Package 'PropCIs'

January 20, 2025

Type Package
Title Various Confidence Interval Methods for Proportions
Version 0.3-0
Date 2018-02-22
Author Ralph Scherer
Maintainer Ralph Scherer <shearer.ra76@gmail.com>
Description
Computes two-sample confidence intervals for single, paired and independent proportions.
License GPL
URL https://github.com/shearer/PropCIs
BugReports https://github.com/shearer/PropCIs/issues

LazyLoad yes NeedsCompilation no Repository CRAN Date/Publication 2018-02-23 16:49:49 UTC

Contents

PropCIs-package	2
acceptbin	3
add4ci	4
addz2ci	5
blakerci	5
diffci.bayes	
diffci.bayes.hpd	
diffpropci.mp	8
diffpropci.Wald.mp	9
diffscoreci	0
exactci	1
limit	
midPci	2

PropCIs-package

oddsratioci.mp	
prci.bayes	13
orscoreci	
riskscoreci	15
rci.bayes	
scoreci	
scoreci.mp	
wald2ci	
z2stat	19
	•
	20

Index

PropCIs-package Confidence intervals for single, paired and independent proportions

Description

Computes confidence intervals for single proportions as well as for differences in dependent and independent proportions, the odds-ratio and the relative risk in a 2x2 table. Intervals are available for independent samples and matched pairs. The functions are partly written by assistants of Alan Agresti, see website http://www.stat.ufl.edu/~aa/cda/cda.html.

Details

Package:	PropCIs
Type:	Package
Version:	0.3-0
Date:	2018-02-22
License:	GPL=2
LazyLoad:	yes

Author(s)

Ralph Scherer

Maintainer: Ralph Scherer <shearer.ra76@gmail.com>

References

Agresti, A., Coull, B. (1998) Approximate is better than exact for interval estimation of binomial proportions. *The American Statistician* 52, 119–126.

Agresti, A., Caffo, B.(2000) Simple and effective confidence intervals for proportions and difference of proportions result from adding two successes and two failures. *The American Statistician* 54 (4), 280–288.

acceptbin

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

Agresti, A. and Min, Y. (2005) Simple improved confidence intervals for comparing matched proportions *Statistics in Medicine* 24 (5), 729–740.

Agresti, A., Gottard, A. (2005) Randomized confidence intervals and the mid-P approach, discussion of article by C. Geyer and G. Meeden, *Statistical Science* 20, 367–371.

Altman, D. G. (1999) Practical statistics for medical research. London, Chapman & Hall.

Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions, *Canadian Journal of Statistics* 28 (4), 783–798.

Clopper, C. and Pearson, E.S. (1934) The use of cenfidence or fiducial limits illustrated in the case of the binomial. *Biometrika* 26, 404–413.

Koopman PAR. (1985) Confidence limits for the ratio of two binomial proportions. *Biometrics* 40, 513–517.

Mee, RW. (1984) Confidence bounds for the difference between two probabilities. *Biometrics* 40, 1175–1176.

Miettinen OS, Nurminen M. (1985) Comparative analysis of two rates. *Statistics in Medicine* 4, 213–226.

Nam, J. M. (1995) Confidence limits for the ratio of two binomial proportions based on likelihood scores: Non-iterative method. *Biom. J.* 37 (3), 375–379.

Nurminen, M. (1986) Analysis of trends in proportions with an ordinally scaled determinant. *Bio-metrical J.* 28, 965–974.

Olivier, J. and May, W. L. (2006) Weighted confidence interval construction for binomial parameters *Statistical Methods in Medical Research* 15 (1), 37–46.

Tango T. (1998) Equivalence test and confidence interval for the difference in proportions for the paired-sample design *Statistics in Medicine* 17, 891–908.

Wilson, E. B. (1927) Probable inference, the law of succession, and statistical inference. J. Amer. Stat. Assoc. 22, 209–212.

acceptbin internal function

Description

computes the Blaker acceptability of p when x is observed and X is bin(n, p)

add4ci

Description

Agresti-Coull add-4 CI for a binomial proportion, based on adding 2 successes and 2 failures before computing the Wald CI. The CI is truncated, when it overshoots the boundary

Usage

add4ci(x, n, conf.level)

Arguments

х	number of successes
n	number of trials
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int	The confidence intervall for the proportion
estimate	The estimator for the proportion

References

Agresti, A., Coull, B. (1998) Approximate is better than exact for interval estimation of binomial proportions. *The American Statistician* 52, 119–126.

