lower')})

h0decision<-t(sapply(sim2a, "[[", 1))

sum(h0decision[,1]==1|h0decision[,2]==1)/5000

#Attain lower one-sided type I error of 0.0218 with 5000 simulations

#Under the alternative hypothesis

sim2b<-lapply(1:5000,function(x){sim_RSIHR_optimal_known_var(Pats=10,nMax=50000,

TimeToOutcome=expression(rnorm( length( vStartTime ),30,3)), enrollrate=0.1,N1=12,N2=132,

armn=3,mean=c(9.1/100,8.47/100,8.47/100),sd=c(0.009,0.009,0.009),alphaa=0.025,

armlabel = c(1,2,3),cc=mean(c(9.1/100,8.47/100,8.47/100)),side='lower')})

h1decision<-t(sapply(sim2b, "[[", 1))

sum(h1decision[,1]==1)/5000

sum(h1decision[,2]==1)/5000

sum(h1decision[,1]==1|h1decision[,2]==1)/5000

#Marginal power of rejecting H02 is 0.8472

#Marginal power of rejecting H03 is 0.8432

#Overall power of rejecting H02 or H03 is 0.947

Bayesian Response-Adaptive Randomisation with a Control Group

In this package, Bayesian response-adaptive randomization refers to the Thall & Wathen method with a
control group (Thall and Wathen 2007; Wathen and Thall 2017). This method can be applied not only
to two-armed trials but also to multi-armed trials. Suppose the number of treatment groups is K and the
posterior probabilities are p1, ..., pK considering data available after recruitment of participant t − 1. The
generalized formula of allocation probability for arm k at the recruitment of participant t is given as

pk,t =
Pr(pk = max{p1, ..., pK}|datat−1)γ

∑K
i=1 Pr(pi = max{p1, ..., pK}|datat−1)γ

.
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In this formula, γ is a tuning parameter (with a larger γ increasing the adaptiveness) with commonly
used values γ = 1, 0.5, and n/2N . The posterior probabilities p1, ..., pK are often restricted to [e, 1 − e] for
0 < e < 1/2. The decision rules of this method include three parts (Wathen and Thall 2017):

1. Stop arm k for futility, if Pr(pk > pcontrol + δ|datat−1) < 0.01. It is recommended to choose δ by
simulation to satisfy the futility stopping criterion; δ can take negative values;

2. Randomize the remaining participants at time t only to arms that have not been dropped due to futility;

3. Select the effective arm k at the end of the trial if Pr(pk > pcontrol + δ1|datat−1) > aU .

It should be noted

∗ At the beginning, an initialization period is planned with equal randomization, followed by response-
adaptive randomization.

∗ The trial stops when all arms, except the control, are dropped.

∗ δ1 is the minimal expected effect to be observed at the end of the trial;

∗ There is no early stopping for efficacy;

∗ aU controls the overall Type I error, which is recommended to be obtained by simulations;

∗ More than one arm can be selected as effective at the final stage.

∗ The formula to calculate allocation probability for arm k at the recruitment of participant t is based on
p standing for the success probability. If p stands for the failure probability, the formula can be updated to

pk,t =
Pr(pk = min{p1, ..., pK}|datat−1)γ

∑K
i=1 Pr(pi = min{p1, ..., pK}|datat−1)γ

.

Similarly, the formula in decision rules can be updated to Pr(pcontrol > pk + δ|datat−1) < 0.01 and
Pr(pcontrol > pk + δ1|datat−1) > aU respectively.

∗ All of those formulas above can be generalized to continuous outcomes with p substituted by µ (repre-
senting the mean value).

To take the best advantage of Bayesian adaptive randomization, we can evaluate those rules after every
participant enrolls. But the decision is made only based on participants with available data. In this package,
the prior distributions for different groups can be specified individually, and the corresponding δ, δ1 and aU

can be selected for each group to control the one-sided overall type I error or the nominal alpha at α/(K −1)
for each comparison to the control group.

