Package ‘PROscorerTools’

January 20, 2025
Type Package

Title Tools to Score Patient-Reported Outcome (PRO) and Other
Psychometric Measures

Version 0.0.4

Description Provides a reliable and flexible toolbox to score
patient-reported outcome (PRO), Quality of Life (QOL), and other
psychometric measures. The guiding philosophy is that scoring errors can
be eliminated by using a limited number of well-tested, well-behaved
functions to score PRO-like measures. The workhorse of the package is
the 'scoreScale' function, which can be used to score most single-scale
measures. It can reverse code items that need to be reversed before
scoring and pro-rate scores for missing item data. Currently, three
different types of scores can be output: summed item scores, mean item
scores, and scores scaled to range from O to 100. The 'PROscorerTools'
functions can be used to write new functions that score more complex
measures. In fact, 'PROscorerTools' functions are the building blocks of
the scoring functions in the 'PROscorer' package (which is a repository
of functions that score specific commonly-used instruments). Users are
encouraged to use 'PROscorerTools' to write scoring functions for their
favorite PRO-like instruments, and to submit these functions for
inclusion in 'PROscorer’ (a tutorial vignette will be added soon). The
long-term vision for the 'PROscorerTools' and 'PROscorer' packages is to
provide an easy-to-use system to facilitate the incorporation of PRO
measures into research studies in a scientifically rigorous and
reproducible manner. These packages and their vignettes are intended to
help establish and promote * " best practices" for scoring and describing
PRO-like measures in research.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/MSKCC-Epi-Bio/PROscorerTools

BugReports https://github.com/MSKCC-Epi-Bio/PROscorerTools/issues
RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown, covr

https://github.com/MSKCC-Epi-Bio/PROscorerTools
https://github.com/MSKCC-Epi-Bio/PROscorerTools/issues

2 chk_nitems

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Ray Baser [aut, cre]

Maintainer Ray Baser <ray.stats@gmail.com>
Repository CRAN

Date/Publication 2023-10-17 08:50:02 UTC

Contents
chk_nitems e e 2
get_dfltems 4
makeFakeData 5
makeltemNames e e e e 6
missTally 6
msgWrap e e e e e e e 7
PROscorerTools e e e e 8
TETANZE © o v v v v e 10
TeVeode e e e 11
scoreScaleo 12

Index 16

chk_nitems Checks the number and values of items passed to custom scoring func-
tions
Description

These functions are designed to used within custom scoring functions to help check the arguments
passed to those functions. Typically, these argument checkers will be used within the body of a
custom scoring function before calling the scoreScale function to handle the bulk of the work.
See Details.

¢ chk_nitems checks if df Items contains the correct number of items (nitems), and chkstop_nitems
returns an error message if this condition is not met.

» chk_values checks if all of the item values in dfItems are in the set of possible values given
to the values argument, and chkstop_values returns an error message if this condition is
not met.

chk_nitems 3
Usage

chk_nitems(dfItems, nitems)

chkstop_nitems(dfItems, nitems)

chk_values(dfItems, values)

chkstop_values(dfItems, values)

Arguments

dfItems A data frame with only the items to be scored.

nitems The number of items on the scale to be scored.

values A vector of all of the possible values that the items can take.
Details

Functions with prefix chk_ simply check whether their argument values meet a condition and re-
turn TRUE or FALSE. Functions with the prefix chkstop_ check the arguments and, if FALSE, stop
execution and display an error message to help the user pinpoint the problem.

The scoreScale function is a general, all-purpose tool that can be used to score a scale regardless
of the number or values of items on the scale. Because of this, however, it does not check that
the user has given it the correct number of items, and it does not check that those item values
are all within the range possible for that scale. Therefore, whenever scoreScale is used to write a
function to score a specific instrument (presumably with a known number of items and item values),
the programmer should run some additional checks on the arguments that are not already built-in to
scoreScale.

Value

Functions with prefix chk_ return TRUE if the arguments pass the argument checks, or FALSE if the
arguments fail the checks. Functions with the prefix chkstop_ print an error message and stop the
execution of the function in which they are embedded.

Note

Use with caution! These functions work, but they might be deprecated in future updates of the
package. I am hoping to come up with a more streamlined, user-friendly system for checking
arguments and input values. Until then, these functions get the job done, but not as gracefully as I
would like.

Examples

itemBad <- c(0, 1, 2, 3, 10)

itemGood <- c(@, 1, 2, 3, @)

dfBad <- data.frame(itemBad, itemGood)
dfGood <- data.frame(itemGood, itemGood)
chk_nitems(dfBad, 1)

chk_nitems(dfGood, 2)

4 get_dfltems

chk_values(dfBad, 0:3)
chk_values(dfGood, 0:3)

get_dfItems Get a data frame with only items from user input

Description

Given a data frame and an item index, returns a data frame containing only the items. These func-
tions are used internally by other PROscorerTools functions, particularly scoreScale. Their job is
to return a data frame containing only the items to be scored. These functions are also used in the
scoring functions in the PROscorer package to help process the user’s input. These functions will
be of interest mainly to developers wishing to contribute to the PROscorer package.

