Package ‘QuAnTeTrack’

May 21, 2025

Title Quantitative Analysis of Tetrapod Trackways
Version 0.1.0

Description A quantitative and automated tool to extract
(palaeo)biological information (i.e., measurements, velocities,
similarity metrics, etc.) from the analysis of tetrapod trackways.
Methods implemented in the package draw from several sources,
including Alexander (1976) <doi:10.1038/261129a0>,
Batschelet (1981, ISBN:9780120810505),
Benhamou (2004) <doi:10.1016/j.jtbi.2004.03.016>,
Bovet and Benhamou (1988) <doi:10.1016/S0022-5193(88)80038-9>,
Cheung et al. (2007) <doi:10.1007/s00422-007-0158-0>,
Cheung et al. (2008) <doi:10.1007/s00422-008-0251-z>,
Cleasby et al. (2019) <doi:10.1007/s00265-019-2761-1>,
Farlow et al. (1981) <doi:10.1038/294747a0>,
Ostrom (1972) <doi:10.1016/0031-0182(72)90049-1>,
Rohlf (2008) <https://sbmorphometrics.org/>,
Rohlf (2009) <https://sbmorphometrics.org/>,
Ruiz and Torices (2013) <doi:10.1080/10420940.2012.759115>,
Scrucca et al. (2016) <do0i:10.32614/RJ-2016-021>,
Thulborn and Wade (1984) <https://www.museum.qld.gov.au/
collections-and-research/memoirs/nature-21/mgm-n21-2-11-thulborn-wade>.

License CCO
Depends R (>=3.5)

Imports berryFunctions (>= 1.21.14), car, dplyr, dtw, dunn.test,
emmeans, geomorph (>=4.0.3), ggplot2 (>= 3.3.6), ggrepel (>=
0.9.1), gridExtra, magrittr, mclust, NISTunits (>= 1.0.1),
schoolmath (>= 0.4.1), shotGroups (>= 0.8.1),
SimilarityMeasures (>= 1.4), splancs (>= 2.1.43), stringr (>=
1.4.0), trajr (>= 1.4.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests knitr, rgl, rmarkdown, testthat (>= 3.0.0)

https://doi.org/10.1038/261129a0
https://doi.org/10.1016/j.jtbi.2004.03.016
https://doi.org/10.1016/S0022-5193(88)80038-9
https://doi.org/10.1007/s00422-007-0158-0
https://doi.org/10.1007/s00422-008-0251-z
https://doi.org/10.1007/s00265-019-2761-1
https://doi.org/10.1038/294747a0
https://doi.org/10.1016/0031-0182(72)90049-1
https://sbmorphometrics.org/
https://sbmorphometrics.org/
https://doi.org/10.1080/10420940.2012.759115
https://doi.org/10.32614/RJ-2016-021
https://www.museum.qld.gov.au/collections-and-research/memoirs/nature-21/mqm-n21-2-11-thulborn-wade
https://www.museum.qld.gov.au/collections-and-research/memoirs/nature-21/mqm-n21-2-11-thulborn-wade

2 Contents

Config/testthat/edition 3

URL https://github.com/MacroFunUV/QuAnTeTrack,

https://macrofunuv.github.io/QuAnTeTrack/

BugReports https://github.com/MacroFunUV/QuAnTeTrack/issues

VignetteBuilder knitr

NeedsCompilation no

Author Humberto G Ferrén [aut, cre, cph] (ORCID:

<https://orcid.org/0000-0003-2254-8424>)

Maintainer Humberto G Ferrén <humberto. ferron@uv.es>

Repository CRAN

Date/Publication 2025-05-21 15:40:02 UTC

Contents
cluster_track e 3
combined_prob L e e e e e 7
mode_velocity 9
MountTom e e e 11
PaluxyRiver e 12
plot_direction 13
POt SIM e e e e 15
plot_track L e 19
plot_velocity e e e e 21
simil DTW_metric e e e 24
simil_Frechet_metric 27
simulate_track L e e 29
subset_track L e 33
test_direction e e 34
test_velocity e 36
tps_to_track 39
track_Intersection e e e e e e e 41
track_param 45
velocity_track e 48

Index 52

https://github.com/MacroFunUV/QuAnTeTrack
https://macrofunuv.github.io/QuAnTeTrack/
https://github.com/MacroFunUV/QuAnTeTrack/issues
https://orcid.org/0000-0003-2254-8424

cluster_track 3

cluster_track Cluster tracks based on movement parameters

Description

cluster_track() clusters trajectories based on various movement and velocity parameters calcu-
lated for each track.

Usage

cluster_track(data, veltrack, variables)

Arguments

data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

veltrack A track velocity R object consisting of a list of lists, where each sublist con-
tains the computed parameters for a corresponding track.

variables A character vector specifying the movement parameters to be used in the clus-
tering analysis. Valid parameter names include: "TurnAng”, "sdTurnAng”,
"Distance”, "Length”, "StLength”, "sdStLength", "Sinuosity"”, "Straightness”,

non n o n

"Velocity"”, "sdVelocity”, "MaxVelocity"”, "MinVelocity".

Details

The cluster_track() function performs a model-based clustering analysis on track parameters
using the Mclust () function from the mclust package.

The function first filters out tracks with fewer than four steps, as these tracks may not provide
reliable movement data. It then calculates various movement parameters for each remaining track,
including turning angles, distances, lengths, sinuosity, straightness, and velocities. Finally, the
selected movement parameters are used as input for clustering the tracks.

If only one parameter is selected, the clustering is performed using equal variance ("E") and vari-
able variance ("V") Gaussian models. If more than one parameter is selected, all Gaussian models
available in mclust.options(”"emModelNames") are considered.

The following movement parameters can be included in the clustering:
* "TurnAng": Turning angles for the track, measured in degrees. This measures how much the
direction of movement changes at each step.

e "sdTurnAng": The standard deviation of the turning angles, indicating how variable the turn-
ing angles are across the track.

4 cluster_track

* "Distance”: The total distance covered by the track, calculated as the sum of the straight-line
distances between consecutive points (in meters).

* "Length"”: The overall length of the track, a straight-line distance between the starting and
ending points (in meters).

* "StlLength”: Step lengths for each step of the track, representing how far the object moved
between two consecutive points (in meters).

» "sdStLength”: The standard deviation of the step lengths, showing how consistent the steps
are in length.

e "Sinuosity”: A measure of the track’s winding nature, calculated as the ratio of the actual
track length to the straight-line distance (dimensionless).

* "Straightness”: The straightness of the track, calculated as the straight-line distance divided
by the total path length (dimensionless).

» "Velocity": The average velocity of the track, calculated as the total distance divided by the
time elapsed between the first and last footprint (in meters per second).

» "sdVelocity”: The standard deviation of the velocity, indicating how much the velocity
fluctuates throughout the track.

* "MaxVelocity"”: The maximum velocity achieved during the track, identifying the fastest
point (in meters per second).

e "MinVelocity": The minimum velocity during the track, identifying the slowest point (in
meters per second).

The cluster_track() function has biological relevance in identifying groups of tracks with simi-
lar movement parameters, providing insights into ecological and behavioral patterns. By clustering
tracks based on characteristics such as sinuosity, velocity, and turning angles, it allows detecting
movement patterns associated with specific behaviors. This can help identify tracks potentially
made by individuals moving together, which is useful for investigating hypotheses on gregarious
behavior, predation strategies, or coordinated movement. Additionally, clustering serves as a pre-
liminary step before similarity tests and simulations, refining track selection and improving hypoth-
esis testing in movement ecology studies.

Value
A track clustering R object consisting of a list containing the following elements:

* matrix: A data frame containing the movement parameters calculated for each track.

* clust: An Mclust object containing the results of the model-based clustering analysis. This
object provides the optimal (according to BIC) mixture model estimation. The output compo-
nents are:

call: The matched call.

data: The input data matrix.

modelName: A character string denoting the model at which the optimal BIC occurs.
— n: The number of observations in the data.
d: The dimension of the data.

G: The optimal number of mixture components.
BIC: All BIC values.

cluster_track

Logo

Author(s)

loglik: The log-likelihood corresponding to the optimal BIC.
df: The number of estimated parameters.

bic: BIC value of the selected model.

icl: ICL value of the selected model.

hypvol: The hypervolume parameter for the noise component if required, otherwise set
to NULL.

parameters: A list with the following components:

x pro: A vector whose k*"* component is the mixing proportion for the k" component
of the mixture model. If missing, equal proportions are assumed.

% mean: The mean for each component. If there is more than one component, this is a
matrix whose k' column is the mean of the k*”* component of the mixture model.

variance: A list of variance parameters for the model. The components of this list
depend on the model specification. See the help file for mclustVariance for details.

z: A matrix whose i,k*" entry is the probability that observation i in the test data belongs
to the k*” class.

classification: The classification corresponding to z, i.e., map(z).
uncertainty: The uncertainty associated with the classification.

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)

Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477

References

Alexander, R. M. (1976). Estimates of speeds of dinosaurs. Nature, 261(5556), 129-130.

Ruiz, J., & Torices, A. (2013). Humans running at stadiums and beaches and the accuracy of speed
estimations from fossil trackways. Ichnos, 20(1), 31-35.

Scrucca L., Fop M., Murphy T. B., & Raftery A. E. (2016) mclust 5: clustering, classification and
density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289-317.