R code

For binary outcomes, a Beta prior denoted by Beta(α, β) is employed, which is conjugate to the likelihood of
binomial distribution written as B(n, p), resulting in the posterior Beta distribution Beta(α+np, β +n−np).
There are two ways to calculate Pr(pk > pcontrol + δ|datat−1): one is through simulations using Beta
distributions, and the other is through direct integration. The formula for direct integration is given below:

P (X > Y + δ) =

∫ 1

0

P (X > y + δ) dFY (y) =

∫ 1

0

(1 − FX(y + δ))fY (y) dy,

where X and Y are posterior distributions for success probabilities. Similarly, the calculation of Pr(pk =
max{p1, ..., pK}|datat−1) can use the formula

P (X ≤ Y ) =

∫ 1

0

P (X ≤ y) dFY (y) =

∫ 1

0

FX1(y)FX2(y)...FXK
(y)fY (y) dy.

An example of a three-armed trial is given below with some pre-specified parameters from the Beta distri-
bution. Both methods yield similar results, but the latter is quicker.
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#### which.is.max is adapt from 'nnet' package

#### which.is.min is a rewrite from which.is.max

which.is.max <- function(x)

{

y <- seq_along(x)[x == max(x)]

if(length(y) > 1L) sample(y, 1L) else y

}

which.is.min <- function(x)

{

y <- seq_along(x)[x == min(x)]

if(length(y) > 1L) sample(y, 1L) else y

}

#Example: sample code using simulations

set.seed(12345)

#Pre-specified parameters from the Beta distribution for each arm

alpha=c(30,41,35)

beta=c(30,20,27)

#Total number of treatment groups

armn<-3

#Number of treatment groups left at current stage

armleft<-c(1,2,3)

#Store simulation results for each arm

set.seed(12345)

result<-vector("list",length(armleft))

for (j in 1:length(armleft)) {

result[[j]]<- as.data.frame(rbeta(1000000,alpha[armleft[j]],

beta[armleft[j]]))

colnames(result[[j]])<-sprintf("r%s",armleft[j])

}

#Expect the treatment group to have a larger treatment effect compared to the control group

#Combine results into a data frame and select the maximal value of each row

result1<-as.data.frame(do.call(cbind,result))

result1$max<-apply(result1, 1, which.is.max)

#Store results for Pr(p_k>p_{control}+\delta|data_{t-1})

theta1<-vector("list",armn)

#Store results for Pr(p_k=max{p_1,...,p_K}|data_{t-1})

pi<-vector("list",armn)

for (j in 1:length(armleft)) {

theta1[[armleft[j]]]<-sum(result1[,j]>(result1[,1]+0.1))/1000000

pi[[armleft[j]]]<-(sum(result1[,length(armleft)+1]==j)/1000000)

}

do.call(cbind,theta1)

## [,1] [,2] [,3]

## [1,] 0 0.794355 0.347715

#Return results: 0 0.794355 0.347715

do.call(cbind,pi)

## [,1] [,2] [,3]

## [1,] 0.018097 0.879338 0.102565
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#Return results: 0.018097 0.879338 0.102565

#Expect the treatment group to have a smaller treatment effect compared to the control group

#Combine results into a data frame and select the minimal value of each row

result1<-as.data.frame(do.call(cbind,result))

result1$max<-apply(result1, 1, which.is.min)

#Store results for Pr(p_{control}>p_k+\delta|data_{t-1})

theta1<-vector("list",armn)

#Store results for Pr(p_k=min{p_1,...,p_K}|data_{t-1})

pi<-vector("list",armn)

for (j in 1:length(armleft)) {

theta1[[armleft[j]]]<-sum(result1[,j]<(result1[,1]-0.1))/1000000

pi[[armleft[j]]]<-(sum(result1[,length(armleft)+1]==j)/1000000)

}

do.call(cbind,theta1)

## [,1] [,2] [,3]

## [1,] 0 0.001049 0.0335

#Return results: 0 0.001049 0.0335

do.call(cbind,pi)

## [,1] [,2] [,3]

## [1,] 0.755607 0.01215 0.232243

#Return results: 0.755607 0.01215 0.232243

#Example: Sample code using Integration

#Expect the treatment group to have a larger treatment effect compared to the control group

#Calculate results of Pr(p_k>p_{control}+\delta|data_{t-1})

pgreater_beta(a1=alpha[1],b1=beta[1],a2=alpha[2], b2=beta[2],delta=0.1,side='upper')

