Package ‘PolyPatEx’

January 20, 2025

Type Package

Title Paternity Exclusion in Autopolyploid Species
Version 0.9.2

Date 2016-04-11

Author Alexander Zwart

Maintainer Alexander Zwart <Alec.Zwart@csiro.au>

Description Functions to perform paternity exclusion via allele
matching, in autopolyploid species having ploidy 4, 6, or 8. The
marker data used can be genotype data (copy numbers known) or
'allelic phenotype data' (copy numbers not known).

License GPL-3 + file LICENSE
LazyLoad yes

LazyData yes

Imports gtools, utils

RoxygenNote 5.0.1.9000
NeedsCompilation no

Repository CRAN

Date/Publication 2016-04-11 09:06:29

Contents
PolyPatEx-package e 2
convertToPhenot 2
iXCSV L 4
foreignAlleles L 5
FR_Genotype e 7
genotPPE L 8
GF_Phenotype e 10
inputData 11
multilocusTypes L 14
phenotPPE 15

2 convertToPhenot

potentialFatherCounts 18
potentialFatherIDs 19
preprocessData L e e e e e 21
Index 24
PolyPatEx-package Polyploid paternity exclusion by allele matching.
Description

PolyPatEx provides functions to perform paternity exclusion analysis in autopolyploid species hav-
ing ploidy 4, 6, or 8. The package requires codominant marker data from two or more loci in a
monoecious or dioecious species. The marker data can be ’genotypic’ (copy numbers known) or
’phenotypic’ (copy numbers not known). PolyPatEx can also perform exclusion on diploid (ploidy
2) genotype data.

Details

Routines are provided to compare each progeny with its mother, and then with the candidate fathers,
to determine which candidates are indeed capable of being fathers, on the basis of the allele sets
they display at each locus.

PolyPatEx addresses the question - at a given locus, can the candidate father provide a viable gamete
given its allele set, and given the possible paternal gametes indicated by the progeny’s and mother’s
allele sets?

Note that PolyPatEx does not implement a probabilistic solution to the exclusion problem, merely
a simple comparative analysis based on available alleles and their multiplicities. Also note that
PolyPatEx is not optimised for very large marker datasets such as SNP datasets, instead is suited to
low density, high information markers such as SSRs.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

convertToPhenot Convert a genotype allele dataset to a phenotype dataset

Description
Convert a ’genotypic’ dataset (marker dosages known) to a “phenotypic’ dataset (marker dosages
not known, unique alleles appear only once in each allele set).

Usage

convertToPhenot(adata)

convertToPhenot 3

Arguments

adata data frame: a genotypic allele dataset.

Details

In the terminology used by the PolyPatEx package, a ’genotypic’ allele dataset is one where marker
dosages are known, hence any locus at which fewer than p (the ploidy) alleles are detected is incom-
plete (and subsequently ignored by the genotype-specific routines in this package). A ’phenotypic’
allele dataset is one where marker dosages are not known, hence individual alleles appear only once
in an allele set, and a complete allele set can contain between 1 and p alleles.

convertToPhenot converts a genotypic dataset to a phenotypic dataset, simply by removing any
allele duplicates from each allele set. This is probably not something many will want to do, since
one loses considerable information in the process...

Value

A data frame, containing the phenotypic form of the original genotypic dataset.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)
head(gData) ## Checked and Cleaned version of FR_Genotype
pData <- convertToPhenot(gData)

head(pData)

4 fixCSV

fixCsV Tidy a comma separated value (CSV) file

Description

Tidies up a Comma Separated Value (CSV) file, ensuring that each row of the table in the file
contains the same number of commas, and no empty rows are left below the table.

Usage

fixCSV(file, skip = @, overwrite = FALSE)

Arguments
file character: the name of the CSV file to be ‘fixed’.
skip integer: the number of lines in the CSV file to skip before the header row of the
table. The skipped lines are copied directly to the output file unchanged. The
default is skip=0, implying that the header row is the first row of the CSV file.
overwrite logical: Write output to a separate, ‘FIXED’ file (overwrite=FALSE, the de-
fault), or overwrite the original file (overwrite=TRUE)? If overwrite=TRUE,
the original file is copied to a .BAK file before being overwritten.
Details

fixCSV tidies up a Comma Separated Value (CSV) file to ensure that the CSV file contains a strictly
rectangular block of data for input into R (ignoring any preliminary comment rows via the skip=
argument).

CSV formatted files are a plain text file format for tabular data, in which cell entries in the same row
of a table are separated by commas. When such files are exported from other applications such as
spreadsheet software, the software has to decide whether any empty cells to the right-hand side of,
or below, the table or spreadsheet should be represented by trailing commas in the CSV file. Such
decisions can result in a ‘ragged’ table in the CSV file, in which some rows contain fewer commas
(‘short rows’) or more commas (‘long rows’) than others, or where empty rows below the table are
included as comma-only rows in the CSV file.