Usage
get_dfItems(df, items)

get_dfItemsrev(df, dfItems, revitems, minmax)

Arguments

df A data frame given as the argument to scoreScale

items Item index, given as argument to scoreScale

dfItems A data frame with only items, created and used by scoreScale as an interim

step in scoring a scale

revitems Items to reverse, given as argument to scoreScale

minmax Minimum and maximum possible item values, given as argument to scoreScale
Value

These functions return a data frame containing only the items to be scored. In the case of get_dfItemsrev,
the specified items will be reverse scored in the returned data frame.

makeFakeData

makeFakeData

Make a data frame of fake item data

Description

makeFakeData creates a data frame containing fake item data to facilitate the writing and testing of
new scoring functions. It is also used to create data for examples of scoring function usage.

Usage

makeFakeData(

n = 20,

nitems =
values =
propmiss
prefix =

id = FALSE

Arguments

n
nitems

values

propmiss

prefix

id

Details

0.2,

The number of respondents (rows) in the fake data. The default is 20.

The number of items in the fake data. The default is 9.

A vector of all possible values the items can take. The default is @: 4, or equiva-
lently c(@, 1, 2, 3, 4).

The proportion of responses that will be randomly assigned to be missing. The
default is . 20.

A quoted character that will be used to prefix the item numbers. The default is

n.n

q".

Logical, if TRUE the first variable in the data frame will be a unique row "ID".
The default is FALSE, and the "ID" variable is omitted.

The item responses in the first row are all the lowest possible value and never NA, and the responses
on the second row are all the highest possible value and never NA. This makes it easier to check
if the scoring function is at least getting the scores correct for subjects with no missing values. It
also makes it easier in some cases to check that the scoring function is properly reversing the items
according to the itemsrev argument of the scoring function.

Although the resulting data frame can be customized using the arguments, the default values are
sufficient for most generic testing purposes (see example).

Value

A data frame with n rows, nitems items, and possibly with some missing values randomly inserted.

6 missTally

Examples

makeFakeData()

makeItemNames Quickly create a vector of sequentially numbered item names

Description
Takes a prefix (e.g., "Q") and the number of items you want (e.g., 3), and returns a vector of item
names (e.g., c("QI1", "Q2", "Q3")).

Usage

makeItemNames(prefix, nitems)

Arguments
prefix A quoted prefix that will precede the number in the item name (e.g., the "Q" in
"Ql H)‘
nitems The number of items
Value

A character vector of sequentially numbered item names.

Examples

makeItemNames("q", 3)
itemNames <- makeItemNames("item", 7)

itemNames
missTally Determine the number (or proportion) of missing (or non-missing)
items for each respondent
Description

This is a handy helper function that can be used in PRO scoring functions to determine the number
(or proportion) of item responses that are missing (or valid) for each row in a data frame of items.
This is used by scoreScale to help determine if a respondent has answered enough items to be
assigned a prorated scale score.

Usage

missTally(dfItems, what = c("pmiss”, "nmiss"”, "pvalid”, "nvalid"))

msgWrap 7

Arguments
dfItems A data frame containing only the items of interest.
what One of four quoted names indicating the value you want for each respondent
(row) in dfItems: (1) "pmiss” (the default), for the proportion of items that are
missing; (2) "nmiss”, for the number of items that are missing; (3) "pvalid”,
for the proportion of items that are valid, non-missing; and (4) "nvalid" for the
number of items that are valid, non-missing.
Value

A vector of length nrow(dfItems) that contains the quantity requested in what for each row of
dfItems.

Examples

set.seed(8675309)

Make data frame with 10 respondents, 10 items, and approx 30% missing data
(myItems <- makeFakeData(n = 10, nitems = 10, propmiss = .30))

The default is to return "pmiss”, the proportion missing for each row.
missTally(myItems)

missTally(myItems, "pvalid")

missTally(myItems, "nmiss")

missTally(myItems, "nvalid")

msgWrap msgWrap

Description

Helps format line-wrapping of long error and warning messages

Usage

msgWrap(msg)

Arguments

msg A quoted message.

Details

This is just a shorter version of the following that makes my function code easier to read: paste(strwrap(msg,
exdent =2, width =70), collapse = "\n") It seems to work fine when embedded in warning or
stop, but may give unexpected output if called alone.

Value

It returns msg formatted wrapped nicely for the console.

8 PROscorerTools

Examples

txt <- "If you use 'itemsrev' to indicate items that
must be reverse-coded before scoring,
you must provide a valid numeric range to 'minmax'.
For example, if your lowest possible item response
is @ and your highest possible response is 4,

[

you would use 'minmax = c(0@, 4)'.

warning(msgWrap(msg = txt))

PROscorerTools PROscorerTools

Description

Tools to score Patient-Reported Outcome (PRO), Quality of Life (QOL), and other psychometric
measures and questionnaire-based instruments.