## [1] 0.7951487

pgreater_beta(a1=alpha[1],b1=beta[1],a2=alpha[3], b2=beta[3],delta=0.1,side='upper')

## [1] 0.3477606

#Return results: 0.7951487 0.3477606

#Calculate results of Pr(p_k=max\{p_1,...,p_K\}|data_{t-1})

pmax_beta(armn=3,a2=alpha[3],b2=beta[3],a3=alpha[2],b3=beta[2],a1=alpha[1],

b1=beta[1],side='upper')

## [1] 0.01796526

pmax_beta(armn=3,a2=alpha[1],b2=beta[1],a3=alpha[3],b3=beta[3],a1=alpha[2],

b1=beta[2],side='upper')

## [1] 0.8788907
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pmax_beta(armn=3,a2=alpha[1],b2=beta[1],a3=alpha[2],b3=beta[2],a1=alpha[3],

b1=beta[3],side='upper')

## [1] 0.1031441

#Return results: 0.01796526 0.8788907 0.1031441

#Expect the treatment group to have a smaller treatment effect compared to the control group

#Calculate results of Pr(p_{control}>p_k+\delta|data_{t-1})

pgreater_beta(a1=alpha[1],b1=beta[1],a2=alpha[2],b2=beta[2],delta=-0.1,side='lower')

## [1] 0.001093548

pgreater_beta(a1=alpha[1],b1=beta[1],a2=alpha[3],b2=beta[3],delta=-0.1,side='lower')

## [1] 0.03348547

#Return results: 0.001093548 0.03348547

#Calculate results of Pr(p_k=min\{p_1,...,p_K\}|data_{t-1})

pmax_beta(armn=3,a2=alpha[3],b2=beta[3],a3=alpha[2],b3=beta[2],a1=alpha[1],

b1=beta[1],side='lower')

## [1] 0.7560864

pmax_beta(armn=3,a2=alpha[1],b2=beta[1],a3=alpha[3],b3=beta[3],a1=alpha[2],

b1=beta[2],side='lower')

## [1] 0.01230027

pmax_beta(armn=3,a2=alpha[1],b2=beta[1],a3=alpha[2],b3=beta[2],a1=alpha[3],

b1=beta[3],side='lower')

## [1] 0.2316133

#Return results: 0.7560864 0.01230027 0.2316133

The selection of aU can be made under the intermediate hypothesis, halfway between the null and alternative
hypotheses. This option arises because the test statistics is Pr(pk > pcontrol +δ|datat), which depends on the
success probability of each treatment group. So, it makes more sense to use the intermediate hypothesis to
avoid excessively large or small power. Suppose the alternative hypothesis is c(0.2, 0.4), then the intermediate
hypothesis use to select aU is c(0.3, 0.3).

set.seed(12345)

#Example: Select a_U by calling brar_au_binary 2000 times

simnull3<-lapply(1:2000,function(x){

set.seed(x)

brar_select_au_binary(Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=0.9,N1=24,armn=2,
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h=c(0.3,0.3),N2=224,tp=1,armlabel=c(1, 2),blocksize=4,alpha1=1,beta1=1,

alpha2=1,beta2=1,minstart=24,deltaa=-0.07,tpp=0,deltaa1=0.1,side='upper')

})

#Obtain the data set of test statistics

simf<-list()

for (xx in 1:2000){

if (any(simnull3[[xx]][24:223,2]<0.01)){

simf[[xx]]<-NA

} else{

simf[[xx]]<-simnull3[[xx]][224,2]

}

}

simf<-do.call(rbind,simf)

#Ensure that around 1% of the trials stop for futility

sum(is.na(simf)) #20

#Select a_U to make sure that an overall type I error is around 0.025

sum(simf>0.7591,na.rm=T)/2000 #0.025

#The selected a_U is 0.7591.

For continuous outcomes with known variance σ2, a normal prior for the mean is commonly used, noted as
θ ∼ N(µ, σ2/n0), where n0 is the implicit sample size in the prior. This prior conjugates to the likelihood
of normal distribution, written as y ∼ N(θ, σ2/n1) with y represents the outcomes of observations and n1

stands for the number of observations, resulting in the posterior normal distribution N( n0µ+n1y
n0+n1

, σ2

n0+n1
).