See Also

track_param, velocity_track, Mclust

6 cluster_track

Examples

Example 1: Cluster MountTom tracks using TurnAng and Velocity
H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600,
1.848, 1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784,
1.676, 1.872, 1.648, 1.760, 1.612
) # Hip heights for MountTom tracks
veltrack_MountTom <- velocity_track(MountTom, H = H_mounttom)
resultl <- cluster_track(MountTom, veltrack_MountTom,
variables = c("TurnAng”, "Velocity")

)

resulti$clust$classification

Example 2: Cluster MountTom tracks using Sinuosity and Step Length
result2 <- cluster_track(MountTom, veltrack_MountTom,
variables = c("”Sinuosity”, "StLength")
)
plot(result2$clust)

Example 3: Cluster MountTom tracks using Maximum and Minimum Velocity
result3 <- cluster_track(MountTom, veltrack_MountTom,
variables = c("MaxVelocity"”, "MinVelocity")

)

result3$clust$classification

Example 4: Cluster MountTom tracks using Straightness
result4 <- cluster_track(MountTom, veltrack_MountTom, variables = "Straightness”)
result4$clust$classification

Example 5: Cluster PaluxyRiver tracks using Distance and Straightness
H_paluxyriver <- c(3.472, 2.200) # Hip heights for PaluxyRiver tracks
Method_paluxyriver <- c("A", "B") # Different methods for different tracks
veltrack_PaluxyRiver <- velocity_track(PaluxyRiver,

H = H_paluxyriver,

method = Method_paluxyriver

)

result5 <- cluster_track(PaluxyRiver, veltrack_PaluxyRiver,
variables = c("Distance”, "Straightness")

)

result5$matrix

result5$clust$classification

Example 6: Cluster PaluxyRiver tracks using Length and SD of Velocity
result6 <- cluster_track(PaluxyRiver, veltrack_PaluxyRiver,
variables = c("Length”, "sdVelocity")
)
plot(result6$clust)

Example 7: Cluster PaluxyRiver tracks using TurnAng and SD of TurnAng
result7 <- cluster_track(PaluxyRiver, veltrack_PaluxyRiver,
variables = c("TurnAng”, "sdTurnAng")

)

combined_prob 7

result7$clust$classification

Example 8: Cluster PaluxyRiver tracks using Sinuosity

result8 <- cluster_track(PaluxyRiver, veltrack_PaluxyRiver,
variables = c("Sinuosity")

)

result8$clust$classification

combined_prob Calculate combined probabilities of similarity or intersection metrics
of tracks

Description

combined_prob() calculates the combined probabilities of similarity and intersection metrics de-
rived from different models. The function uses simulation data to extract p-values, providing insight
into the significance of combined metrics across various similarity assessments.

Usage

combined_prob(data, metrics = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

metrics A list of track similarity and/or track intersection R objects derived
from different tests. All tests must be based on the same number of simulations.
Details

The combined_prob() function combines p-values derived from multiple similarity metric tests
and intersection tests. It calculates the combined p-values by assessing the probability of observing
the combined metrics across simulated datasets. This function is particularly useful for comparing
multiple models and evaluating their collective performance in terms of p-values.

Value

A list containing:

P_values (model names)
A matrix of p-values for the combined metrics across all trajectories. Each en-
try represents the probability of observing the combined metrics between the
corresponding pair of trajectories.

8 combined_prob

P_values_combined (model names)

A numeric value representing the overall probability of observing the combined
metrics, across all pairs of trajectories.

Logo

Author(s)
Humberto G. Ferr6n
humberto.ferron @uv.es
Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology
Calle Catedratico José Beltran Martinez, n® 2
46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477

See Also

tps_to_track, simulate_track, track_intersection, simil_DTW_metric, simil_Frechet_metric

Examples

Example 1: "Directed” model and similarity metrics.

s1 <- simulate_track(PaluxyRiver, nsim = 3, model = "Directed”)

DTW1 <- simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s1, superposition = "None")

Frechet1 <- simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s1, superposition = "None")

int1 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s1,
origin.permutation = "None")

combined_prob(PaluxyRiver, metrics = list(DTW1, Frechetl, int1))

Example 2: "Constrained” model and similarity metrics.

s2 <- simulate_track(PaluxyRiver, nsim = 3, model = "Constrained")

DTW2 <- simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s2,
superposition = "None")

Frechet2 <- simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s2,
superposition = "None")

int2 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s2,
origin.permutation = "Min.Box")

combined_prob(PaluxyRiver, metrics = list(DTW2, Frechet2, int2))

Example 3: "Unconstrained” model and similarity metrics.

s3 <- simulate_track(PaluxyRiver, nsim = 3, model = "Unconstrained")

DTW3 <- simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s3,
superposition = "None")

Frechet3 <- simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s3,
superposition = "None")

int3 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s3,

origin.permutation = "Conv.Hull")

mode_velocity 9

combined_prob(PaluxyRiver, metrics = list(DTW3, Frechet3, int3))

mode_velocity Test for steady, acceleration, or deceleration along trajectories

Description

mode_velocity() evaluates the trend in velocity along each trajectory by applying Spearman’s
rank correlation test. The function classifies the trend into "acceleration", "deceleration", or "steady"
based on the correlation and the p-value.

Usage

mode_velocity(trackvel)

Arguments
trackvel A track velocity object where each element corresponds to a track and con-
tains a vector of velocity or relative stride length data.
Details

The mode_velocity() function performs the following operations:

¢ Spearman’s Rank Correlation Test:

— This non-parametric test assesses the strength and direction of a monotonic relationship
between two variables. It does not require assumptions about the normality of data or a
linear relationship between velocity and step number.

— It uses ranks rather than raw values, making it robust to outliers and suitable for detecting
general trends (acceleration or deceleration) in velocity data.
¢ Function Operation:
— For each trajectory in the trackvel list, the function calculates the Spearman correlation
coefficient and the associated p-value between velocity and step number.

— Based on the p-value and correlation coefficient, it classifies the trend as "acceleration",
"deceleration", or "steady".

— If a trajectory contains fewer than 3 steps, the function returns a message indicating in-
sufficient data for correlation analysis.
* Advantages:
— The non-parametric nature allows flexibility with data distributions and reduced sensitiv-
ity to outliers compared to parametric tests.

— Effective for detecting monotonic trends (either increasing or decreasing) when the cor-
relation is statistically significant.

e Limitations:

10 mode_velocity

— May be unreliable with very small sample sizes (e.g., fewer than 3 steps), providing
potentially non-informative results.

— Does not capture the magnitude of change or provide detailed insights into the rate of
acceleration or deceleration.

— Identifies monotonic trends based on statistical significance but does not distinguish be-
tween different types of monotonic relationships (e.g., steady acceleration vs. abrupt
changes).

Interpretation of Results:
* Acceleration: If the p-value is less than 0.05 and the Spearman correlation coefficient is
positive.

* Deceleration: If the p-value is less than 0.05 and the Spearman correlation coefficient is
negative.

» Steady: If the p-value is greater than or equal to 0.05, indicating no significant monotonic
relationship.
Usage Considerations:
* Ensure that each trajectory in trackvel has a sufficient number of steps for meaningful anal-
ysis.

 For more detailed analysis of velocity trends, consider complementary methods such as linear
or non-linear regression, or specialized change point detection techniques.

Value
A list where each element corresponds to a trajectory from the input trackvel and contains:
* correlation: The result of the Spearman correlation test, including the correlation coefficient
and p-value.

* trend: A classification of the trend as "Acceleration", "Deceleration”, or "Steady" based on
the p-value and the correlation coefficient.

» If a trajectory has fewer than 3 steps, the entry contains the message "Less than three steps."

Logo

Author(s)

Humberto G. Ferr6n

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

MountTom

See Also

tps_to_track, velocity_track, plot_velocity

Examples

Example 1: Test for Steady, Acceleration, or Deceleration in MountTom dataset.

Hip heights for each track in the MountTom dataset

H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600,
1.848, 1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784,
1.676, 1.872, 1.648, 1.760, 1.612

)

Calculate velocities using the default Method "A"
V_mounttom <- velocity_track(MountTom, H = H_mounttom)

Test for Steady, Acceleration, or Deceleration
mode_velocity(V_mounttom)

Example 2: Test for Steady, Acceleration, or Deceleration in PaluxyRiver dataset.

Hip heights for each track in the PaluxyRiver dataset
H_paluxyriver <- c(3.472, 2.200)

Specify different methods for different tracks
Method_paluxyriver <- c("A", "B")

Calculate velocities using specified methods
V_paluxyriver <- velocity_track(PaluxyRiver,

H = H_paluxyriver,

method = Method_paluxyriver

)

Test for Steady, Acceleration, or Deceleration
mode_velocity(V_paluxyriver)

11

MountTom MountTom Dinosaur Track Dataset

Description

A ’track’ R object representing dinosaur tracks from the Mount Tom site.

Usage

MountTom

12 PaluxyRiver

Format

A list consisting of two elements:

» Trajectories: A list of interpolated trajectories, where each trajectory is a series of midpoints
between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, metadata (e.g., image ref-
erence, ID), and a marker indicating whether the footprint is actual or inferred.

Source

Ostrom, J. H. (1972). Were some dinosaurs gregarious?. Palacogeography, Palaeoclimatology,
Palacoecology, 11(4), 287-301.

PaluxyRiver PaluxyRiver Dinosaur Track Dataset

Description

A ’track’ R object representing dinosaur tracks from the Paluxy River site.

Usage

PaluxyRiver

Format

A list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is a series of midpoints
between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, metadata (e.g., image ref-
erence, ID), and a marker indicating whether the footprint is actual or inferred.

Source

Farlow, J. O., O’Brien, M., Kuban, G. J., Dattilo, B. F.,, Bates, K. T., Falkingham, P. L., & Pifiuela,
L. (2012). Dinosaur Tracksites of the Paluxy River Valley (Glen Rose Formation, Lower Creta-
ceous), Dinosaur Valley State Park, Somervell County, Texas. In Proceedings of the V International
Symposium about Dinosaur Palaeontology and their Environment (pp. 41-69). Burgos: Salas de
los Infantes.

plot_direction 13

plot_direction Plot direction data in tracks.

Description

plot_direction() generates different types of plots to visualize the direction data from track R
objects. The function allows for the creation of boxplots, polar histograms of step directions, polar
histograms of average directions per track, and faceted polar histograms.

Usage

plot_direction(
data,
plot_type = "boxplot”,
angle_range = 30,
y_labels_position = 90,
y_breaks_manual = NULL

)
Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

plot_type A character string indicating the type of plot to generate. The options are
"boxplot"”, "polar_steps"”, "polar_average”, and "faceted"”. Default is
"boxplot”.

angle_range A numeric value specifying the width of the bins (in degrees) used for polar

plots. Default is 30 degrees.

y_labels_position
A numeric value specifying the position (in degrees) of the y-axis labels in the
polar plots. Default is 90 degrees.

y_breaks_manual
A numeric vector specifying manual breaks for the y-axis in polar plots. If NULL,
the breaks are calculated automatically. Default is NULL.
Details
The plot_direction() function provides four types of plots:

* "boxplot”: A boxplot showing the distribution of step direction values for each track.

* "polar_steps": A polar plot showing the frequency of step in different direction bins.

14 plot_direction

* "polar_average”: A polar plot showing the frequency of average directions per track in
different direction bins.

* "faceted”: A polar plot similar to "polar_steps” but faceted by track.

