Package 'QuantNorm'

January 20, 2025

- Title Mitigating the Adverse Impact of Batch Effects in Sample Pattern Detection
- **Description** Modifies the distance matrix obtained from data with batch effects, so as to improve the performance of sample pattern detection, such as clustering, dimension reduction, and construction of networks between subjects. The method has been published in Bioinformatics (Fei et al, 2018, <doi:10.1093/bioinformatics/bty117>). Also available on 'GitHub' <https://github.com/tengfei-emory/QuantNorm>.

Version 1.0.5

Depends R (>= 3.3.0)

Imports stats, utils

Suggests GGally, ggplot2, network, pheatmap, rgl, sna

Date 2019-02-01

Author Teng Fei, Tianwei Yu

Maintainer Teng Fei <tfei@emory.edu>

BugReports https://github.com/tengfei-emory/QuantNorm/issues

License GPL (>= 2)

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-02-01 20:23:25 UTC

Contents

brain	. 2
connection.matrix	. 2
ENCODE	. 3
QuantNorm	. 4
	6

Index

brain

Description

Brain RNA-Seq data for both human and mouse.

Usage

```
data(brain)
```

Format

Large matrix with 15041 rows and 62 columns

Source

Zhang, Ye, et al. "Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse." Neuron 89.1 (2016): 37-53.

connection.matrix Construct connection matrix for network analysis

Description

For data with known labels, this function constructs a connection matrix between unique labels, such as unique cell types. The returned matrix can be used for subject-wise network construction.

Usage

```
connection.matrix(mat, label, threshold = 0.15, closest = TRUE)
```

Arguments

mat	n*n dissimilarity (1-correlation) matrix (e.g. obtained by QuantNorm).
label	n-dimension vector for the labels of the n subjects. Replicates share the same label.
threshold	A number between 0 to 1. Two groups will be regarded as connected if average 1-correlation < threshold.
closest	True or False. Whether connect the closest group or not if the closest group cannot satisfy the threshold condition.

Value

Returns the connection matrix between unique labels.

ENCODE

Author(s)

Teng Fei. Email: tfei@emory.edu

References

Fei et al (2018), Mitigating the adverse impact of batch effects in sample pattern detection, Bioinformatics, https://doi.org/10.1093/bioinformatics/bty117.

Examples

```
library(network); library(ggplot2); library(sna); library(GGally) #drawing network graph
data("ENCODE")
#Assigning the batches based on species
batches <- c(rep(1,13),rep(2,13))</pre>
#QuantNorm correction
corrected.distance.matrix <- QuantNorm(ENCODE,batches,method='row/column', cor_method='pearson',
                                        logdat=FALSE,standardize = TRUE, tol=1e-4)
#Constructing connection matrix
mat <- connection.matrix(mat=corrected.distance.matrix,label=colnames(corrected.distance.matrix))</pre>
#Creating network object and plot
ENCODE.net=network(mat, directed=FALSE)
ENCODE.net %v% "Species" <- c(rep('Human',13),rep('Mouse',13))</pre>
p0 <- ggnet2(ENCODE.net,label=TRUE,color = 'Species', palette = "Set2",</pre>
             size = 3, vjust = -0.6,mode = "kamadakawai",label.size = 3,
             color.legend = 'Species')+theme(legend.position = 'bottom')
plot(p0)
```

ENCODE

Normalized ENCODE raw counts data for both human and mouse.

Description

Normalized ENCODE raw counts data for both human and mouse.

Usage

```
data(ENCODE)
```

Format

Large matrix with 10309 rows and 26 columns

Source

Reproduced according to Gilad, Yoav, and Orna Mizrahi-Man. "A reanalysis of mouse ENCODE comparative gene expression data." F1000Research 4 (2015).

QuantNorm	Adjust the distance matrix by quantile normalization for data with
	batch effect

Description

This function applies quantile normalization on the distance matrix (dissimilarity matrix) and return the corrected distance matrix.

Usage

QuantNorm(dat, batch, method = "row/column", cor_method = "spearman", tol = 0.01, max = 50, logdat = TRUE, standardize = FALSE)

Arguments

dat	The original p*n batch effect data with n subjects and p RNA-seq measurements or the n by n distance matrix.
batch	The vector of length n indicating which batch the subjects belong to.
method	Method for the quantile normalization. There are two options: "row/column" and "vectorize".
cor_method	Method to calculate the correlation matrix, can be 'spearman'(default), 'pearson' or 'kendall'.
tol	The tolerance for the iterative method "row/column", which is the Euclidean distance of the vectorized two dissimilarity matrices before and after each iteration.
max	Maximum number of the iteration if the tolerance is not reached.
logdat	Whether conducting log transformation to data or not.
standardize	Whether conducting standardization [(dat - mean)/sqrt(var)] to data or not.

Value

Returns the corrected 1-correlation matrix between subjects.

Author(s)

Teng Fei. Email: tfei@emory.edu

References

Fei et al (2018), Mitigating the adverse impact of batch effects in sample pattern detection, Bioinformatics, https://doi.org/10.1093/bioinformatics/bty117>.

QuantNorm

Examples

library(pheatmap) #drawing heatmap

data("ENCODE") #load the ENCODE data

#Before correction, the subjects are clustered by species
pheatmap(cor(ENCODE))

```
#Assigning the batches based on species
batches <- c(rep(1,13),rep(2,13))</pre>
```

Index

* datasets brain, 2 ENCODE, 3

brain,<mark>2</mark>

connection.matrix, 2

ENCODE, 3

QuantNorm, 4