## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----Ex1, echo=TRUE, eval=TRUE------------------------------------------------ library(PracTools) library(kableExtra) data(hospital) HOSP <- PracTools::hospital HOSP$sqrt.x <- sqrt(HOSP$x) sam <- sample(nrow(HOSP), 50) N1.resp <- HOSP[sam, ] N2.nonresp <- HOSP[-sam, ] ## Create lm object using "known" data; no intercept model lm.obj <- lm(y ~ 0 + sqrt.x + x, data = N1.resp) ## Create range of values to use as delta for difference in means delta <- mean(HOSP$y) - mean(HOSP$y) * seq(.6, 1, by=0.05) ## Run SampStop function and output to object S S <- SampStop(lm.obj = lm.obj, formula = ~ 0 + sqrt.x + x, n1.data = N1.resp, yvar = "y", n2.data = N2.nonresp, p = seq(0.2, 0.6, by=0.05), delta = delta, seed = .Random.seed[413]) kableExtra::kable(S$Input, caption = "SampStop Input") kableExtra::kable(head(S$Output, n=15), caption = "SampStop Output: First 15 Observations") ## ----Ex1.plot, echo=TRUE, eval=TRUE, fig.align="center", fig.width = 7-------- library(ggplot2) ## Convert S to data frame S1 <- as.data.frame(S$Output) ## Create factor category over probability of response and number of responders p.nresp <- paste(S1$`Pr(response)`, S1$`Exp no. resps`, sep=", ") ggplot(S1, aes(x = `diff in means`, y = `Pr(smaller diff)`, colour = factor(p.nresp))) + geom_point() + geom_line(linewidth=1.1) + scale_y_continuous(breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1)) + labs(title = "Probability of Response by Delta", x = "delta", y = "Pr(|e1 - e2|<= delta)", colour = "Pr(Resp), Number \nof Responders")