The angle_range parameter defines the bin width for the polar plots, and y_labels_position
allows for adjusting the position of y-axis labels. The y_breaks_manual parameter lets users man-
ually specify the breaks on the y-axis for finer control over the appearance of the polar plots.

Value

A ggplot object that displays the specified plot type. The ggplot2 package is used for plotting.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

See Also

tps_to_track, test_direction

Examples

Example 1: Boxplot of Direction Data in MountTom Dataset
plot_direction(MountTom, plot_type = "boxplot")

Example 2: Polar Plot of Step Directions in MountTom Dataset
plot_direction(MountTom, plot_type = "polar_steps”)

Example 3: Polar Plot of Average Directions Per Track in MountTom Dataset
plot_direction(MountTom, plot_type = "polar_average")

Example 4: Faceted Polar Plot of Step Directions in MountTom Dataset
plot_direction(MountTom, plot_type = "faceted")

Example 5: Polar Plot with Custom Angle Range in MountTom Dataset
plot_direction(MountTom, plot_type = "polar_steps”, angle_range = 90)

Example 6: Polar Plot with Custom Y-Axis Labels and Breaks in MountTom Dataset
plot_direction(MountTom,

plot_sim 15

plot_type = "polar_steps”, y_labels_position = 0,
y_breaks_manual = c(@, 15, 30, 45, 60)
)

Example 7: Boxplot of Direction Data in PaluxyRiver Dataset
plot_direction(PaluxyRiver, plot_type = "boxplot")

Example 8: Polar Plot of Step Directions in PaluxyRiver Dataset
plot_direction(PaluxyRiver, plot_type = "polar_steps”)

Example 9: Polar Plot of Average Directions Per Track with Custom Breaks in PaluxyRiver Dataset
plot_direction(PaluxyRiver,

plot_type = "polar_average"”,

y_breaks_manual = c(1, 2)

)

Example 10: Faceted Polar Plot of Step Directions in PaluxyRiver Dataset
plot_direction(PaluxyRiver, plot_type = "faceted")

Example 11: Polar Plot of Average Directions Per Track with Custom Breaks in PaluxyRiver Dataset
plot_direction(PaluxyRiver,

plot_type = "polar_average"”,

y_breaks_manual = c(1, 2)

)

Example 12: Polar Plot with Custom Y-Axis Labels in PaluxyRiver Dataset
plot_direction(PaluxyRiver,

plot_type = "polar_steps”,

y_labels_position = -90
)

plot_sim Plot Simulated Tracks

Description

plot_sim() creates a plot that visualizes both simulated and actual movement trajectories. This
function is useful for comparing the simulated tracks generated by simulate_track() with the
observed trajectories to evaluate how well the simulation models represent real movement patterns.

Usage

plot_sim(
data,
sim,
colours_sim = NULL,
alpha_sim = NULL,
lwd_sim = NULL,
colours_act = NULL,

16

plot_sim

alpha_act = NULL,
lwd_act = NULL

Arguments

data

colours_sim

alpha_sim

lwd_sim

colours_act

alpha_act

lwd_act

Details

A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.
* Footprints: A list of data frames containing footprint coordinates, meta-

data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

A track simulation R object, where each object is a list of simulated trajecto-
ries stored as track R objects.

A vector of colors for plotting each set of simulated trajectories. If NULL, the
default color will be black ("#000000").

A numeric value between 0 and 1 for the transparency level of simulated trajec-
tories. The defaultis @.1.

A numeric value for the line width of the simulated trajectory lines. The default
is 0.5.

A vector of colors for plotting actual trajectories. If NULL, the default color will
be black ("#000000").

A numeric value between 0 and 1 for the transparency level of actual trajectories.
The defaultis 0. 6.

A numeric value for the line width of the actual trajectory lines. The default is
0.8.

The function uses ggplot2 to create a plot with the following components:

» Simulated trajectories are displayed with paths colored according to the colours_sim param-
eter, with the specified transparency alpha_sim and line width lwd_sim.

» Actual trajectories are overlaid in the colors specified by colours_act, with a transparency
level alpha_act and line width 1wd_act to provide a clear comparison.

Value

A ggplot object displaying the simulated and actual trajectories.

Logo

plot_sim 17

Author(s)

Humberto G. Ferr6n

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

See Also

tps_to_track, simulate_track

Examples

Example 1: Simulate tracks using data from the Paluxy River
Default model (Unconstrained movement)
simulated_tracks <- simulate_track(PaluxyRiver, nsim = 3)

Plot simulated tracks with default settings and actual tracks
plot_sim(PaluxyRiver, simulated_tracks)

Example 2: Simulate tracks using the "Directed” model, representing movement toward a
resource
simulated_tracks_directed <- simulate_track(PaluxyRiver, nsim = 3, model = "Directed”)

Plot simulated tracks with specific colors and transparency for "Directed” model
plot_sim(PaluxyRiver, simulated_tracks_directed,
colours_sim = c("#E69FQQ", "#56B4E9"),
alpha_sim = 0.4, 1lwd_sim = 1, colours_act = c("black”, "black"), alpha_act = 0.7,
lwd_act = 2
)

Example 3: Simulate tracks using the "Constrained” model, representing movement along
a feature
simulated_tracks_constrained <- simulate_track(PaluxyRiver, nsim = 3, model = "Constrained")

Plot simulated tracks with a different color scheme and width for "Constrained” model
plot_sim(PaluxyRiver, simulated_tracks_constrained,

colours_sim = c("#E69FQQ", "#56B4E9"),

alpha_sim = 0.6, lwd_sim = 0.1, alpha_act = 0.5, lwd_act = 2
)

Example 4: Simulate tracks using the "Unconstrained” model (random exploratory
movement)
simulated_tracks_unconstrained <- simulate_track(PaluxyRiver, nsim = 3, model = "Unconstrained")

Plot simulated tracks with default colors and increased transparency for "Unconstrained”
model

plot_sim

plot_sim(PaluxyRiver, simulated_tracks_unconstrained,
colours_sim = c("#E69FQ@", "#56B4E9"),
alpha_sim = 0.2, lwd_sim = 1, colours_act = c("#E69F@0", "#56B4E9"), alpha_act = 0.9,
lwd_act = 2

)

Subsetting trajectories with four or more steps in the Mount Tom dataset
sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))

Example 5: Simulate tracks using data from Mount Tom
simulated_tracks_mt <- simulate_track(sbMountTom, nsim = 3)

Plot simulated tracks with default settings and actual tracks from Mount Tom
plot_sim(sbMountTom, simulated_tracks_mt)

Example 6: Simulate tracks using the "Directed” model for Mount Tom
simulated_tracks_mt_directed <- simulate_track(sbMountTom, nsim = 3, model = "Directed”)

Plot simulated tracks with specific colors and transparency for "Directed” model for Mount
Tom
plot_sim(sbMountTom, simulated_tracks_mt_directed, colours_sim = c(
"#E69F0Q", "#56B4E9",
"#QQ9E73", "#FOE442", "#0072B2", "#D55EQQ", "#CC79A7", "#999999", "#F4A300",
"#6C6C6C", "#1F77B4"
), alpha_sim = 0.3, lwd_sim = 1.5, alpha_act = 0.8, lwd_act = 2)

Example 7: Simulate tracks using the "Constrained” model for Mount Tom
simulated_tracks_mt_constrained <- simulate_track(sbMountTom, nsim = 3, model = "Constrained”)

Plot simulated tracks with different color scheme and increased line width for "Constrained”
model
plot_sim(sbMountTom, simulated_tracks_mt_constrained, colours_sim = c(
"#E41A1C", "#377EB8",
"#4DAF4A", "#FF7F0Q", "#F781BF", "#A65628", "#FFFF33", "#8DD3C7", "#FB8072",
"#80BF91", "#F7F7F7"
), alpha_sim = 0.5, lwd_sim = 0.2, alpha_act = 0.6, lwd_act = 2)

Example 8: Simulate tracks using the "Unconstrained” model for Mount Tom
simulated_tracks_mt_unconstrained <- simulate_track(sbMountTom, nsim = 3, model = "Unconstrained”)

Plot simulated tracks with a different color scheme and transparency for "Unconstrained” model
plot_sim(sbMountTom, simulated_tracks_mt_unconstrained, colours_sim = c(
"#6BAED6", "#FF7F00Q",
"#1F77B4", "#D62728", "#2CA02C", "#9467BD", "#8C564B", "#E377C2", "#7FTFTF",
"#BCBD22", "#17BECF"
), alpha_sim = 0.2, lwd_sim = 0.5, colours_act = c(
"#6BAED6" ,
"#FF7F0Q", "#1F77B4", "#D62728", "#2CA02C", "#9467BD", "#8C564B", "#E377C2",
"#7F7F7F", "#BCBD22", "#17BECF"
), alpha_act = 1, lwd_act = 2)

plot_track

19

plot_track

Plot tracks and footprints

Description

plot_track() visualizes track and footprint data in various ways, allowing for the plotting of
trajectories, footprints, or both combined, with customizable aesthetics.

Usage

plot_track(

data,

plot = "FootprintsTracks”,
colours = NULL,

cex.f = NULL,
shape.f = NULL,
alpha.f = NULL,
cex.t = NULL,
alpha.t = NULL,
plot.labels = NULL,
labels = NULL,
box.p = NULL,
cex.l = NULL,
alpha.l = NULL

)

Arguments

data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

plot Type of plot to generate. Options are "FootprintsTracks” (default), "Tracks”,
or "Footprints”. Determines what elements are included in the plot.

colours A vector of colors to be used for different tracks. If NULL, defaults to black. The
length of this vector should match the number of tracks in the data.

cex.f The size of the footprint points. Default is 2. 5.

shape.f A vector of shapes to be used for footprints in different tracks. If NULL, defaults
to 19 (solid circle). The length of this vector should match the number of tracks
in the data.

alpha.f The transparency of the footprint points. Default is 0. 5.

cex.t

The size of the track lines. Default is 0. 5.

20

alpha.t
plot.labels
labels

box.p

cex.1
alpha.l

Value

plot_track

The transparency of the track lines. Default is 1.
Logical indicating whether to add labels to each track. Default is FALSE.

A vector of labels for each track. If NULL, labels are automatically generated
from track names.

Padding around label boxes, used only if plot.labels is TRUE. Adjusts the
spacing around the label text.

The size of the labels. Default is 3. 88.
The transparency of the labels. Default is . 5.