While R’s read.table and related functions can sensibly extend short rows as needed, ragged
tables in a CSV file can still result in errors, unwanted empty rows (below the table) or unwanted
columns (to the right of the table) when the data is loaded into R.

fixCSV reads in a specified CSV file and removes or adds commas to rows, to ensure that each
row in the body of the table contains the same number of cells as the header row of the table.
Any empty rows below the table are also removed. The resulting table is then written back to file,
either to a new file with ‘FIXED’ added to the filename (argument overwrite=FALSE, the default)
or overwriting the original file (overwrite=TRUE - the original file is copied to a .BAK file before
being overwritten).

Note that:

foreignAlleles 5

* The table of data in the CSV file must contain a header row of the correct length, since this row
is used to determine the correct number of columns for the table. Note: if this header row is
too short, then subsequent rows will be truncated to match the length of the header, so beware.
Misspecification of the skip= argument (see below) can similarly lead to such corruption of
the ‘fixed’ file.

* In the header row, any trailing commas representing empty cells to the right of the (non-
empty) header entries are first removed before determining the correct number of columns for
the table. Thus the length of the header row (and hence the assumed width of the entire table)
is determined by the right-most non-empty cell in the header row.

* fixCSV does not remove empty cells, rows or columns within the interior (or on the left side)
of the table - it is concerned only with the right and bottom boundaries of the table.

* A skip= argument is included to tell fixCSV to ignore the specified number of comment rows
preceding the header row. Such rows are simply copied over into the output file unchanged.
The default for this parameter is skip=0, so that the first row in the data file is assumed to be
the header row. As noted above, misspecification of this argument can seriously corrupt the
output.

* fixCSV can overwrite your data file(s) (via overwrite=TRUE), and althought it makes a backup
of your original file, you should still make sure that you have a separate backup of your data
file in a safe place before using this function! The author of this code takes no responsibility
for any data loss or corruption as a result of the use of this routine...

Author(s)
Alexander Zwart (alec.zwart at csiro.au)
Examples
Not run:
Assuming CSV file 'alleleDataFile.csv' exists in the current
directory. The following overwrites the CSV file - make sure

you have a backup!

fixCSV("alleleDataFile.csv"”,overwrite=TRUE)

End(Not run)

foreignAlleles Identify foreign alleles

Description

Identify *foreign’ alleles (alleles present in progeny, but not in parents or other non-parental adults).
Note that foreignAlleles does not distinguish between populations as indicated by the popn col-
umn of the allele data frame.

6 foreignAlleles

Usage

foreignAlleles(adata)

Arguments
adata data frame: the preprocessed allele data set returned by either inputData or
preprocessData.
Value

A list, containing two data frames. Data frame bylLocus summarises the foreign alleles found at
each locus. Data frame byProgenylLocus summarises the same alleles by progeny and locus. In
this latter data frame, the code P.missing indicates no alleles were present in the progeny at this
locus.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)
head(gData) ## Checked and Cleaned version of FR_Genotype
fAlleles <- foreignAlleles(gData)

View foreign alleles detected at each locus:
fAlleles$bylLocus

View foreign alleles detected in each progeny, at each locus:
fAlleles$byProgenylLocus

Both of these objects are data frames, hence can be written to file
via, e.g., write.csv().

FR_Genotype 7

FR_Genotype Example genotype allele dataset

Description

Example genotype allele dataset - a dioecious tetraploid species, seven loci observed.

Details

The dataset is available in two forms - as a compressed data file which can be loaded easily into R
via the R data function, i.e., data(FR_Genotype), and as a CSV (Comma-Separated-Value, a plain
text format) file, to provide an example of the required CSV format.

Note that a technicality of R’s package building process requires the use of data to load the data in
the reference help examples, whereas the user would generally invoke the inputData function to
load their own data from file. An example of the latter is demonstrated in the example section on
this page, but is not run.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Not run:
To locate this dataset in your filesystem, use:

gDataFile <- system.file("extdata/FR_Genotype.csv”,
package="PolyPatEx")
print(gDataFile)

To load this file using PolyPatEx's 'inputData' function, use:

gData <- inputData(gDataFile,
numLoci=7,
ploidy=4,
dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)

...or use 'mothersOnly=FALSE' if you wish to retain
non-maternal females in the dataset.

gData now contains the checked and preprocessed allele dataset,
ready to be passed to other PolyPatEx analysis functions.

End(Not run)

8 genotPPE

genotPPE Simple paternity exclusion for genotype allele data

Description

Conduct a paternity exclusion analysis on a genotype dataset.

Usage
genotPPE(adata)
Arguments
adata data frame: the preprocessed allele data set returned by either inputData or
preprocessData.
Details

genotPPE conducts a basic paternity exclusion analysis on a genotype dataset.