For continuous outcomes with unknown variance, a Normal-Inverse-Gamma prior is employed with
θ ∼ N(m0, V0σ2

0) and σ2
0 ∼ IG(a0, b0). The prior distribution can be written as NIG(mean =

m0, variance = V0 × σ2
0 , shape = a0, rate = b0), which conjugates to the likelihood of normal distribution

y ∼ N(θ, σ2), resulting in the posterior Normal-Inverse-Gamma distribution NIG(µn, σn, an, bn) =
NIG((m0/V0 +

∑n
i=1 yi)Vn, 1/(1/V0 + n), a0 + n/2, b0 + [m2

0/V0 +
∑n

i=1 y2
i − m2

n/Vn]/2) with yi represents
the outcome of each observation and n stands for the number of observations (Murphy 2007). Following the
integration formulas as before, we should use the marginal posterior distribution of µ which is a t distribution
in this case. According to Murphy (2007), we first convert hyper-parameters of Normal-Inverse-Gamma to
Normal-Inverse-Chi-Squared distribution. Then, we use the marginal posterior of µ given in section 5.3.2 of
Murphy (2007). An example of a three-armed trial with unknown variances is given below with pre-specified
prior distributions.

#Example: Sample code using integration

set.seed(12345)

#Pre-specified hyper-parameters in prior distributions assumed to be the same across all

#three groups.

para<-list(V=1/2,a=0.5,m=9.1/100,b=0.00002)

#Update hyper-parameters from the Normal-Inverse-Gamma distribution to the

#Normal-Inverse-Chi-Squared distribution.

par<-convert_gamma_to_chisq(para)

#Update hyper-parameters with some data

set.seed(123451)

y1<-rnorm(100,0.091,0.009)

par1<-update_par_nichisq(y1, par)

set.seed(123452)

y2<-rnorm(90,0.09,0.009)

par2<-update_par_nichisq(y2, par)

set.seed(123453)

10



y3<-rnorm(110,0.0892,0.009)

par3<-update_par_nichisq(y3, par)

#Calculate results of Pr(p_{control}>p_k+\delta|data_{t-1}) with delta=0

pgreater_NIX(par1,par2,side='lower')

## [1] 0.1959142

pgreater_NIX(par1,par3,side='lower')

## [1] 0.8115975

#Return results: 0.1959142 0.8115975

#Calculate results for Pr(p_k=min{p_1,...,p_K}|data_{t-1})

pmax_NIX(armn=3,par1=par1,par2=par2,par3=par3,side='lower')

## [1] 0.1801636

pmax_NIX(armn=3,par1=par2,par2=par1,par3=par3,side='lower')

## [1] 0.02758085

pmax_NIX(armn=3,par1=par3,par2=par2,par3=par1,side='lower')

## [1] 0.7922556

#Return results: 0.1801636 0.02758085 0.7922556

#Calculate results of Pr(p_k>p_{control}+\delta|data_{t-1}) with delta=0

pgreater_NIX(par1,par2,side='upper')

## [1] 0.8040858

pgreater_NIX(par1,par3,side='upper')

## [1] 0.1884025

#Return results: 0.8040858 0.1884025

#Calculate results for Pr(p_k=max\{p_1,...,p_K\}|data_{t-1})

pmax_NIX(armn=3,par1=par1,par2=par2,par3=par3,side='upper')

## [1] 0.1876753

pmax_NIX(armn=3,par1=par2,par2=par1,par3=par3,side='upper')

## [1] 0.7873393
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pmax_NIX(armn=3,par1=par3,par2=par2,par3=par1,side='upper')

## [1] 0.02498539

#Return results: 0.1876753 0.7873393 0.02498539

#Example: sample code using simulations

#Convert hyper-parameters to Normal-Inverse-Gamma distribution

convert_chisq_to_gamma<-function(cpar){

list(

m=cpar$mu,

V=1/cpar$kappa,

a=cpar$nu/2,

b=cpar$nu*cpar$sigsq/2

)