A ggplot object that displays the specified plot type, including tracks, footprints, or both, from
track R objects. The ggplot2 package is used for plotting.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)

Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2
46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477

See Also

tps_to_track

Examples

Example 1: Basic Plot with Default Settings - MountTom Dataset
plot_track(MountTom)

Example 2: Basic Plot with Default Settings - PaluxyRiver Dataset
plot_track(PaluxyRiver)

Example 3: Plot Tracks Only - MountTom Dataset
plot_track(MountTom, plot = "Tracks")

Example 4: Plot Footprints Only - PaluxyRiver Dataset
plot_track(PaluxyRiver, plot = "Footprints”)

Example 5: Custom Colors for Tracks - MountTom Dataset

plot_velocity 21

custom_colors <- c(
"#008000", "#0QQOFF", "#FF00Q00", "#800080", "#FFA500", "#FFCQCB", "#FFFF0Q",
"#QOFFFF", "#A52A2A", "#FFQOFF", "#808080", "#000000", "#006400", "#00008B",
"#8B000Q", "#FF8C0Q", "#008B8B", "#A9A9A9", "#000080", "#808000", "#800000",
"#008080", "#FFD700"

)

plot_track(MountTom, colours = custom_colors)

Example 6: Larger Footprints and Track Lines - PaluxyRiver Dataset
plot_track(PaluxyRiver, cex.f = 5, cex.t = 2)

Example 7: Semi-Transparent Footprints and Tracks - MountTom Dataset
plot_track(MountTom, alpha.f = 0.5, alpha.t = 0.5)

Example 8: Different Shapes for Footprints - PaluxyRiver Dataset
plot_track(PaluxyRiver, shape.f = c(16, 17))

Example 9: Plot with Labels for Tracks - MountTom Dataset
labels <- paste("Track"”, seqg_along(MountTom[[1]1]))
plot_track(MountTom, plot.labels = TRUE, labels = labels, cex.1l =4, box.p=0.3, alpha.1=0.7)

Example 10: Custom Colors and Shapes for Footprints Only - PaluxyRiver Dataset
plot_track(PaluxyRiver, plot = "Footprints”, colours = c("purple”, "orange"), shape.f = c(15, 18))

Example 11: Larger Line Size & Custom Colors for Tracks Only - MountTom Dataset
plot_track(MountTom, plot = "Tracks”, cex.t = 1.5, colours = custom_colors)

Example 12: Black Footprints and Tracks with Labels - PaluxyRiver Dataset
plot_track(PaluxyRiver,

colours = NULL, shape.f = c(16, 16), plot.labels = TRUE,

labels = c("Saurpod”, "Theropod”), cex.l = 2, alpha.l = 0.5
)

plot_velocity Plot trajectories colored by velocity or relative stride length

Description

plot_velocity() creates a plot of trajectories, colored by either velocity or relative stride length
from track and track velocity R objects. The function uses ggplot2 package for visualization
and allows customization of line width and color gradients.

Usage

plot_velocity(
data,
trackvel,
param = NULL,
lwd = NULL,

22

colours
legend = NULL

)

Arguments

data

trackvel

param

1wd
colours

legend

Details

plot_velocity

NULL,

A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

A track velocity R object consisting of a list where each element corresponds
to a track and contains velocity or relative stride length data.

A character string specifying the parameter to plot. Options are:

* "V" for velocity.

* "RSL" for relative stride length. If NULL, the default value "V" will be used.
Numeric. Line width for the plotted trajectories. Default is 1.
A vector of colors to use for the gradient. Default is a predefined set of colors.

Logical. If TRUE, the legend will be shown. If FALSE, the legend will be re-
moved. Default is TRUE.

The function creates a plot where each trajectory is colored based on the specified parameter (V"
for velocity or "RSL" for relative stride length). The ggplot2 package is used for plotting.

The color gradient for the parameter is applied using scale_color_gradientn(). The color palette
can be customized via the colours argument.

Value

A ggplot object showing the trajectories colored by the specified parameter.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)

Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477

plot_velocity 23

See Also

tps_to_track, velocity_track, scale_color_gradientn

Examples

Example 1: Plot Trajectories Colored by Velocity with Default Settings (MountTom dataset)

Hip heights for each track in the MountTom dataset

H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600, 1.848,
1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784, 1.676, 1.872,
1.648, 1.760, 1.612

)

Calculate velocities using the default Method "A"
V_mounttom <- velocity_track(MountTom, H = H_mounttom)

Plot trajectories colored by velocity
plot1 <- plot_velocity(MountTom, V_mounttom, param = "V")
print(plot1)

Example 2: Plot Trajectories Colored by Relative Stride Length with Default Settings
(PaluxyRiver dataset)

Hip heights for each track in the PaluxyRiver dataset
H_paluxyriver <- c(3.472, 2.200)

Specify different methods for different tracks
Method_paluxyriver <- c("A", "B")

Calculate velocities using specified methods
V_paluxyriver <- velocity_track(PaluxyRiver, H = H_paluxyriver, method = Method_paluxyriver)

Plot trajectories colored by relative stride length
plot2 <- plot_velocity(PaluxyRiver, V_paluxyriver, param = "RSL")
print(plot2)

Example 3: Plot Trajectories Colored by Velocity with Custom Line Width and Colors
(MountTom dataset)

Custom colors and line width
custom_colours <- c("blue”, "green”, "yellow”, "red")
custom_lwd <- 2

Plot trajectories with custom colors and line width
plot3 <- plot_velocity(MountTom, V_mounttom,

param = "V" lwd = custom_lwd,
colours = custom_colours

)

print(plot3)

Example 4: Plot Trajectories Colored by Relative Stride Length with Custom Line Width

24

simil DTW_metric

and No Legend (PaluxyRiver dataset)

Custom colors and line width
custom_colours_rsl <- c("purple”, "orange"”, "pink"”, "gray")
custom_lwd_rsl <- 1.5

Plot trajectories with custom colors, line width, and no legend
plot4 <- plot_velocity(PaluxyRiver, V_paluxyriver,

param = "RSL", lwd = custom_lwd_rsl,
colours = custom_colours_rsl, legend = FALSE
)
print(plot4)
simil_DTW_metric Similarity metric using Dynamic Time Warping (DTW)
Description

simil_DTW_metric() computes similarity metrics between two or more trajectories using Dynamic
Time Warping (DTW). It allows for different superposition methods to align trajectories before
calculating the DTW metric. The function also supports testing with simulations to calculate p-
values for the DTW distance metrics.

Usage

simil_DTW_metric(data, test = NULL, sim = NULL, superposition = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

e Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

test Logical; if TRUE, the function compares the observed DTW distances against
simulated trajectories and calculates p-values. Default is FALSE.
sim A track simulation R object consisting of a list of simulated trajectories to

use for comparison when test = TRUE.

superposition A character string indicating the method used to align trajectories. Options are
"None", "Centroid”, or "Origin". Default is "None".

simil DTW_metric 25

Details

The simil_DTW_metric() function calculates the similarity between trajectories using the Dy-
namic Time Warping (DTW) algorithm from the dtw package. The dtw() function is used with
the dist.method argument set to "Euclidean” for computing the local distances between points
in the trajectories.

DTW aligns two time series by minimizing the cumulative distance between their points, creating
an optimal alignment despite variations in length or temporal distortions. The algorithm constructs
a distance matrix where each element represents the cost of aligning points between the two series
and finds a warping path through this matrix that minimizes the total distance. The warping path is
contiguous and monotonic, starting from the bottom-left corner and ending at the top-right corner
(Cleasby et al., 2019).

DTW measures are non-negative and unbounded, with larger values indicating greater dissimilarity
between the time series. This method has been used in various contexts, including ecological studies
to analyze and cluster trajectory data (Cleasby et al., 2019).

Potential limitations and biases of DTW include sensitivity to noise and outliers, computational
complexity, and the need for appropriate distance metrics. Additionally, DTW may not always ac-
count for all structural differences between trajectories and can be biased by the chosen alignment
constraints. While DTW can handle trajectories of different lengths due to its elastic nature, having
trajectories of similar lengths can improve the accuracy and interpretability of the similarity mea-
sure. Similar lengths result in a more meaningful alignment and can make the computation more
efficient. When trajectories differ significantly in length, preprocessing or normalization might be
necessary, and careful analysis is required to understand the alignment path. The function’s flex-
ibility in handling different lengths allows it to be applied in various contexts. However, large
differences in trajectory lengths might introduce potential biases that should be considered when
interpreting the results.

The function offers three different superposition methods to align the trajectories before DTW() is
applied:

* "None": No superposition is applied.

* "Centroid”: Trajectories are shifted to align based on their centroids.

* "Origin": Trajectories are shifted to align based on their starting point.

If test = TRUE, the function can compute p-values by comparing the observed DTW distances with
those generated from a set of simulated trajectories. The p-values are calculated for both individual
trajectory pairs and for the entire set of trajectories.

Value
A track similarity R object consisting ofa list containing the following elements:

DTW_distance_metric
A matrix containing the pairwise DTW distances between trajectories.
DTW_distance_metric_p_values
(If test is TRUE) A matrix containing the p-values for the pairwise DTW dis-
tances.
DTW_metric_p_values_combined
(If test is TRUE) The overall p-value for the combined DTW distances.

26 simil DTW_metric

DTW_distance_metric_simulations
(If test is TRUE) A list of DTW distance matrices from each simulated dataset.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron @uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

References

Cleasby, 1. R., Wakefield, E. D., Morrissey, B. J., Bodey, T. W., Votier, S. C., Bearhop, S., & Hamer,
K. C. (2019). Using time-series similarity measures to compare animal movement trajectories in
ecology. Behavioral Ecology and Sociobiology, 73, 1-19.