For the purposes of the PolyPatEx package, the term ‘genotype’ refers to forms of marker data
where the allele copy numbers (or multiplicities) are known - hence for a polyploid species of
ploidy p, there should be exactly p alleles detected at each locus, some of which may be repeats
of the same allele state. In PolyPatEx, no allowance is made for undetected alleles in genotype
data - allele sets having fewer than p alleles present should have been reset to contain no alleles by
preprocessData.

For the above and other reasons, genotPPE should NOT be applied to a dataset that has not been
preprocessed by preprocessData (either by calling directly preprocessData on the data frame
directly, or by using inputData to load the data from file).

The genotype-based paternity analysis is based on simple comparison of genotype allele sets be-
tween mother, progeny, and candidate father. The mother-progeny relationship is assumed to be
known. For genotype data, should a progeny contain only alleles also present in its mother, then a
potential father is any candidate that can provide a gamete compatible with the progeny’s genotype,
given the mother’s genotype.

Value

A list whose components are described below. The components that are probably of primary interest
to the user are adultTables$FLCount and adultTables$VLTotal. These are likely to be large
tables, so note that the functions potentialFatherCounts and potentialFatherIDs are available
to usefully summarise their content.

The list returned by genotPPE contains two elements, progenyTables and adultTables, each of
which are themselves lists.

Element adultTables contains the following components:

FLCount Father Loci Count - a matrix, showing for each progeny-candidate combination, the num-
ber of loci at which the candidate matches (i.e., could have fathered) the progeny

genotPPE 9

VLTotal Valid Loci Total - a matrix, showing for each progeny-candidate combination, the total
number of loci at which a valid comparison between progeny and candidate could be made.
(Missing allele sets, whether in the original data, or due to progeny-mother mismatches found
by preprocessData, can result in fewer loci at which progeny-candidate (father) comparisons
are possible.)

fatherSummaryTable A matrix, combining the results of FLCount and VLTotal (see above) for
each progeny-candidate combination in one table. This is purely for ease of viewing purposes,
but note also the functions potentialFatherCounts and potentialFatherIDs which may
provide more useful summary output.

CPNotM.alleleArray A 3D array containing the alleles present in both candidate (father) and
progeny, but not in the progeny’s mother (for each progeny/candidate/locus combination)

CMP.alleleArray A 3D array containing the alleles present in candidate, progeny and progeny’s
mother (for each progeny/candidate/locus combination)

simpleFatherArray A 3D array indicating whether each candidate is compatible with each progeny,
for each locus

progenyTables contains the following components:

progenyStatusTable A data frame, indicating the status of the progeny / mother allele set com-
parison (for each progeny, at each locus).

MP.alleleTable A dataframe containing the alleles that are found in both mother’s and progeny’s
allele sets (for each progeny, at each locus)

PNotM.alleleTable A data frame, containing the alleles in the progeny’s allele set, that are not
present in the mother’s allele set(for each progeny, at each locus)

The status codes in progenyTables$progenyStatusTable are:

"MAO" Mother Alleles Only - the progeny contains only alleles found also in the mother
"NMA" Non-Mother Alleles - the progeny contains alleles that are not found in the mother

"P.missing” No comparison was possible at this locus because the progeny’s allele set was miss-
ing

"P.missing” No comparison was possible at this locus because the mother’s allele set was missing

"PM.missing” No comparison was possible at this locus because both progeny’s and mother’s
allele sets were missing

Note that some of the "P.missing” or "PM.missing"” codes may have arisen due to progeny /
mother mismatches found (and corresponding progeny allele sets removed) by preprocessData.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

See Also

phenotPPE

10 GF_Phenotype

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)

head(gData) ## Checked and Cleaned version of FR_Genotype
gPPE <- genotPPE(gData) #i# Perform the exclusion analyses
gPPE is a large (and rather ugly!) data structure - see

functions potentialFatherCounts() and potentialFatherIDs() for
more useful output from the gPPE object.

GF_Phenotype Example phenotype allele dataset

Description

Example ‘phenotype’ allele dataset - a monoecious non-selfing hexaploid species, seven loci ob-
served.

Details

The dataset is available in two forms - as a compressed data file which can be loaded easily into R
via the R data function, i.e., data(FR_Genotype), and as a CSV (Comma-Separated-Value, a plain
text format) file, to provide an example of the required CSV format.

Note that a technicality of R’s package building process requires the use of data to load the data in
the reference help examples, whereas the user would generally invoke the inputData function to
load their own data from file. An example of the latter is demonstrated in the example section on
this page, but is not run.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

inputData 11

Examples

Not run:
To locate this dataset in your filesystem, use:

pDataFile <- system.file("extdata/GF_Phenotype.csv”,
package="PolyPatEx")
print(pDataFile)

To load this file using PolyPatEx's 'inputData' function use:

pData <- inputData(pDataFile,
numLoci=7,
ploidy=6,
dataType="phenotype”,
dioecious=FALSE,
selfCompatible=FALSE)

pData now contains the checked and preprocessed allele dataset,
ready to be passed to other PolyPatEx analysis functions.