Agresti, A., Caffo, B.(2000) Simple and effective confidence intervals for proportions and difference of proportions result from adding two successes and two failures. *The American Statistician* 54 (4), 280–288.

Examples

add4ci(x = 15, n = 112, conf.level = 0.95)

addz2ci

Agresti-Coull CI for a binomial proportion based on adding z²/2 successes and z²/2 failures before computing the Wald CI

Description

Agresti-Coull CI for a binomial proportion based on adding $z^2/2$ successes and $z^2/2$ failures before computing the Wald CI. The CI is truncated, when it overshoots the boundary.

Usage

addz2ci(x, n, conf.level)

Arguments

х	number of successes
n	number of trials
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int	The confidence intervall for the proportion
estimate	The estimator for the proportion

References

Agresti, A., Coull, B. (1998): Approximate is better than exact for interval estimation of binomial proportions. *The American Statistician* 52, 119–126.

Examples

addz2ci(x = 15, n = 112, conf.level = 0.95)

blakerci Blaker's e	xact CI for a binomial proportion
---------------------	-----------------------------------

Description

Blaker's exact CI for a binomial proportion

Usage

blakerci(x, n, conf.level, tolerance=1e-05)

Arguments

х	Number of successes
n	Total sample size
conf.level	Confidence level
tolerance	default tolerance

Value

A list with class '"htest"' containing the following components:

conf.int The confidence intervall for the proportion

References

Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions, *Canadian Journal of Statistics* 28 (4), 783–798

diffci.bayes	Bayesian confidence interval for different of independent proportions
--------------	---

Description

Approximate Bayesian confidence interval for different of proportions using simulation method

Usage

diffci.bayes(x1,n1,x2,n2,a,b,c,d,conf.level, nsim)

Arguments

x1	Binomial variate group 1
n1	Sample size group 1
x2	Binomial variate group 2
n2	Sample size group 2
а	beta prior for x1
b	beta prior for x2
с	beta prior for n1
d	beta prior for n2
conf.level	confidence level
nsim	number of simulations with default 10M

Value

Confidence interval with given confidence level.

diffci.bayes.hpd

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

diffci.bayes.hpd	Bayesian HPD confidence interval for different of independent pro-
	portions

Description

Approximate Bayesian HPD confidence interval for different of proportions using independent priors

Usage

diffci.bayes.hpd(x1,n1,x2,n2,a,b,c,d,conf.level)

Arguments

x1	Binomial variate group 1
n1	Sample size group 1
x2	Binomial variate group 2
n2	Sample size group 2
а	beta prior for x1
b	beta prior for x2
с	beta prior for n1
d	beta prior for n2
conf.level	confidence level

Value

Confidence interval with given confidence level.

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

diffpropci.mp

Description

Adjusted Wald interval for a difference of proportions with matched pairs. This is the interval called Wald+2 in Agresti and Min (2005). Adds 0.5 to each cell before constructing the Wald CI

Usage

diffpropci.mp(b, c, n, conf.level)

Arguments

b	off-diag count
С	off-diag count
n	sample size
conf.level	confidence coefficient $1-\alpha$

Details

The interval is truncated, when it overshoots the boundary

Value

A list with class "htest" containing the following components:

conf.int	a confidence	interval f	or the	difference	in proportions.

estimate estimated difference in proportions

References

Agresti, A. and Min, Y. (2005) Simple improved confidence intervals for comparing matched proportions. *Statistics in Medicine* 24 (5), 729–740.

Examples

diffpropci.mp(b = 40, c = 20, n = 160, conf.level = 0.95)

diffpropci.Wald.mp Wald interval for a difference of proportions with matched pairs

Description

Wald interval for a difference of proportions with matched pairs.

Usage

```
diffpropci.Wald.mp(b, c, n, conf.level)
```

Arguments

b	off-diag count
с	off-diag count
n	sample size
conf.level	confidence coefficient

Details

The interval is truncated, when it overshoots the boundary

Value

A list with class '"htest"' containing the following components:

conf.int	a confidence interval for the difference in proportions.
----------	--

estimate estimated difference in proportions c-b/n

References

D. G. Altman (1999) Practical statistics for medical research. London, Chapman & Hall

Examples

diffpropci.Wald.mp(b = 3, c = 9, n = 32, conf.level = 0.95)

diffscoreci

Description

Score interval for difference of proportions and independent samples (p1 - p2)

Usage

diffscoreci(x1, n1, x2, n2, conf.level)

Arguments

x1	success counts in sample 1
n1	sample size in sample 1
x2	success counts in sample 2
n2	sample size in sample 2
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

Mee, RW. (1984) Confidence bounds for the difference between two probabilities. *Biometrics* 40, 1175–1176.