}

rnigamma<-function(nsim,par){

sigma2<-1/rgamma(nsim, shape=par$a,rate=par$b)

mu<-rnorm(nsim, par$m, sqrt(sigma2*par$V))

cbind(mu,sigma2)

}

set.seed(12341)

NIG_par1<-rnigamma(10000,convert_chisq_to_gamma(par1))

set.seed(12342)

NIG_par2<-rnigamma(10000,convert_chisq_to_gamma(par2))

set.seed(12343)

NIG_par3<-rnigamma(10000,convert_chisq_to_gamma(par3))

#Calculate results of Pr(p_{control}>p_k+\delta|data_{t-1}) with delta=0

#Calculate results for Pr(p_k=min{p_1,...,p_K}|data_{t-1})

dat<-matrix(NA,10000,5)

for (i in 1:10000){

dat1<-rnorm(10000,NIG_par1[i,1],NIG_par1[i,2])

dat2<-rnorm(10000,NIG_par2[i,1],NIG_par2[i,2])

dat3<-rnorm(10000,NIG_par3[i,1],NIG_par3[i,2])

dat[i,1]<-sum(dat1>dat2)/10000

dat[i,2]<-sum(dat1>dat3)/10000

minimal<-base::pmin(dat1,dat2,dat3)

dat[i,3]<-sum(minimal==dat1)/10000

dat[i,4]<-sum(minimal==dat2)/10000

dat[i,5]<-sum(minimal==dat3)/10000

}

mean(dat[,1])

mean(dat[,2])

#Return results: 0.1994863 0.8113217

mean(dat[,3])

mean(dat[,4])

mean(dat[,5])

#Return results: 0.1802267 0.0285785 0.7911948

#Calculate results of Pr(p_k>p_{control}+\delta|data_{t-1}) with delta=0

#Calculate results for Pr(p_k=max{p_1,...,p_K}|data_{t-1})

dat<-matrix(NA,10000,5)

12



for (i in 1:10000){

dat1<-rnorm(10000,NIG_par1[i,1],NIG_par1[i,2])

dat2<-rnorm(10000,NIG_par2[i,1],NIG_par2[i,2])

dat3<-rnorm(10000,NIG_par3[i,1],NIG_par3[i,2])

dat[i,1]<-sum(dat1<dat2)/10000

dat[i,2]<-sum(dat1<dat3)/10000

maximal<-base::pmax(dat1,dat2,dat3)

dat[i,3]<-sum(maximal==dat1)/10000

dat[i,4]<-sum(maximal==dat2)/10000

dat[i,5]<-sum(maximal==dat3)/10000

}

mean(dat[,1])

mean(dat[,2])

#Return results: 0.8005126 0.1886812

mean(dat[,3])

mean(dat[,4])

mean(dat[,5])

#Return results: 0.1910363 0.7838454 0.02511826

#Example: Select a_U by calling brar_au_binary 2000 times

set.seed(12345)

simnull4<-lapply(1:2000,function(x){

brar_select_au_unknown_var(Pats=10,nMax=50000,TimeToOutcome=expression(

rnorm(length( vStartTime ),30, 3)),enrollrate=0.1, N1=192,armn=3,

N2=1920,tp=1,armlabel=c(1,2,3),blocksize=6,

mean=c((9.1/100+8.92/100+8.92/100)/3,(9.1/100+8.92/100+8.92/100)/3,

(9.1/100+8.92/100+8.92/100)/3),sd=c(0.009,0.009,0.009),minstart=192,

deltaa=c(0.00077,0.00077),tpp=1,deltaa1=c(0,0),V01=1/2,a01=0.3,m01=9/100,

b01=0.00001,side='lower')

})

#Obtain the data set of test statistics

simf<-list()

for (xx in 1:2000){

if (any(simnull4[[xx]][192:1919,2]<0.01)){

simf[[xx]]<-NA

} else{

simf[[xx]]<-simnull4[[xx]][1920,2]

}

}

simf4a<-do.call(rbind,simf)

simf<-list()

for (xx in 1:2000){

if (any(simnull4[[xx]][192:1919,3]<0.01)){

simf[[xx]]<-NA

} else{

simf[[xx]]<-simnull4[[xx]][1920,3]

}

}

simf4b<-do.call(rbind,simf)

#Ensure that around 1% of the trials stop for futility
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sum(is.na(simf4a)) #21

sum(is.na(simf4b)) #22

#Select a_U to make sure that the overall type I error is around 0.025

sum((simf4a[,1]>0.9836| simf4b[,1]>0.9836),na.rm=T )/2000#0.025

#The selected a_U is 0.9836.