End(Not run)

inputData Read in, check and preprocess the allele dataset

Description

Read in an allele dataset from file, and return a checked and preprocessed data frame.

Usage

inputData(file, numLoci, ploidy, dataType, dioecious, selfCompatible = NULL,
mothersOnly = NULL, lociMin = 1, matMismatches = @, skip = 0)

Arguments
file character: the name of the allele data file.
numLoci integer: the number of loci in the allele dataset.
ploidy integer: the species’ ploidy, one of 2, 4, 6, or 8.
dataType character: either "genotype” or "phenotype”.
dioecious logical: is the species dioecious (TRUE) or monoecious (FALSE)?

selfCompatible logical: In monoecious species (dioecious=FALSE), can individuals self-fertilise?
When dioecious=FALSE, this argument may be left at its default value of NULL
- it will be set to FALSE by preprocessData.

12 inputData

mothersOnly logical: in dioecious species, should females without progeny present be re-
moved from the dataset? If dioecious=TRUE, then mothersOnly must be set to
either TRUE or FALSE. If dioecious=FALSE, argument mothersOnly should be
left at its default value of NULL.

lociMin integer: the minimum number of loci in an individual that must have alleles
present for the individual (and its progeny, if the individual is a mother) to be
retained in the dataset. See the help for preprocessData for more on this pa-
rameter.

matMismatches an integer between 0 and numLoci-1, being the maximum number of mismatch-
ing loci between mother and offspring that are allowed before the offspring is
removed from the dataset. The default value is 0. If an offspring has fewer than
matMismatches loci that mismatch with its mother, the offending loci are set to
contain no alleles.

skip integer: the number of lines in the CSV to skip before the header row of the
table.

Details

inputData reads in an allele dataset from the specified file, then calls preprocessData to perform
a series of data format checks and preprocessing steps before returning the checked and prepro-
cessed dataset as an R data frame. The reference information for preprocessData contains further
information on the checks and preprocessing - it is strongly recommended you read that information
in addition to the information below.

The use of inputData is optional, if you wish to create or load the allele dataset into R by other
means. However, it is then necessary to call preprocessData on the data frame prior to using any
other analysis functions in this package. Similarly, if you decide to change or manipulate the data
frame contents within R, you should call preprocessData again on the data frame prior to using
any of the PolyPatEx analysis functions. See the help for preprocessData for further details.

Note that inputData strips leading or trailing spaces (whitespace) from each entry in the allele
dataset as it is read in. If you load your data by a means other than inputData, you should ensure
that you perform this step yourself, as preprocessData will not carry out this necessary step.

Note also that you should not use spaces in any of your allele codes - PolyPatEx functions use
spaces to separate allele codes as they process the data - if allele codes already contains spaces,
errors will occur in this processing. If you need a separator, I recommend using either ‘code.’” (a
period) or ‘code_’ (an underscore) rather than a space.

Neither inputData (nor preprocessData) will alter the CSV file from which the data is loaded -
they merely return a checked and preprocessed version of your allele dataset (in the form of an R
data frame) within the R environment, ready for use by other PolyPatEx functions.

To load the allele dataset into R, inputData calls R’s read. csv function with certain arguments
specified. These arguments make read.csv more stringent about the precise format of the input
datafile, requiring in particular that each row of the CSV-formatted data file contain the correct
number of commas. This is not always guaranteed when the CSV file has been exported from
spreadsheet software. Should you get ‘Error in scan’ messages complaining about the number of
elements in a line of the input file, consider calling fixCSV on the data file, before calling inputData
again. fixCSV attempts to find and correct such errors in a CSV file - see the help for this function.
Note that if you specify the skip parameter in a call to fixCSV, you should use the same value for
this parameter in inputData to avoid an error.

inputData 13

The various PolyPatEx functions need to know the characteristics of the dataset being analysed
- these are specified in the inputData or preprocessData calls and are invisibly attached to the
allele data frame that is returned, for use by other PolyPatEx functions. The required characteristics
are:

e numLoci: the number of loci in the dataset.

* ploidy: the ploidy p of the species (currently allowed to be 4, 6, or 8. ploidy can also be 2,
provided dataType="genotype").

* dataType: whether the data is genotypic (all p alleles at each locus are observed) or pheno-
typic (only the distinct allele states at a locus are observed - alleles that appear more than once
in the genotype of a locus only appear once in the phenotype).

» dioecious: whether the species is dioecious or monoecious.

* selfCompatible whether a monoecious species is self compatible (i.e., whether an individual
can fertilise itself).