See Also

tps_to_track, simulate_track, dtw

Examples

Example 1: Simulating tracks using the "Directed” model and comparing DTW distance
in the PaluxyRiver dataset

s1 <- simulate_track(PaluxyRiver, nsim = 3, model = "Directed”)
simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s1, superposition = "None")

Example 2: Simulating tracks using the "Constrained” model and comparing DTW distance
in the PaluxyRiver dataset

s2 <- simulate_track(PaluxyRiver, nsim = 3, model = "Constrained")
simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s2, superposition = "None")

Example 3: Simulating tracks using the "Unconstrained” model and comparing DTW distance
in the PaluxyRiver dataset

s3 <- simulate_track(PaluxyRiver, nsim = 3, model = "Unconstrained”)
simil_DTW_metric(PaluxyRiver, test = TRUE, sim = s3, superposition = "None")

Example 4: Simulating and comparing DTW distance in the MountTom dataset using the
"Centroid” superposition method

sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))
s4 <- simulate_track(sbMountTom, nsim = 3)

simil_DTW_metric(sbMountTom, test = TRUE, sim = s4, superposition = "Centroid”)

simil_Frechet_metric 27

Example 5: Simulating and comparing DTW distance in the MountTom dataset using the
"Origin" superposition method

sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))
s5 <- simulate_track(sbMountTom, nsim = 3)

simil_DTW_metric(sbMountTom, test = TRUE, sim = s5, superposition = "Origin")

simil_Frechet_metric Similarity metric using Fréchet distance

Description

simil_Frechet_metric() computes similarity metrics between two or more trajectories using the
Fréchet distance. It allows for different superposition methods to align trajectories before calculat-
ing the Fréchet distance metrics. The function also supports testing with simulations to calculate
p-values for the Fréchet distance metrics.

Usage

simil_Frechet_metric(data, test = FALSE, sim = NULL, superposition = "None")

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

test Logical; if TRUE, the function compares the observed Fréchet distances against
simulated trajectories and calculates p-values. Default is FALSE.
sim A track simulation R object consisting of a list of simulated trajectories to

use for comparison when test = TRUE.

superposition A character string indicating the method used to align trajectories. Options are
"None", "Centroid”, or "Origin". Default is "None".

Details

The simil_Frechet_metric() function calculates the similarity between trajectories using the
Frechet() function from the SimilarityMeasures package.

The Fréchet distance is a measure of similarity between two curves or continuous trajectories, which
takes into account both the order and location of points within the trajectories (Besse et al. 2015).
The distance can be described by the analogy of a person walking a dog on an extendable leash
(Aronov et al. 2006). Both the person and the dog move along their respective trajectories, with
each able to adjust their speed but not retrace their steps. The Fréchet distance is the minimum leash
length required to keep the dog connected to the person throughout the walk (Cleasby et al., 2019).

28

simil_Frechet_metric

Unlike other trajectory comparison techniques, such as Dynamic Time Warping, the Fréchet dis-
tance focuses on the overall shape of the trajectories rather than matching specific points. As a
result, it is sensitive to noise because all points of the compared trajectories are considered in its
calculation. However, it can still be a powerful tool for trajectory clustering and comparison, par-
ticularly when shape is the primary concern (Cleasby et al., 2019).

Note that when comparing real trajectories that are very disparate or those simulated under an un-
constrained method, the resulting trajectories may not be suitable for Fréchet distance calculations.
In such cases, the Fréchet distance is returned as -1 to indicate an invalid measurement.

The function offers three different superposition methods to align the trajectories before Frechet ()
is applied:

* "None": No superposition is applied.

* "Centroid": Trajectories are shifted to align based on their centroids.

e "Origin": Trajectories are shifted to align based on their starting point.
If test = TRUE, the function can compute p-values by comparing the observed Fréchet distances

with those generated from a set of simulated trajectories. The p-values are calculated for both
individual trajectory pairs and for the entire set of trajectories.

Value

A track similarity R object consisting ofa list containing the following elements:

Frechet_distance_metric
A matrix containing the pairwise Frechet distances between trajectories.
Frechet_distance_metric_p_values
(If test is TRUE) A matrix containing the p-values for the pairwise Frechet
distances.
Frechet_metric_p_values_combined
(If test is TRUE) The overall p-value for the combined Frechet distances.
Frechet_distance_metric_simulations
(If test is TRUE) A list of Frechet distance matrices from each simulated dataset.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

simulate_track 29

References

Cleasby, 1. R., Wakefield, E. D., Morrissey, B. J., Bodey, T. W., Votier, S. C., Bearhop, S., & Hamer,
K. C. (2019). Using time-series similarity measures to compare animal movement trajectories in
ecology. Behavioral Ecology and Sociobiology, 73, 1-19.

See Also

tps_to_track, simulate_track, Frechet

Examples

Example 1: Simulating tracks using the "Directed” model and comparing Frechet distance
in the PaluxyRiver dataset

s1 <- simulate_track(PaluxyRiver, nsim = 3, model = "Directed"”)
simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s1, superposition = "None")

Example 2: Simulating tracks using the "Constrained” model and comparing Frechet distance
in the PaluxyRiver dataset using the "Centroid” superposition method

s2 <- simulate_track(PaluxyRiver, nsim = 3, model = "Constrained")
simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s2, superposition = "Centroid")

Example 3: Simulating tracks using the "Unconstrained” model and comparing Frechet distance
in the PaluxyRiver dataset using the "Origin” superposition method

s3 <- simulate_track(PaluxyRiver, nsim = 3, model = "Unconstrained")
simil_Frechet_metric(PaluxyRiver, test = TRUE, sim = s3, superposition = "Origin")
simulate_track Simulate tracks using different models
Description

simulate_track() simulates movement trajectories based on an original set of tracks. Three
movement models are available for simulation, each reflecting different levels of constraint in move-
ment patterns. These models can represent biological or environmental constraints, such as move-
ment along coastlines, rivers, or towards resources like water or food.

Usage

simulate_track(data, nsim = NULL, model = NULL)

Arguments

data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

30 simulate_track

e Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

nsim The number of simulations to run. Defaults to 1000 if not specified.

model The type of movement model to use. Options are "Directed”, "Constrained”,
or "Unconstrained”. Defaults to "Unconstrained” if not provided.

Details
This function simulates movement trajectories based on the following models:

* Directed: This model simulates movement that follows a specific direction navigating with
a compass (i.e., a directed walk/allothetic directed walk/oriented path) (Cheung et al., 2007,
2008). The trajectory is constrained by both the angular and linear properties of the original
track, with minor deviations allowed to reflect natural variability.

— Angular constraints: The trajectory closely follows a specific direction, maintaining
the overall angular orientation of the original track. Deviations of consecutive steps
are governed by the angular standard deviation calculated from the original track using
TrajAngles().

— Linear constraints: Step lengths are constrained to the mean of the original track’s step
lengths, with variability allowed according to the standard deviation of step lengths com-
puted with TrajStepLengths().

— Starting direction: Fixed to the original direction (overall angular orientation) of the
track.

This model is ideal for simulating movement directed toward a specific resource or constrained by
natural barriers, with a relatively fixed direction and minor deviations.

* Constrained: This model simulates movement that correspond to a correllated random walk/idiothetic
directed walk (Kareiva & Shigesada, 1983), corresponding to an animal navigating without a
compass (Cheung et al., 2008), while still maintaining certain angular and linear characteris-
tics of the original track. It provides more flexibility than the Directed model but is not entirely
random like the Unconstrained model.

— Angular constraints: The trajectory does not follow a specific direction. Deviations
of consecutive steps are governed by the angular standard deviation calculated from the
original track using TrajAngles().

— Linear constraints: Step lengths are constrained to the mean of the original track’s step
lengths, with variability allowed according to the standard deviation of step lengths com-
puted with TrajStepLengths().

— Starting direction: Fixed to the original direction (overall angular orientation) of the
track.

This model is suitable for scenarios where movement is influenced by external constraints but allows
for some degree of random exploration.

* Unconstrained: This model simulates movement that correspond to a correllated random
walk/idiothetic directed walk (Kareiva & Shigesada, 1983), corresponding to an animal nav-
igating without a compass (Cheung et al., 2008), while still maintaining certain angular and
linear characteristics of the original track.

simulate_

track 31

— Angular constraints: The trajectory does not follow a specific direction. Deviations
of consecutive steps are governed by the angular standard deviation calculated from the
original track using TrajAngles().

— Linear constraints: Step lengths are constrained to the mean of the original track’s step
lengths, with variability allowed according to the standard deviation of step lengths com-
puted with TrajStepLengths().

— Starting direction: Randomly determined.

This model is suitable for simulating exploratory or dispersal behavior in open environments, where
movement is random and not influenced by specific constraints.

Note: Simulations cannot be applied to trajectories with fewer than four steps as the standard devi-
ations of angles and step lengths cannot be computed for such short trajectories. Consider using the
subset_track() function to filter tracks with four or more steps.

The function utilizes the trajr package for key calculations:

TrajGenerate(): Generates a new trajectory based on random or directed movement models,
constrained by specified parameters.

TrajStepLengths(): Calculates the step lengths (distances between consecutive points) of
the original trajectory.

TrajAngles(): Computes the angles between consecutive segments of the trajectory, used to
maintain directional movement in constrained models.

TrajRotate(): Rotates the trajectory by a specified angle to match the original direction or a
random angle for unconstrained models.

TrajTranslate(): Translates the simulated trajectory to start at the same geographic location
as the original.

The NISTdegTOradian() function from the NISTunits package is used to convert angles from
degrees to radians.

Value

A track simulation R object consisting of a list of simulated trajectories stored as track R ob-

jects.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)

Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2
46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477

32 simulate_track

References

Cheung, A., Zhang, S., Stricker, C., & Srinivasan, M. V. (2007). Animal navigation: the difficulty
of moving in a straight line. Biological cybernetics, 97, 47-61.

Cheung, A., Zhang, S., Stricker, C., & Srinivasan, M. V. (2008). Animal navigation: general
properties of directed walks. Biological cybernetics, 99, 197-217.

See Also

tps_to_track, plot_sim, subset_track, TrajGenerate, TrajStepLengths, TrajAngles, TrajRotate,
TrajTranslate, NISTdegTOradian

Examples

Example 1: Simulate tracks using data from the Paluxy River
Default model (Unconstrained movement)
simulated_tracks <- simulate_track(PaluxyRiver, nsim = 3)

Example 2: Simulate tracks using the "Directed” model, representing movement
toward a resource (e.g., water source)
simulated_tracks_directed <- simulate_track(PaluxyRiver, nsim = 3, model = "Directed”)

Example 3: Simulate tracks using the "Constrained” model, representing movement
along a geographic feature (e.g., coastline)
simulated_tracks_constrained <- simulate_track(PaluxyRiver, nsim = 3, model = "Constrained"”)

Example 4: Simulate tracks using the "Unconstrained” model (random exploratory movement)
simulated_tracks_unconstrained <- simulate_track(PaluxyRiver, nsim = 3, model = "Unconstrained")

Subsetting trajectories with four or more steps in the MountTom dataset
sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))

Example 5: Simulate tracks using data from Mount Tom
Default model (Unconstrained movement)
simulated_tracks_mt <- simulate_track(sbMountTom, nsim = 3)

Example 6: Simulate tracks using the "Directed” model for Mount Tom, representing
directed movement
simulated_tracks_mt_directed <- simulate_track(sbMountTom, nsim = 3, model = "Directed”)

Example 7: Simulate tracks using the "Constrained” model for Mount Tom, representing
constrained movement
simulated_tracks_mt_constrained <- simulate_track(sbMountTom, nsim = 3, model = "Constrained")

Example 8: Simulate tracks using the "Unconstrained” model for Mount Tom, representing
random exploratory movement
simulated_tracks_mt_unconstrained <- simulate_track(sbMountTom, nsim = 3, model = "Unconstrained")

subset_track 33

subset_track Subset tracks

Description

subset_track() is a function that subsets tracks from a list of track data based on the specified
indices.