Miettinen OS, Nurminen M. (1985) Comparative analysis of two rates. *Statistics in Medicine* 4, 213–226.

Nurminen, M. (1986) Analysis of trends in proportions with an ordinally scaled determinant. *Bio-metrical J.* 28, 965–974

exactci

Description

Clopper-Pearson exact CI

Usage

exactci(x, n, conf.level)

Arguments

x	Number of successes
n	Total sample size
conf.level	Confidence level

Value

A list with class "htest" containing the following components:

conf.int a confidence interval for the proportion

References

Clopper, C. and Pearson, E.S. (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. *Biometrika* 26, 404–413.

limit

internal function

Description

internal function of orscoreci

midPci

Description

mid-P confidence interval adaptation of the Clopper-Pearson interval

Usage

midPci(x, n, conf.level)

Arguments

х	number of successes
n	number of trials
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Agresti, A., Gottard, A. (2005) Randomized confidence intervals and the mid-P approach, discussion of article by C. Geyer and G. Meeden, *Statistical Science* 20, 367–371.

Examples

midPci(x = 15, n = 112, conf.level = 0.95)

oddsratioci.mp	Adapted binomial score confidence interval for the subject-specific
	odds ratio with matched pairs

Description

Adapted binomial score confidence interval for the subject-specific odds ratio with matched pairs. This uses the Wilson score CI for a binomial parameter with the off-diagonal counts.

Usage

```
oddsratioci.mp(b, c, conf.level)
```

orci.bayes

Arguments

b	off-diagonal count
С	off-diagonal count
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

A. Agresti and Y. Min, (2005) Simple improved confidence intervals for comparing matched proportions. *Statistics in Medicine* 24 (5), 729–740.

Examples

oddsratioci.mp(b = 40, c = 20, conf.level = 0.95)

orci.	baves

Bayesian tail confidence interval for an odds ratio

Description

Approximate Bayesian tail confidence interval for an odds ratio using simulation method

Usage

orci.bayes(x1,n1,x2,n2,a,b,c,d,conf.level, nsim)

Arguments

x1	Binomial variate group 1
n1	Sample size group 1
x2	Binomial variate group 2
n2	Sample size group 2
а	beta prior for x1
b	beta prior for x2
С	beta prior for n1
d	beta prior for n2
conf.level	confidence level
nsim	number of simulations with default 10M

orscoreci

Value

Confidence interval for an odds ratio with given confidence level.

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

orscoreci	score confidence interval for an odds ratio in a 2x2 table [p1(1-
	<i>p1)/(p2(1-p2))]</i>

Description

score confidence interval for an odds ratio in a 2x2 table [p1(1-p1)/(p2(1-p2))]

Usage

orscoreci(x1, n1, x2, n2, conf.level)

Arguments

x1	number of successes in sample 1
n1	sample size in sample 1
x2	number of successes in sample 2
n2	sample size in sample 2
conf.level	confidence coefficient $1 - \alpha$

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Cornfield, J. (1956) A statistical problem arising from retrospective studies. In Neyman J. (ed.), *Proceedings of the third Berkeley Symposium on Mathematical Statistics and Probability* 4, pp. 135–148.

Miettinen O. S., Nurminen M. (1985) Comparative analysis of two rates. *Statistics in Medicine* 4, 213–226.

Agresti, A. 2002. Categorical Data Analysis. Wiley, 2nd Edition.

riskscoreci

Description

score confidence interval for the relative risk in a 2x2 table

Usage

```
riskscoreci(x1, n1, x2, n2, conf.level)
```

Arguments

x1	number of successes in sample 1
n1	sample size in sample 1
x2	number of successes in sample 2
n2	sample size in sample 2
conf.level	confidence coefficient $1 - \alpha$

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Nam, J. M. (1995) Confidence limits for the ratio of two binomial proportions based on likelihood scores: Non-iterative method. *Biom. J.* 37 (3), 375–379.

Koopman PAR. (1985) Confidence limits for the ratio of two binomial proportions. *Biometrics* 40, 513–517.