* mothersOnly: whether a dioecious dataset should retain only adult females that are mothers
of progeny in the dataset. If dioecious=TRUE, then mothersOnly must be set to either TRUE
or FALSE.

Value

A data frame, containing the checked and pre-processed allele data, ready for further analysis by
other PolyPatEx functions. All columns in the output data frame will be of mode character.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Not run:

Obtain path to the example genotype data file

'FR_Genotype.csv'

gDataFile <- system.file("extdata/FR_Genotype.csv”,
package="PolyPatEx")

print(gDataFile)

gData <- inputData(gDataFile,
numLoci=7,
ploidy=4,
dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)

...or use 'mothersOnly=FALSE' if you wish to retain
non-maternal females in the dataset.

gData now contains the checked and preprocessed allele dataset,
ready to be passed to other PolyPatEx analysis functions.

14 multilocusTypes

In your own workflow, you would typically specify the path to
your allele dataset directly - e.g. if the dataset

myAlleleData.csv is on the Data subdirectory of the current R
working directory (see R function setwd()), then:

##
gData <- inputData("”Data/myAlleleData.csv”,
#it numLoci= etc etc etc...,

End(Not run)

multilocusTypes Genotype summaries

Description

Return summaries of individual- and multi- locus genotypes for adults and progeny.

Usage

multilocusTypes(adata)

Arguments

adata data frame: the checked and preprocessed dataset returned by inputData.

Details

Function multilocusTypes summarises the different genotypes present at each locus in the dataset
(separately for progeny and adults), and across the loci (again, separately for progeny and adults).
multilocusTypes returns a list structure with several elements.

Value

A list structure, with the following components:

uniqueProgenyTypes A data frame containing, for each locus, the distinct genotypes that are
present in the progeny in the dataset, and the numbers of progeny containing each genotype at
that locus.

numUniqueProgenyTypes The number of unique genotypes at each locus in the progeny in the
dataset.

uniqueAdultTypes A data frame containing, for each locus, the distinct genotypes that are present
in the adults in the dataset, and the numbers of adults containing each genotype at that locus.

numUniqueAdultTypes The number of unique genotypes at each locus in the adult set.

uniqueProgenyMLTypes A data frame containing the distinct genotypes across all loci that are
present in the progeny in the dataset, and the numbers of progeny containing each multilocus
genotype.

phenotPPE 15

numUniqueProgenyMLTypes The total number of progeny multilocus genotypes.

uniqueAdultMLTypes A data frame containing, the distinct genotypes across all loci that are
present in the adults in the dataset, and the numbers of adults containing each multilocus
genotype.

numUniqueAdultMLTypes The total number of adult multilocus genotypes.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype”,
dioecious=TRUE,
mothersOnly=TRUE)

head(gData) ## Checked and Cleaned version of FR_Genotype

mTypes <- multilocusTypes(gData)

mTypes is a list structure - individual components can be
printed to the screen, or saved to file via, e.g. read.csv().

mTypes$numUniqueProgenyTypes

Components of mTypes
names(mTypes)

phenotPPE Simple paternity exclusion for phenotype allele data

Description

Conduct a paternity exclusion analysis on a phenotype dataset.

Usage

phenotPPE (adata)

16 phenotPPE

Arguments
adata data frame: the preprocessed allele data set returned by either inputData or
preprocessData.
Details

phenotPPE conducts a basic paternity exclusion analysis on a ‘phenotype’ dataset.

For the purposes of the PolyPatEx package, the term ‘phenotype’ refers to forms of marker data
where the allele dosages (or multiplicities) are not known - hence for a polyploid species of ploidy
p, a valid allele set may contain between one and p alleles, which should all be distinct. Any
cases of allele sets having duplicated alleles will have previously been caught by preprocessData
(automatically called by inputData) and will have produced an error message, requiring the user
to remove any duplicated alleles (within allele sets) in the original data file.

For the above and other reasons, phenotPPE should NOT be applied to a dataset that has not been
preprocessed by preprocessData (either by calling preprocessData on the allele data frame di-
rectly, or by loading the allele data into R using inputData).

Value

A list whose components are described below. The components that are probably of primary interest
to the user are adultTables$FLCount and adultTables$VLTotal. These are likely to be large
tables, so note that the functions potentialFatherCounts and potentialFatherIDs are available
to usefully summarise their content.

The list returned by phenotPPE contains two elements, progenyTables and adultTables, each of
which are themselves lists.

adultTables contains the following components:

FLCount Father Loci Count - a matrix, showing for each progeny-candidate combination, the num-
ber of loci at which the candidate matches (i.e., could have fathered) the progeny

VLTotal Valid Loci Total - a matrix, showing for each progeny-candidate combination, the total
number of loci at which a valid comparison between progeny and candidate could be made.
(Missing allele sets, whether in the original data, or due to progeny-mother mismatches found
by preprocessData can result in fewer loci at which progeny-candidate (father) comparisons
are possible.)

fatherSummaryTable A matrix, combining the results of FLCount and VLTotal (see above) for
each progeny-candidate combination in one table. This is purely for ease of viewing purposes,
but note also the functions potentialFatherCounts and potentialFatherIDs which may
provide more useful summary output.