#Example to obtain the power

sim4<-lapply(1:1000,function(x) {

sim_brar_unknown_var(Pats=10,nMax=50000,TimeToOutcome=expression(rnorm(

length(vStartTime ),30, 3)),enrollrate=0.1,N1=192,armn=3,

a_U=c(0.9836,0.9836),N2=1920,tp=1,armlabel=c(1,2,3),blocksize=6,

mean=c(9.1/100,8.92/100,8.92/100),sd=c(0.009,0.009,0.009),

minstart=192,deltaa=c(0.00077,0.00077),tpp=1,deltaa1=c(0,0),

V01=1/2,a01=0.3,m01=9/100,b01=0.00001,side='lower')

})

decision<-t(sapply(sim4, "[[", 1))

sum(decision[,2]=='Superiorityfinal')/1000 #0.882

#The simulated power from 1000 simulations is 0.882.

Forward-Looking Gittins Index

In response-adaptive randomisation, there is a trade-off between providing the best treatment to the future
participants and providing it to the next participant, known as the learn-versus-earn trade-off (Villar, Wason,
and Bowden 2015). This trade-off involves considering the benefits to participants to be enrolled in the future
and to those currently enrolled. Learning involves exploring long-term value to obtain sufficient benefits,
while earning entails exploiting short-term rewards to identify the best investment options. For historical
reason, this problem is also called the “multi-armed bandit problem”. One of the optimal solution to this
question is provided by the Gittins Index, the basic principle of which is to find the balance between the learn-
versus-earn trade-off, maximizing benefits through Bayesian decision theory. Suppose the t-th participant
is assigned to treatment k with k = 1, ..., K and k = 1 stands for the control group. The mathematical
representation of this problem using a binary endpoint is to determine the allocation sequence

πopt(x̃0) = arg maxπ∈ΠEπ[(

T −1
∑

t=0

K
∑

k=1

dtPkak,t)|x̃0].

In this formula, Pk is the posterior mean,

Π = {ak,t|1 ≤ k ≤ K,

K
∑

k=1

ak,t = 1}

is a family of allocation rules,
x̃0 = (xk,0)K

k=1

is the initial state considering the prior information, d ∈ (0, 1) is a specified discount factor and Eπ[.] is the
average responses of participants attained with prior information. Our objective is to maximize the expected
discounted number of successes as t ranges from 0 to T − 1.

The Gittins Index is the optimal solution to the optimization question above, given by

G(Xk,t) = sup
τ≥1

E[(
∑τ−1

i=0 Pkdi)|Xk,t]
∑τ−1

i=0 di
.
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The numerator is the expected total discounted reward from t to t + τ − 1, and the denominator is the
expected total discounted cost from t to t + τ − 1. So G(Xk,t) means the maximal total benefits based on
the choice of treatment k at stage t.

The motivation for the Gittins Index comes from clinical trials, and there is much more awareness of its
potential practical applications than there are actual implementations (Gittins and Jones, 1979b). Villar,
Wason, and Bowden (2015) proposed the forward-looking Gittins Index algorithm, which allows participants
to enroll in trials with block size m over J stages. The allocation probability of each participant in block j
being assigned to treatment k is given by:

πk,j =
1

m

jm
∑

t=(j−1)m+1

[

∑

x̃t−1∈Ωt−1

Pr(aGI
k,t = 1|X̃t−1 = x̃t−1)×

Pr(X̃t−1 = x̃t−1|X̃(j−1)m = x̃(j−1)m)
]

.

The allocation probability of participants to treatment k depends on the data observed up to the (j−1) block
with (j − 1) × m participants, written as x̃(j−1)m, and the current information at block j with participant

t − 1. Ωt−1 is a set of possible values for X̃t−1 given x̃(j−1)m for participants in block j using Gittins Index
with notation aGI

k,t .