Usage
subset_track(data, tracks = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

tracks A numeric vector specifying the indices of tracks to subset. The default is to
include all tracks.
Details

This function subsets both the Trajectories and Footprints elements of the input data based
on the provided vector of indices. It allows users to focus on a specific subset of tracks for further
analysis or visualization, particularly when working with large datasets containing numerous tracks.

Value

A track R object that contains only the specified subset of tracks. The structure of the returned
object mirrors the input structure but includes only the selected tracks.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

34 test_direction

See Also

tps_to_track

Examples

Example 1: Subset the first three tracks of MountTom dataset.
subset_data <- subset_track(MountTom, tracks = c(1:3))

Example 2: Subset the tracks at indices 5, 7, and 10.
subset_data <- subset_track(MountTom, tracks = c(5, 7, 10))

test_direction Test for differences in direction means with pairwise comparisons

Description

test_direction() evaluates differences in mean direction across different tracks using a specified
statistical test. It includes options for ANOVA, Kruskal-Wallis test, and Generalized Linear Models
(GLM), and checks for assumptions such as normality and homogeneity of variances. For datasets
with more than two tracks, it performs pairwise comparisons to identify specific differences between
tracks.

Usage

test_direction(data, analysis = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

e Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

analysis A character string specifying the type of analysis: "ANOVA", "Kruskal-Wallis",
or "GLM". Default is "ANOVA".
Details

The test_direction() function performs the following operations:

¢ Condition Testing:

— Normality: Shapiro-Wilk test for normality on step direction data within each track.
— Homogeneity of Variances: Levene’s test for equal variances across tracks.

* Statistical Analysis:

test_direction 35

Value

— ANOVA: Compares step mean directions across tracks, assuming normality and homo-
geneity of variances. Includes Tukey’s HSD post-hoc test for pairwise comparisons.

— Kruskal-Wallis Test: Non-parametric alternative to ANOVA for comparing step median
directions across tracks when assumptions are violated. Includes Dunn’s test for pairwise
comparisons.

— GLM: Generalized Linear Model with a Gaussian family for comparing step means if
ANOVA assumptions are not met. Pairwise comparisons in the GLM are conducted us-
ing estimated marginal means (least-squares means) with the emmeans package, which
computes differences between group means while adjusting for multiple comparisons us-
ing Tukey’s method.

Direction Measurement:

— The direction is measured in degrees. The reference direction, or O degrees, is considered
to be along the positive x-axis. Angles are measured counterclockwise from the positive
x-axis, with 0 degrees pointing directly along this axis.

A list with the results of the statistical analysis and diagnostic tests:

Logo

normality_results: A matrix of test statistics and p-values from the Shapiro-Wilk test for
each track, with rows for the test statistic and p-value, and columns for each track.

homogeneity_test: The result of Levene’s test, including the p-value for homogeneity of
variances.

ANOVA (If analysis is "ANOVA"): A list containing the ANOVA table and Tukey HSD post-hoc
test results.

Kruskal_Wallis (If analysis is "Kruskal-Wallis"): A list containing the Kruskal-Wallis
test result and Dunn’s test post-hoc results.

GLM (If analysis is "GLM"): A summary of the GLM fit and pairwise comparisons.

Author(s)

Humberto G. Ferrén

humberto.ferron @uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)

Cavanilles Institute of Biodiversity and Evolutionary Biology
Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

See Also

tps_to_track, plot_direction

36 test_velocity

Examples

Example 1: Test for Differences in Direction Means with Pairwise Comparisons in MountTom dataset
test_direction(MountTom, analysis = "ANOVA")

Example 2: Test for Differences in Direction Means with Pairwise Comparisons in MountTom dataset
test_direction(MountTom, analysis = "Kruskal-Wallis")

Example 3: Test for Differences in Direction Means with Pairwise Comparisons in MountTom dataset
test_direction(MountTom, analysis = "GLM")

Example 4: Test for Differences in Direction Means with Pairwise Comparisons in PaluxyRiver
dataset
test_direction(PaluxyRiver, analysis = "ANOVA")

Example 5: Test for Differences in Direction Means with Pairwise Comparisons in PaluxyRiver
dataset

test_direction(PaluxyRiver, analysis = "Kruskal-Wallis")

Example 6: Test for Differences in Direction Means with Pairwise Comparisons in PaluxyRiver

dataset
test_direction(PaluxyRiver, analysis = "GLM")
test_velocity Test for differences in velocity means with pairwise comparisons
Description

test_velocity() evaluates differences in velocity means across different tracks using a specified
statistical test. It includes options for ANOVA, Kruskal-Wallis test, and Generalized Linear Models
(GLM), and checks for assumptions such as normality and homogeneity of variances. For datasets
with more than two tracks, it performs pairwise comparisons to identify specific differences between
tracks.

Usage
test_velocity(data, trackvel, plot = FALSE, analysis = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

trackvel A track velocity R object consisting of a list where each element corresponds

to a track and contains velocity or relative stride length data.

test_velocity 37

plot A logical value indicating whether to plot a boxplot of velocities by track (de-
fault is FALSE).

analysis A character string specifying the type of analysis: "ANOVA", "Kruskal-Wallis”,
or "GLM". Default is "ANOVA".

Details

The test_velocity function performs the following operations:

* Condition Testing:

— Normality: Shapiro-Wilk test for normality on velocity data within each track.
— Homogeneity of Variances: Levene’s test for equal variances across tracks.

* Statistical Analysis:

— ANOVA: Compares mean velocities across tracks, assuming normality and homogeneity
of variances. Includes Tukey’s HSD post-hoc test for pairwise comparisons.

— Kruskal-Wallis Test: Non-parametric alternative to ANOVA for comparing median ve-
locities across tracks when assumptions are violated. Includes Dunn’s test for pairwise
comparisons.

— GLM: Generalized Linear Model with a Gaussian family for comparing means if ANOVA
assumptions are not met. Pairwise comparisons in the GLM are conducted using esti-
mated marginal means (least-squares means) with the emmeans package, which com-
putes differences between group means while adjusting for multiple comparisons using
Tukey’s method.

 Plotting:
— If plot is TRUE, a boxplot of velocities by track is generated.

Value

A list with the results of the statistical analysis and diagnostic tests:
* normality_results: A matrix of test statistics and p-values from the Shapiro-Wilk test for
each track, with rows for the test statistic and p-value, and columns for each track.

* homogeneity_test: The result of Levene’s test, including the p-value for homogeneity of
variances.

* ANOVA (If analysis is "ANOVA"): A list containing the ANOVA table and Tukey HSD post-hoc
test results.

* Kruskal_Wallis (If analysis is "Kruskal-Wallis"): A list containing the Kruskal-Wallis
test result and Dunn’s test post-hoc results.

* GLM (If analysis is "GLM"): A summary of the GLM fit and pairwise comparisons.
* plot (If plot is TRUE): A boxplot of velocities by track is generated and displayed.

Logo

38 test_velocity

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

See Also

tps_to_track, velocity_track

Examples

Example 1: Test for Differences in Velocity Means with Pairwise Comparisons in Trajectories
in MountTom dataset.

Hip heights for each track in the MountTom dataset

H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600, 1.848,
1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784, 1.676, 1.872,
1.648, 1.760, 1.612

)

Calculate velocities using the default Method "A"
V_mounttom <- velocity_track(MountTom, H = H_mounttom)

Test for Differences in Velocity Means with Pairwise Comparisons
test_velocity(MountTom, V_mounttom)

Example 2: Test for Differences in Velocity Means with Pairwise Comparisons in Trajectories
in PaluxyRiver dataset.

Hip heights for each track in the PaluxyRiver dataset
H_paluxyriver <- c(3.472, 2.200)

Specify different methods for different tracks
Method_paluxyriver <- c("A", "B")

Calculate velocities using specified methods
V_paluxyriver <- velocity_track(PaluxyRiver, H = H_paluxyriver, method = Method_paluxyriver)

Test for Differences in Velocity Means with Pairwise Comparisons
test_velocity(PaluxyRiver, V_paluxyriver)

tps_to_track

39

tps_to_track

Transform a *.tps file into a track R object

Description

tps_to_track() reads a *.tps file containing footprint coordinates of one or several tracks and
transforms it into a track R object.

Usage

tps_to_track(file, scale = NULL, missing = FALSE, NAs = NULL, R.L.side = NULL)

Arguments
file
scale

missing

NAs

R.L.side

Details

A *.tps file containing (X,y) coordinates of footprints in tracks.
A numeric value specifying the scale in meters per pixel.

A logical value indicating whether there are missing footprints in any track to
be interpolated: TRUE, or FALSE (the default).

A matrix with two columns indicating which missing footprints will be interpo-
lated. The first column gives the number of the track containing missing foot-
prints, and the second column gives the number of the footprint that is missing
within this track. The number of rows is equal to the total number of missing
footprints in the sample.

A character vector specifying the side of the first footprint of each track. Only
needed if missing is set to TRUE. The length of the vector must be equal to the
total number of tracks in the sample.

e "L": first footprint corresponds to the left foot.

* "R": first footprint corresponds to the right foot.

It is highly recommended that the *.tps file is built using the TPS software (Rohlf 2008, 2009).
Tracks with a different number of footprints (i.e., landmarks) are allowed. This function transforms
the coordinates of the footprints of each track into a set of trajectory coordinates. Each point of the
trajectory is calculated as:

Point;(z,y) = (Footprint;(x,y) + Footprint;y1(x,y)/2

The number of points of the resulting trajectory is 7 footprints — 1.