CPNotM.alleleArray A 3D array containing the alleles present in both candidate (father) and
progeny, but not in the progeny’s mother (for each progeny/candidate/locus combination)

CMP.alleleArray A 3D array containing the alleles present in candidate, progeny and progeny’s
mother (for each progeny/candidate/locus combination)

simpleFatherArray A 3D array indicating whether each candidate is compatible with each progeny,
for each locus

progenyTables contains the following components:

phenotPPE 17

progenyStatusTable A data frame, indicating the status of the progeny / mother allele set com-
parison (for each progeny, at each locus).

MP.alleleTable A dataframe containing the alleles that are found in both mother’s and progeny’s
allele sets (for each progeny, at each locus)

PNotM.alleleTable A data frame, containing the alleles in the progeny’s allele set, that are not
present in the mother’s allele set(for each progeny, at each locus)

The status codes in progenyTables$progenyStatusTable are:

"MAO" Mother Alleles Only - the progeny contains only alleles found also in the mother

"NMA" Non-Mother Alleles - the progeny contains alleles that are not found in the mother

"P.missing” No comparison was possible at this locus because the progeny’s allele set was miss-
ing

"P.missing” No comparison was possible at this locus because the mother’s allele set was missing

"PM.missing” No comparison was possible at this locus because both progeny’s and mother’s

allele sets were missing

Note that some of the "P.missing” or "PM.missing"” codes may have arisen due to progeny /
mother mismatches found (and corresponding progeny allele sets removed) by preprocessData.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

See Also

genotPPE

Examples

Using the example dataset 'GF_Phenotype':
data(GF_Phenotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

pData <- preprocessData(GF_Phenotype,
numLoci=7,
ploidy=6,

dataType="phenotype”,
dioecious=FALSE,
selfCompatible=FALSE)

pPPE <- phenotPPE(pData)
pPPE is a large (and rather ugly!) data structure - see

functions potentialFatherCounts() and potentialFatherIDs() for
more useful output from the gPPE object.

potentialFatherCounts

potentialFatherCounts Count potential fathers

Description

Count the number of potential fathers detected for each progeny.

Usage

potentialFatherCounts(dataset, mismatches = @, VLTMin = 1)

Arguments
dataset list: a list structure previously output from genotPPE or phenotPPE.
mismatches integer: the maximum allowed number of mismatching loci between candidate
and progeny, before the candidate is rejected as a potential father.
VLTMin integer: the minimum number of ‘valid’ loci (loci at which a valid progeny-
candidate comparison was possible) required for a candidate to be considered as
a potential father.
Details

Given the output from genotPPE or phenotPPE, potentialFatherCounts returns, for each progeny,
the number of candidates that are identified as potential fathers.

To decide whether a given candidate is a potential father to a given progeny, potentialFatherCounts
uses the quantities FLCount (the number of loci at which a candidate can provide a gamete compat-
ible with the progeny) and VLTotal (the number of loci at which a valid comparison was possible -
‘valid’ loci) that are returned by genotPPE or phenotPPE.

For a candidate to be identified as a potential father of a progeny, there are two criteria to be met:

1. VLTotal >=max(VLTMin,mismatches+1),
2. FLCount >=VLTotal-mismatches.

Here, VLTmin and mismatches are user-specified parameters. VLTmin allows the user to ensure
that a candidate is only considered for potential fatherhood if a sufficient number of valid loci
were available for comparison. mismatches allows the user to specify a maximum number of
allowed mismatching loci between progeny and candidate, before the candidate is rejected as a
potential father. Hence the user may wish to relax the condition that ALL valid loci must match for
a candidate to be regarded as a potential father to a progeny.

Value

A data frame, containing columns Progeny (progeny id), Mother (id of the progeny’s mother) and
potentialFatherCount (the number of potential fathers found for the given progeny, given the
criteria described above).

potentialFatherIDs 19

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype",
dioecious=TRUE,
mothersOnly=TRUE)
head(gData) ## Checked and Cleaned version of FR_Genotype
gPPE <- genotPPE(gData) ## Perform the exclusion analyses
Obtain counts of potential fathers of each seedling, allowing a
single allele mismatch:

pFC <- potentialFatherCounts(gPPE,mismatches=1,VLTMin=2)

pFC can be viewed or written to file via, e.g. write.csv()

potentialFatherIDs Identify potential fathers

Description

Identify the potential fathers for each progeny.

