## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE, warning=FALSE, eval=FALSE--------------------------------- # library(CohortConstructor) # library(PhenotypeR) # library(dplyr) # # con <- DBI::dbConnect(duckdb::duckdb(), # CDMConnector::eunomiaDir("synpuf-1k", "5.3")) # cdm <- CDMConnector::cdmFromCon(con = con, # cdmName = "Eunomia Synpuf", # cdmSchema = "main", # writeSchema = "main", # achillesSchema = "main") # # # Create a code lists # codes <- list("user_of_warfarin" = c(1310149L, 40163554L), # "user_of_acetaminophen" = c(1125315L, 1127078L, 1127433L, 40229134L, # 40231925L, 40162522L, 19133768L), # "user_of_morphine" = c(1110410L, 35605858L, 40169988L), # "measurements_cohort" = c(40660437L, 2617206L, 4034850L, 2617239L, # 4098179L)) # # # Instantiate cohorts with CohortConstructor # cdm$my_cohort <- conceptCohort(cdm = cdm, # conceptSet = codes, # exit = "event_end_date", # overlap = "merge", # name = "my_cohort") # # # Run PhenotypeDiagnostics including all diagnostics # result <- phenotypeDiagnostics(cdm$my_cohort, survival = TRUE) # # # Generate expectations # chat <- chat("google_gemini") # # expectations <- getCohortExpectations(chat = chat, # phenotypes = result) # # # Create the shiny app based on PhenotypeDiagnostics results, suppressing all # # cell counts smaller than 2, saved in a temporary directory, and with the # # expectations created using "gemini". # shinyDiagnostics(result = result, minCellCount = 2, directory = tempdir(), expectations = expectations)