If missing is set to TRUE, missing footprints can be interpolated. This interpolation is based on
adjacent footprints and the provided side information.

40 tps_to_track

Value
A track R object, which is a list consisting of two elements:
* Trajectories: A list of interpolated trajectories, where each trajectory is a series of mid-
points between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, metadata (e.g., image
reference, ID), and a marker indicating whether the footprint is actual or inferred.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

References

Farlow, J. O., O’Brien, M., Kuban, G. J., Dattilo, B. F., Bates, K. T., Falkingham, P. L., & Pifiuela,
L. (2012). Dinosaur Tracksites of the Paluxy River Valley (Glen Rose Formation, Lower Creta-
ceous), Dinosaur Valley State Park, Somervell County, Texas. In Proceedings of the V International
Symposium about Dinosaur Palaeontology and their Environment (pp. 41-69). Burgos: Salas de
los Infantes.

Ostrom, J. H. (1972). Were some dinosaurs gregarious?. Palaecogeography, Palaeoclimatology,
Palacoecology, 11(4), 287-301.

Rohlf, F. J. 2008. TPSUTIL. Version 1.40. Department of Ecology and Evolution, State University
of New York. Available at https://sbmorphometrics.org/.

Rohlf, F. J. 2009. tpsDig. Version 2.14. Department of Ecology and Evolution, State University of
New York. Available at https://sbmorphometrics.org/.

Examples

Example 1: Tracks without missing footprints. Based on the Paluxy River
dinosaur chase sequence (Farlow et al., 2011).

Load the example TPS file provided in the QuAnTeTrack package.

This TPS data includes footprint coordinates for different tracks,

along with associated metadata.

tpsPaluxyRiver <- system.file("extdata”, "PaluxyRiver.tps"”, package = "QuAnTeTrack")

Call the tps_to_track function to convert the TPS data in the file

https://sbmorphometrics.org/
https://sbmorphometrics.org/

track_intersection 41

into a track object. The 'scale' argument sets the scaling factor

for the coordinates, and 'missing=FALSE' indicates that no landmarks

are missing in the dataset.

tps_to_track(tpsPaluxyRiver, scale = 0.004341493, missing = FALSE, NAs = NULL)

Example 2: Tracks with missing footprints. Based on dinosaur tracks from
the Mount Tom (Ostrom, 1972).

Load the example TPS file provided in the QuAnTeTrack package.

This TPS data includes footprint coordinates for different tracks,

along with associated metadata.

tpsMountTom <- system.file("extdata”, "MountTom.tps”, package = "QuAnTeTrack”)

Define a matrix representing the footprints that are missing from the dataset.
In this example, the matrix 'NAs' specifies that footprint 7 is missing in track 3.
NAs <- matrix(c(7, 3), nrow = 1, ncol = 2)

Call the tps_to_track function, which will convert the TPS data in the file
to a track object. The 'scale' argument sets the scaling factor for the coordinates,
'missing' specifies whether missing footprints should be handled, 'NAs' provides
the missing footprints matrix, and 'R.L.side' specifies which side (Right or Left)
is the first footprint of each track.
tps_to_track(tpsMountTom,
scale = 0.004411765, missing = TRUE, NAs = NAs,
R.L.side = c(
"R, "L", "L", "L", "R", "L", "R", "R", "L", "L", "L",
sL®,ovL™, "R", "R", "L", "R", "R", "L", "R", "R",

"Ry R
)
)
track_intersection Calculate intersection metrics in tracks
Description

track_intersection() calculates the number of unique intersections between trajectories. The
function also supports testing with simulations and different permutation procedures for the coordi-
nates of the simulated trajectories’ origins to compute p-values. This allows for a robust assessment
of the intersection metrics, enabling users to evaluate the significance of the observed intersections
in relation to simulated trajectories.

Usage
track_intersection(
data,
test = NULL,

H1 = NULL,

42

track_intersection

sim = NULL,
origin.permutation = NULL,
custom.coord = NULL

Arguments

data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

e Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

test Logical; if TRUE, the function compares the observed intersection metrics against.
Default is FALSE.

H1 A character string specifying the alternative hypothesis to be tested. Options are
"Lower"” for testing whether the observed intersections are significantly lower
than the simulated ones (e.g., coordinated or gregarious movement), or "Higher"”
for testing whether the observed intersections are significantly higher than the
simulated ones (e.g., predatory or chasing events).

sim A track simulation R object consisting of a list of simulated trajectories to
use for comparison when test = TRUE.

origin.permutation
A character string specifying the method for permutation of the coordinates
of the simulated trajectories’ origins. Options include "None”, "Min.Box",
"Conv.Hull"”, or "Custom”. Default is "None".

custom. coord A matrix of custom coordinates that define the vertices of an area for permuta-
tion of the coordinates of the simulated trajectories’ origins.

Details

The track_intersection() function is designed to calculate the number of unique intersections
between trajectories and to evaluate their statistical significance through hypothesis testing based
on simulated tracks. This process provides a robust framework for comparing observed intersec-
tions against those expected under random conditions, allowing users to test specific behavioral
hypotheses related to the movement patterns of trackmakers.

Hypothesis testing is controlled by the H1 argument, which defines the alternative hypothesis
to be evaluated. This argument is crucial for interpreting the statistical results, as it determines
whether the function will test for reduced or increased intersection counts compared to simulated
trajectories.

The H1 argument accepts two possible values:

* "Lower”: This option tests whether the observed intersections are significantly lower than
those generated by simulations. This scenario corresponds to hypotheses involving coordi-
nated or gregarious movement, where animals moving in parallel or in a group (e.g., hunting
packs or social gatherings) would produce fewer intersections than expected under random
conditions.

track_intersection 43

* "Higher": This option tests whether the observed intersections are significantly higher than
those generated by simulations. It applies to scenarios where predatory or chasing inter-
actions are likely, such as when one trackmaker follows or crosses the path of another. This
behavior results in more intersections than what would occur randomly.

The selection of the H1 argument must be consistent with the behavioral hypothesis being tested. For
example, use "Lower"” when investigating group movement or cooperative behavior, and "Higher"
when analyzing predatory or competitive interactions. The function will automatically adjust the
calculation of p-values to reflect the selected H1. If the argument is left NULL, an error will be
triggered, indicating that users must explicitly specify the hypothesis to be tested.

The interpretation of the combined p-value returned by the function is directly influenced by the
choice of H1, as it determines whether the statistical comparison aims to detect a reduction or an
increase in intersection counts compared to the simulated dataset.

In addition to hypothesis testing, the track_intersection() function offers several options for
altering the initial positions of simulated tracks through the origin.permutation argument. The
available options include:

* "None": Simulated trajectories are not shifted and are compared based on their original start-
ing positions.

* "Min.Box": Trajectories are randomly placed within the minimum bounding box surround-
ing the original starting points.

e "Conv.Hull": Trajectories are placed within the convex hull that encompasses all original
starting points, providing a more precise representation of the area occupied by the tracks.

* "Custom”: Allows users to define a specific region of interest by providing a matrix of coordi-
nates (custom. coord) that specifies the vertices of the desired area. This option is particularly
useful when certain spatial features or environmental conditions are known to constrain move-
ment.

The choice of origin.permutation should reflect the nature of the behavioral hypothesis be-
ing tested. For example, using "None” is most appropriate when testing how intersections com-
pare under scenarios where trackmakers originate from specific locations. In contrast, options like
"Min.Box", "Conv.Hull", or "Custom” are suitable when evaluating how intersections would dif-
fer if the tracks originated from a broader or predefined area.

The track_intersection() function also allows for integration with similarity metrics computed
using simil_DTW_metric() and simil_Frechet_metric(). This combination of intersection
counts and similarity metrics can provide a more comprehensive analysis of how trackmakers in-
teracted, whether their movements were coordinated or independent, and whether their interactions
were consistent with the hypothesized behavioral patterns.

Overall, the selection of H1 and origin.permutation should be carefully considered in light of the
specific hypotheses being tested. By combining intersection metrics with similarity measures, users
can obtain a deeper understanding of the behavioral dynamics underlying the observed trackways.

Value

A track intersection R object consisting of a list containing the following elements:

44 track_intersection

Intersection_metric
A matrix of unique intersection counts between trajectories. Each entry repre-
sents the number of unique intersection points between the corresponding pair
of trajectories.

Intersection_metric_p_values
(If test = TRUE) A matrix of p-values associated with the intersection metrics,
calculated through permutations of simulated trajectory origins. Each entry re-
flects the probability of observing an intersection count as extreme as the ob-
served one, given the null hypothesis of no difference.

Intersection_metric_p_values_combined
(If test = TRUE) A numeric value representing the combined p-value for all in-
tersections, indicating the overall significance of the intersection metrics across
all pairs of trajectories.

Intersection_metric_simulations
(If test = TRUE) A list containing matrices of intersection counts for each simu-
lation iteration, allowing for further inspection of the distribution of intersections
across multiple randomized scenarios.

Logo

Author(s)

Humberto G. Ferr6n

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

See Also

tps_to_track, simulate_track, simil_DTW_metric, simil_Frechet_metric

Examples
Example 1: Intersection metrics in the PaluxyRiver dataset.
s1 <- simulate_track(PaluxyRiver, nsim = 5, model = "Directed")
int1 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s1,
origin.permutation = "None")
print(int1)

Example 2: Using "Min.Box"” origin permutation in PaluxyRiver dataset.

s2 <- simulate_track(PaluxyRiver, nsim = 5, model = "Constrained")

int2 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s2,
origin.permutation = "Min.Box")

track_param

print(int2)

Example 3: Using "Conv.Hull"” origin permutation in PaluxyRiver dataset.

45

s3 <- simulate_track(PaluxyRiver, nsim = 5, model = "Unconstrained")

int3 <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower"”, sim = s3,
origin.permutation = "Conv.Hull")

print(int3)

Example 4: Using "Min.Box" origin permutation in MountTom subset.

sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))

s4 <- simulate_track(sbMountTom, nsim = 5)

int4 <- track_intersection(sbMountTom, test = TRUE, H1 = "Higher", sim = s4,
origin.permutation = "Min.Box")

print(int4)

Example 5: Customized origin permutation in MountTom subset.

sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))

s5 <- simulate_track(sbMountTom, nsim = 5)

area_origin <- matrix(c(50, 5, 10, 5, 10, 20, 50, 20), ncol = 2, byrow = TRUE)

int5 <- track_intersection(sbMountTom, test = TRUE, H1 = "Higher", sim = s5,
origin.permutation = "Custom”, custom.coord = area_origin)

print(int5)

track_param Print track parameters
Description

track_param() is a function to compute and print various parameters of tracks from a list of track

data.