Usage

potentialFatherIDs(dataset, mismatches = @, VLTMin = 1)

Arguments
dataset list: a list structure previously output from genotPPE or phenotPPE.
mismatches integer: the maximum allowed number of mismatching loci between candidate
and progeny, before the candidate is rejected as a potential father. Default value
is 0 - i.e., no mismatches allowed.
VLTMin integer: the minimum number of ‘valid’ loci (loci at which a valid progeny-

candidate comparison was possible) required for a candidate to be considered as
a potential father. Default value is 1.

20 potentialFatherIDs

Details
Given the output from genotPPE or phenotPPE, potentialFatherIDs returns, for each progeny,
the IDs of candidates that are identified as potential fathers.

To decide whether a given candidate is a potential father to a given progeny, potentialFatherIDs
uses the quantities FLCount (the number of loci at which a candidate can provide a gamete compat-
ible with the progeny) and VLTotal (the number of loci at which a valid comparison was possible -
‘valid’ loci) that are returned by genotPPE or phenotPPE.

For a candidate to be identified as a potential father of a progeny, there are two criteria to be met:

1. VLTotal >=max(VLTMin,mismatches+1),
2. FLCount >=VLTotal-mismatches.

Here, VLTmin and mismatches are user-specified parameters. VLTmin allows the user to ensure
that a candidate is only considered for potential fatherhood if a sufficient number of valid loci
were available for comparison. mismatches allows the user to specify a maximum number of
allowed mismatching loci between progeny and candidate, before the candidate is rejected as a
potential father. Hence the user may wish to relax the condition that ALL valid loci must match for
a candidate to be regarded as a potential father to a progeny.

Value
A data frame, containing the columns Progeny (ID) Mother (ID), potentialFather (ID or None)
FLCount and VLTotal (the FLCount and VLTotal values for the given potential father).

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Using the example dataset 'FR_Genotype':
data(FR_Genotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

gData <- preprocessData(FR_Genotype,
numLoci=7,
ploidy=4,

dataType="genotype"”,
dioecious=TRUE,
mothersOnly=TRUE)

head(gData) ## Checked and Cleaned version of FR_Genotype
gPPE <- genotPPE(gData) ## Perform the exclusion analyses
Obtain IDs of potential fathers of each seedling, allowing a

single allele mismatch:
pFI <- potentialFatherIDs(gPPE,mismatches=1,VLTMin=2)

preprocessData 21

pFC can be viewed or writted to file via, e.g. write.csv()

preprocessData Check and preprocess an allele dataset

Description

Check and preprocess the input allele data frame prior to subsequent analysis.

Usage

preprocessData(adata, numLoci, ploidy, dataType, dioecious,
selfCompatible = NULL, mothersOnly = NULL, lociMin =1,
matMismatches = 0)

Arguments
adata data frame: an allele dataset.
numLoci integer: the number of loci in the allele dataset.
ploidy integer: the species’ ploidy, one of 2, 4, 6, or 8.
dataType character: either "genotype” or "phenotype”.
dioecious logical: is the species dioecious or monoecious?

selfCompatible logical: In monoecious species (dioecious=FALSE), can individuals self-fertilise?
When dioecious=FALSE, this argument may be left at its default value of NULL
- it will be set to FALSE by preprocessData.

mothersOnly logical: in dioecious species, should females without progeny present be re-
moved from the dataset? If dioecious=TRUE, then mothersOnly must be set to
either TRUE or FALSE. If dioecious=FALSE, argument mothersOnly should be
left at its default value of NULL.

lociMin integer: the minimum number of loci in a individual that must have alleles
present for the individual (and its progeny, if any) to be retained in the dataset
(default 1).

matMismatches an integer between 0 and numLoci-1, being the maximum number of mismatch-
ing alleles between mother and offspring that are allowed before the offspring is
removed from the dataset. The default value is 0. If an offspring has fewer than
matMismatches loci that mismatch with its mother, the offending loci are set to
contain no alleles.

22 preprocessData

Details

If inputData is used to load the allele data set into R, then preprocessData will be called auto-
matically on the data frame before it is returned by inputData. However, if the user loads their data
into R by some means other than inputData, then preprocessData MUST be called on the data
frame prior to using any other PolyPatEx functions to analyse the allele data—preprocessData
performs a series of critical checks and preprocessing steps on the data frame, without which other
analysis functions in PolyPatEx will fail.

Note that inputData strips leading or trailing spaces (whitespace) from each entry in the allele
dataset as it is read in. If you load your data by a means other than inputData, you should ensure
that you perform this step yourself, as preprocessData will not carry out this necessary step.