Miettinen OS, Nurminen M. (1985) Comparative analysis of two rates. *Statistics in Medicine* 4, 213–226.

Nurminen, M. (1986) Analysis of trends in proportions with an ordinally scaled determinant. *Bio-metrical J* 28, 965–974

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

rrci.bayes

Description

Approximate Bayesian tail confidence interval for the relative risk using simulation method

Usage

rrci.bayes(x1,n1,x2,n2,a,b,c,d,conf.level, nsim)

Arguments

x1	Binomial variate group 1
n1	Sample size group 1
x2	Binomial variate group 2
n2	Sample size group 2
а	beta prior for x1
b	beta prior for x2
С	beta prior for n1
d	beta prior for n2
conf.level	confidence level
nsim	number of simulations with default 10M

Value

Confidence interval for the relative risk with given confidence level.

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition.

S			

Wilson's confidence interval for a single proportion

Description

Wilson's confidence interval for a single proportion. Score CI based on inverting the asymptotic normal test using the null standard error

Usage

scoreci(x, n, conf.level)

scoreci.mp

Arguments

х	Number of successes
n	Total sample size
conf.level	Confidence level

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Wilson, E.B. (1927) Probable inference, the law of succession, and statistical inference J. Amer. Stat. Assoc 22, 209–212

scoreci.mp	Tango's score confidence interval for a difference of proportions with
	matched pairs

Description

Tango's score confidence interval for a difference of proportions with matched pairs

Usage

```
scoreci.mp(b, c, n, conf.level)
```

Arguments

b	off-diagonal count
с	off-diagonal count
n	sample size
conf.level	confidence coefficient

Value

A list with class '"htest"' containing the following components:

conf.int a confidence interval for the difference in proportions.

References

Agresti, A. and Min, Y. (2005) Simple improved confidence intervals for comparing matched proportions *Statistics in Medicine* 24 (5), 729–740.

Tango T. (1998) Equivalence test and confidence interval for the difference in proportions for the paired-sample design *Statistics in Medicine* 17, 891–908

Examples

```
scoreci.mp(b = 40, c = 20, n = 160, conf.level = 0.95)
```

wald2ci	Wald interval with the possibility to adjust according to Agresti, Caffo
	(2000) for difference in proportions and independent samples.

Description

Wald interval with the possibility to adjust according to Agresti, Caffo (2000) for difference in proportions and independent samples. The Agresti-Caffo interval adds 1 to x1 and x2 and adds 2 to n1 and n2.

Usage

wald2ci(x1, n1, x2, n2, conf.level, adjust)

Arguments

x1	success counts in sample 1
n1	sample size in sample 1
x2	success counts in sample 2
n2	sample size in sample 2
conf.level	confidence coefficient
adjust	option to adjust the Wald interval to the Agresti-Caffo interval for better performance

Details

If adjust=AC is chosen, the standard Wald interval is modified to the Agresti-Caffo adjusted CI (American Statistician, 2000)

Value

A list with class "htest" containing the following components:

conf.int	a confidence interval for the difference in proportions.
estimate	estimated difference in proportions

References

Agresti, A. (2002) Categorical Data Analysis. Wiley, 2nd Edition. Agresti, A., Caffo, B.(2000) Simple and effective confidence intervals for proportions and difference of proportions result from adding two successes and two failures. *The American Statistician* 54 (4), 280–288.

18

z2stat

Description

internal function of diffscoreci

Index

* htest add4ci,4 addz2ci,5 blakerci, 5 diffci.bayes, 6 diffci.bayes.hpd, 7 diffpropci.mp, 8 diffpropci.Wald.mp,9 diffscoreci, 10 exactci, 11 midPci, 12 oddsratioci.mp, 12 orci.bayes, 13 orscoreci, 14 PropCIs-package, 2 riskscoreci, 15 rrci.bayes, 16 scoreci, 16 scoreci.mp, 17 wald2ci, 18 acceptbin, 3 add4ci,4 addz2ci,5 blakerci, 5 diffci.bayes, 6 diffci.bayes.hpd, 7 diffpropci.mp, 8 diffpropci.Wald.mp,9 diffscoreci, 10 exactci, 11 limit, 11 midPci, 12 oddsratioci.mp, 12 orci.bayes, 13

orscoreci, 14 PropCIs-package, 2 riskscoreci, 15 rrci.bayes, 16 scoreci.mp, 17 wald2ci, 18 z2stat, 19