Usage

track_param(data)

Arguments

data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is

a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-

print is actual or inferred.

46 track_param

Details

This function calculates various movement parameters for each track in the provided data. It uses
the following helper functions from the trajr (Animal Trajectory Analysis) package:

* TrajAngles(): Calculates the turning angles of the track.

* TrajDistance(): Calculates the total distance covered by the track.

* TrajLength(): Calculates the length of the track.

* TrajStepLengths(): Calculates the step lengths of the track.

* TrajSinuosity2(): Calculates the sinuosity of the track.

* TrajStraightness(): Calculates the straightness of the track.

Value

A list of lists, where each sublist contains the computed parameters for a corresponding track. The
parameters included are:

* Turning_angles: A vector of turning angles for the track (in degrees).

* Mean_turning_angle: The mean of the turning angles (in degrees).

e Standard_deviation_turning_angle: The standard deviation of the turning angles (in de-
grees).

* Distance: The total distance covered by the track (in meters).

* Length: The length of the track (in meters).

* Step_lengths: A vector of step lengths for the track (in meters).

* Mean_step_length: The mean of the step lengths (in meters).

* Standard_deviation_step_length: The standard deviation of the step lengths (in meters).

* Sinuosity: The sinuosity of the track (dimensionless).

* Straightness: The straightness of the track (dimensionless).
The reference direction, or O degrees, is considered to be along the positive x-axis. This means
that angles are measured counterclockwise from the positive x-axis, with 0 degrees (or 0 degrees)

pointing directly along this axis. For a detailed explanation and appropriate methods for analyzing
circular data, refer to Batschelet (1981).

Sinuosity is calculated according to Benhamou (2004), as defined in equation 8. The formula used
here is a refined version of the sinuosity index presented by Bovet & Benhamou (1988), which is
applicable to a broader range of turning angle distributions and does not require a constant step
length.

The sinuosity is computed using the formula:
1 —0.5
§=2 |:p< +C+b2)]
1-c

p is the mean step length (in meters),

where:

c is the mean cosine of turning angles (in radians), and

track_param 47

b is the coefficient of variation of the step length (in meters).

The straightness index is defined as the ratio D/L, where:

D is the beeline distance between the first and last points in the trajectory (in me-
ters), and
L is the total path length traveled (in meters).

Straightness index is based on the method described by Batschelet (1981). According to Benhamou
(2004), the straightness index serves as a reliable measure of the efficiency of a directed walk.
However, it is not suitable for random trajectories, as the index for a random walk tends towards
zero with increasing steps. Thus, it is recommended to use this measure to compare the tortuosity
of random walks only if they consist of a similar number of steps.

Logo

Author(s)

Humberto G. Ferrén

humberto.ferron @uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

References

Batschelet, E. (1981). Circular statistics in biology. Academic press, 111 Fifth Ave., New York,
NY 10003, 1981, 388.

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path:: straightness,
sinuosity, or fractal dimension?. Journal of theoretical biology, 229(2), 209-220.

Bovet, P., & Benhamou, S. (1988). Spatial analysis of animals’ movements using a correlated
random walk model. Journal of theoretical biology, 131(4), 419-433.

See Also

tps_to_track

Examples

Example 1:
track_param(PaluxyRiver)

Example 2:
track_param(MountTom)

48 velocity_track

velocity_track Calculate velocities and relative stride lengths for tracks

Description
velocity_track() calculates the velocities and relative stride lengths for each step in a series of
tracks, based on the step length, height at the hip, and gravity acceleration.

Usage
velocity_track(data, H, G = NULL, method = NULL)

Arguments
data A track R object, which is a list consisting of two elements:

* Trajectories: A list of interpolated trajectories, where each trajectory is
a series of midpoints between consecutive footprints.

* Footprints: A list of data frames containing footprint coordinates, meta-
data (e.g., image reference, ID), and a marker indicating whether the foot-
print is actual or inferred.

H A numeric vector representing the height at the hip (in meters) for each track
maker. The length of this vector should match the number of tracks in the data.
G Gravity acceleration (in meters per second squared). Default is 9. 8.
method A character vector specifying the method to calculate velocities for each track.
Method "A" follows the approach from Alexander (1976), while method "B" is
based on Ruiz & Torices (2013). If NULL, method "A" will be used for all tracks.
Details

The velocity_track() function calculates velocities using two methods:
Method A: Based on Alexander (1976), with the formula:

v=0.25- \/5 . 51.67 . H—1.17

* v: Velocity of the track-maker (in meters per second).

* G: Acceleration due to gravity (in meters per second squared), typically 9.81 m/s?.

* S: Stride length, which is the distance between consecutive footprints (in meters).

* H: Height at the hip of the track-maker (in meters).

* The coefficients 0.25, 1.67, and —1.17 are derived from empirical studies. These coefficients

adjust the formula to account for different animal sizes and gaits.

This method applies to a wide range of terrestrial vertebrates and is used to estimate velocity across
different gaits.
Method B: Based on Ruiz & Torices (2013), with the formula:

v =022 VG867 . g—117

velocity_track 49

v: Velocity of the track-maker (in meters per second).

G: Acceleration due to gravity (in meters per second squared), typically 9.81 m/s%,
S: Stride length (in meters).

H: Height at the hip of the track-maker (in meters).

The oefficient 0.226 in method B is a refinement based on updated data for bipedal locomotion.

Based on Thulborn & Wade (1984), it is possible to identify the gaits of track-makers on the basis
of relative stride length, as follows:

Value

» Walk: A/H < 2.0; locomotor performance equivalent to walking in mammals.

* Trot: 2.0 < A/H < 2.9; locomotor performance equivalent to trotting or racking in mam-

mals.

* Run: A/H > 2.9; locomotor performance equivalent to cantering, galloping, or sprinting in

mammals.

A track velocity R object consisting of a list of lists, where each sublist contains the computed
parameters for a corresponding track. The parameters included are:

Logo

Step_velocities: A vector of velocities for each step in the track (in meters per second).
Mean_velocity: The mean velocity across all steps in the track (in meters per second).

Standard_deviation_velocity: The standard deviation of velocities across all steps in the
track (in meters per second).

Maximum_velocity: The maximum velocity among all steps in the track (in meters per sec-
ond).

Minimum_velocity: The minimum velocity among all steps in the track (in meters per sec-
ond).

Step_relative_stride: A vector of relative stride lengths for each step in the track (dimen-
sionless).

Mean_relative_stride: The mean relative stride length across all steps in the track (dimen-
sionless).

Standard_deviation_relative_stride: The standard deviation of relative stride lengths
across all steps in the track (dimensionless).

Maximum_relative_stride: The maximum relative stride length among all steps in the track
(dimensionless).

Minimum_relative_stride: The minimum relative stride length among all steps in the track
(dimensionless).

50 velocity_track

Author(s)

Humberto G. Ferrén

humberto.ferron@uv.es

Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology

Calle Catedratico José Beltran Martinez, n° 2

46980 Paterna - Valencia - Spain

Phone: +34 (9635) 44477

References

Alexander, R. M. (1976). Estimates of speeds of dinosaurs. Nature, 261(5556), 129-130.

Ruiz, J., & Torices, A. (2013). Humans running at stadiums and beaches and the accuracy of speed
estimations from fossil trackways. Ichnos, 20(1), 31-35.

Thulborn, R. A., & Wade, M. (1984). Dinosaur trackways in the Winton Formation (mid-Cretaceous)
of Queensland. Memoirs of the Queensland Museum, 21(2), 413-517.

See Also

tps_to_track

Examples

Example 1: Calculate velocities for the MountTom dataset using default settings.
H_mounttom contains hip heights for each track in the MountTom dataset.
The function will use the default method "A" for all tracks.
Hip heights are inferred as four times the footprint length, following Alexander's approach.
H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600,
1.848, 1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784, 1.676, 1.872,
1.648, 1.760, 1.612
)

velocity_track(MountTom, H = H_mounttom)

Example 2: Calculate velocities for the PaluxyRiver dataset using default settings.

H_paluxyriver contains hip heights for each track in the PaluxyRiver dataset.

The function will use the default method "A" for all tracks.

Hip heights are inferred as four times the footprint length, following Alexander's approach.
H_paluxyriver <- c(3.472, 2.200)

velocity_track(PaluxyRiver, H = H_paluxyriver)

Example 3: Calculate velocities for the PaluxyRiver dataset using different methods
for velocity calculation. Method "A" is used for sauropods, which is more

appropriate for quadrupedal dinosaurs. Method "B" is used for theropods, which

is more appropriate for bipedal dinosaurs. Hip heights are inferred as four times

the footprint length, following Alexander's approach.

H_paluxyriver <- c(3.472, 2.200)

Method_paluxyriver <- c("A", "B")

velocity_track

velocity_track(PaluxyRiver, H = H_paluxyriver, method = Method_paluxyriver)

51

Index

x datasets
MountTom, 11
PaluxyRiver, 12

cluster_track, 3
combined_prob, 7

dtw, 26
Frechet, 29

Mclust, 5
mode_velocity, 9
MountTom, 11

NISTdegTOradian, 32

PaluxyRiver, 12
plot_direction, 13, 35
plot_sim, 15, 32
plot_track, 19
plot_velocity, 11,21

scale_color_gradientn, 23
simil_DTW_metric, 8, 24, 44
simil_Frechet_metric, 8, 27, 44
simulate_track, 8, 17, 26, 29, 29, 44
subset_track, 32, 33

test_direction, /4, 34

test_velocity, 36

tps_to_track, 8, 11, 14, 17, 20, 23, 26, 29,
32, 34, 35, 38,39, 44, 47, 50

track_intersection, 8, 41

track_param, 5, 45

TrajAngles, 32

TrajGenerate, 32

TrajRotate, 32

TrajSteplLengths, 32

TrajTranslate, 32

velocity_track, 5, 11, 23, 38, 48

52

	cluster_track
	combined_prob
	mode_velocity
	MountTom
	PaluxyRiver
	plot_direction
	plot_sim
	plot_track
	plot_velocity
	simil_DTW_metric
	simil_Frechet_metric
	simulate_track
	subset_track
	test_direction
	test_velocity
	tps_to_track
	track_intersection
	track_param
	velocity_track
	Index