Note also that you should not use spaces in any of your allele codes - PolyPatEx functions use
spaces to separate allele codes as they process the data - if allele codes already contains spaces,
errors will occur in this processing. If you need a separator, I recommend using either ‘code.” (a
period) or ‘code_’ (an underscore) rather than a space.

preprocessData first performs a number of simple checks on the format and validity of the data
set. These checks look for the presence of certain required columns and correct naming and content
of these columns. preprocessData will usually stop with an error message should the data fail
these basic checks. Correct the indicated problem in the CSV file or R allele data frame, then call
inputData or preprocessData again as appropriate. If you use a spreadsheet to edit the CSV file,
don’t forget that you may also need to call fixCSV on the CSV file, prior to calling inputData
again.

If the data is ‘genotypic’ data PolyPatEx requires that all p alleles must be present in each allele set,
where p is the species’ ploidy. If an allele set contains fewer than p alleles, then it is reset to contain
no alleles and is subsequently ignored by other PolyPatEx functions. ID and locus information is
printed to the R terminal, to help the user locate these cases in their original dataset.

Further checks look for mismatches between progeny and their mothers’ allele sets at each locus—
these are situations where a progeny’s allele set could not have arisen from any gamete that the
mother can provide. When no more than matMismatches mismatching loci occurs in a mother-
progeny pair, the offending allele sets in the progeny are reset to contain no alleles (we term these
‘missing’ allele sets). When mismatches occur in more than matMismatches loci, the progeny is
removed entirely from the dataset. Information is printed to the R terminal to assist the user in
identifying the affected individuals and loci—in particular, note that removal of several (or all) of a
single mother’s progeny may indicate an error in the mother’s allele data, rather than in her progeny.

After the mother/progeny mismatch check above, a subsequent check removes individuals from
the dataset that have fewer than lociMin non-missing allele sets remaining. The default value for
lociMin is 1—an individual must have at least one non-missing locus to remain in the dataset. If
any mothers are removed from the dataset at this stage, all of her progeny are removed also. Again,
information about these removals is printed to the R terminal.

Note that in the data frame that is returned by preprocessData, the alleles in each allele set (i.e,
corresponding to each locus) will be sorted into alphanumeric order—this sort order is necessary
for the correct operation of other PolyPatEx routines, and should not be altered.

PolyPatEx needs to know the characteristics of the dataset being analysed. These are specified in
the inputData or preprocessData calls and are invisibly attached to the allele data frame that is
returned, for use by other PolyPatEx functions. The required characteristics are:

e numLoci: the number of loci in the dataset

preprocessData 23

* ploidy: the ploidy (p) of the species (currently allowed to be 4, 6, or 8. ploidy can also be
2, provided dataType="genotype")

» dataType: whether the data is genotypic (all p alleles at each locus are observed) or pheno-
typic (only the distinct allele states at a locus are observed - alleles that appear more than once
in the genotype of a locus only appear once in the phenotype)

» dioecious: whether the species is dioecious or monoecious

» selfCompatible: whether a monoecious species is self compatible (i.e., whether an individ-
ual can fertilise itself)

* mothersOnly: whether a dioecious dataset should retain only adult females that are mothers
of progeny in the dataset.

Value
A data frame, containing the checked and pre-processed allele data, ready for further analysis by
other PolyPatEx functions. All columns in the returned data frame will be of mode character.

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

If using inputData to input the allele dataset from CSV file,
preprocessData() is applied automatically before the dataset is
returned by inputData().

Otherwise, if the allele dataset is created or loaded into R
by other means, such preprocessData() must be applied before
other PolyPatEx analysis routines are applied:

Using the example dataset 'GF_Phenotype':
data(GF_Phenotype)

Since we did not load this dataset using inputData(), we must
first process it with preprocessData() before doing anything

else:

pData <- preprocessData(GF_Phenotype,
numLoci=7,
ploidy=6,

dataType="phenotype”,
dioecious=FALSE,
selfCompatible=FALSE)

head(pData) ## Checked and Cleaned version of GF_Phenotype

pData is now ready to be passed to other PolyPatEx analysis
functions...

Index

+ data
FR_Genotype, 7
GF_Phenotype, 10

convertToPhenot, 2
data, 7, 10

fixCsVv, 4, 12, 22
foreignAlleles, 5
FR_Genotype, 7

genotPPE, 8, 17-20
GF_Phenotype, 10

inputData, 6-8, 10, 11, 14, 16, 22
multilocusTypes, 14

phenotPPE, 9, 15, 18-20
PolyPatEx-package, 2
potentialFatherCounts, 8, 9, 16, 18
potentialFatherlIDs, 8, 9, 16, 19
preprocessData, 6,8, 9, 12, 13, 16, 17, 21

read.csv, 12
read.table, 4

	PolyPatEx-package
	convertToPhenot
	fixCSV
	foreignAlleles
	FR_Genotype
	genotPPE
	GF_Phenotype
	inputData
	multilocusTypes
	phenotPPE
	potentialFatherCounts
	potentialFatherIDs
	preprocessData
	Index