• When j = 1 and all treatment groups have the same prior distributions, pk,j = 1/(K + 1);

• When j ≥ 2, the allocation of the first participant in block j will be determined by the highest
Gittins Index with information from the (j − 1) × m participants;

• When j ≥ 2, the allocation for the second to the last participants in block j will depend on the
posterior distribution of future data given x̃(j−1)m.

To maintain a certain allocation probability to the control group, a slight modification to this rule is in-
troduced with p1,j = 1/K and the allocation probabilities to other treatment groups are calculated using
their corresponding proportions and normalized to sum to 1, this process is known as the controlled forward-
looking Gittins Index rule (Villar, Wason, and Bowden 2015).

An adaptation of the procedure for binary outcome to continuous outcome is provided in Williamson and
Villar (2019). All the theory and rules remain similar, with some updates to the calculation of Gittins indices.
For continuous outcomes with known variances and normal priors, the Gittins Index can be calculated by

G(m̃k,t, σk, nk,t) = m̃k,t + σkG(0, 1, nk
0 + nk,t, d);

For continuous outcomes with unknown variances and Normal-Inverse-Gamma priors, the Gittins Index can
be calculated by

G(m̃k,t, σ̃k,t, nk,t) = m̃k,t + σ̃k,tG(0, 1, nk
0 + nk,t, d),

where m̃k,t and σ̃k,t are the posterior mean and posterior standard deviation of treatment group k at time
t (Gittins, Glazebrook, and Weber 2011).

R code

To avoid the inflation of the type I error probability, it is necessary to select the critical cut-off value
under the null hypothesis by simulation (Smith and Villar 2017). After the cut-off value is selected, call
sim_flgi_binary(), sim_flgi_known_var() or sim_flgi_unknown_var() multiple times to simulate trials
and obtain results of interest. This packages is built to obtain type I error and power based on the frequentist
Z test statistics and T test statistics. Due to the heavy computational burden involved with large sample
sizes, it is recommended to run the code on high-performance platforms. An example is provided below for
continuous outcomes with known variances.
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#Example: The forward-looking Gittins Index rule applied in continuous outcomes with known

#variances

#Select cut-off values under null hypothesis for continuous outcomes with known variances.

#The delayed responses follow a normal distribution with a mean of 30 days, sd of 3 days

#and enrollment rate of 1.

set.seed(123452)

stopbound5<-lapply(1:1000,function(x){flgi_cut_off_known_var(

Gittinstype='KV',df=0.995,Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=1,K=3,

noRuns2=100,Tsize=120,block=8,rule='FLGI PM',prior_n=rep(1,3),prior_mean=rep(0,3),

mean=c(-0.05,-0.05,-0.05),sd=c(0.346,0.346,0.346),side='upper')})

stopbound5a<-do.call(rbind,stopbound5)

sum(stopbound5a[,1]>2.074 | stopbound5a[,2]> 2.074)/1000 #0.05

#The selected cut-off value is 2.074 with an overall upper one-sided type I error of 0.05.

#It is recommended to run more simulations to obtain a more accurate cut-off value.

#Calculate power based on 1000 simulations

set.seed(123452)

sim5<-lapply(1:1000,function(x){sim_flgi_known_var(Gittinstype='KV',

df=0.995,Pats=10,nMax=50000,TimeToOutcome=0,enrollrate=1,K=3,

noRuns2=100,Tsize=120,block=8,rule='FLGI PM', prior_n=rep(1,3),

prior_mean=rep(0,3), mean=c(-0.05,0.07,0.13),sd=c(0.346,0.346,0.346),

stopbound =2.074,side='upper')})

h1decision<-t(sapply(sim5, "[[", 1))

sum(h1decision[,1]==1)/1000 #0.074

sum(h1decision[,2]==1)/1000 #0.244

sum(h1decision[,1]==1 | h1decision[,2]==1)/1000 #0.267

#Marginal power of rejecting H02 is 0.074

#Marginal power of rejecting H03 is 0.244

#Power of rejecting H02 or H03 is 0.267
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