Details

Provides a set of reliable and flexible tools to score PRO, QOL, and other psychometric and psy-
chological measures. Additionally, PROscorerTools provides the infrastructure for the scoring
functions in the PROscorer package.

The scoreScale function is the workhorse of PROscorerTools, and it can be used to score most
single-scale measures. For example, it can reverse code some or all items before scoring, and it
can generate different types of scores (sum scores, mean scores, or scores scaled to range from
0 to 100). It and the other PROscorerTools functions can be used together to flexibly write new
functions that score more complex, multi-scale measures.

The scoreScale function itself is composed of other PROscorerTools helper functions. This is an
intentional feature of the PROscorerTools and PROscorer system. It represents the central design
philosophy that all scoring functions should be modularly composed of a small number of well-
tested, reliable helper functions. This important feature minimizes the possibility of scoring errors
and other unexpected behaviors. This starts with the scoreScale function, and the benefits extend
to the PROscorer functions and any other scoring function that uses scoreScale as its backbone.

Scoring procedures represent a major source of error in research studies that rely upon PRO and
similar measures. These errors typically go unnoticed, hidden, and/or ignored, eroding the scientific
integrity of the research and hindering progress in the numerous scientific fields that conduct studies
that use these measures. A seemingly minor scoring error can compromise measurement validity
and reliability, as well as make research results difficult to reproduce and unlikely to replicate.
The ultimate goal of the PROscorerTools and PROscorer packages is to eliminate these serious
deficiencies in PRO-based research by providing a small set of gold-standard scoring tools for PRO-
like measures commonly used in research.

PROscorerTools 9

Overview of Functions
Main scoring workhorse:

* scoreScale: Scores a single scale score from a set of items. Has flexible arguments allowing
almost any type of single scale to be scored. Can be used as the primary building block of
more complex scoring functions. For example, if you are writing a new function to score an
instrument with 4 subscales, you can call scoreScale 4 times from within your function, once
for each subscale.

Functions useful within another scoring function, or on their own:
* missTally: Count the number or proportion of items missing (or non-missing) for each sub-
ject.
* rerange: Linearly rescale a variable to have new min and max values of the user’s choosing.
* rerangel100: Like rerange, but the variable is rescaled to range from 0 to 100.
* revcode: Reverse code the values of an item or score.
* makeItemNames: Easily make a vector of item names, e.g., c("Q1", "Q2", "Q3").

* makeFakeData: Quick and dirty way to generate fake item data to test scoring functions.

Functions mainly useful only within another scoring function:

These functions are used to check the arguments supplied to custom-written scoring functions, and
to perform some minimal processing of function input. AT THIS TIME, USE WITH CAUTION,
IF AT ALL. Most of these (if not all) will likely undergo substantial changes in a near-future
version of the package, and/or be deprecated in favor of a more streamlined system (e.g., using the
assertive package).

* msgWrap: Used inside of paste to help line-wrap long error and warning messages.

e chk_nitems: Checks if a data frame has the correct number of items.

* chkstop_nitems: Checks if a data frame has the correct number of items, and gives an error
message if it does not.

* chk_values: Checks if all item values in a data frame are in the expected set of possible
values.

» chkstop_values: Checks if all item values in a data frame are in the expected set of possible
values, and gives an error message if this is not true.

» get_dfItems: Given a data frame and an item index, returns a data frame containing only the
items.

e get_dfItemsrev: Like get_dfItems, but will also reverse code some or all of the items.

Internal Functions Used by scoreScale

These are internal functions used to make the scoreScale function more modular, and are used
exclusively to check the arguments to that function. They will likely be of little use to others, and
will probably change in a near-future version of the package, or be deprecated altogether in favor
of a more streamlined system (e.g., using the assertive package). They are documented here only
for development purposes. NOTE: The interface and functionality of the scoreScale function will
remain stable, even if/when these functions change.

10 rerange

e chkstop_df

e chkstop_okmiss

e chkstop_type

e chkstop_revitems
e chk_imin

* chk_imax

e chkstop_minmax

Author(s)

Maintainer: Ray Baser <ray.stats@gmail.com>

See Also
Useful links:

* https://github.com/MSKCC-Epi-Bio/PROscorerTools
* Report bugs at https://github.com/MSKCC-Epi-Bio/PROscorerTools/issues

rerange Change the range of an item or score

Description

* rerange linearly rescales a numeric variable to have new minimum and maximum values of
the user’s choosing.

* rerangel00 is a simplified version of rerange that rescales a variable to range from O to 100.

Usage
rerange(score, old = NULL, new = c(@, 100), rev = FALSE)

rerangel@@(score, mn, mx)

Arguments

score The variable to be re-ranged.

old A numeric vector of length 2 indicating the old range (e.g., c(min, max) score.
This is a required argument.

new A numeric vector of length 2 indicating the new range you want for score. The
default value is c(@, 100).

rev Logical, if TRUE score will will not only be re-ranged, but it will also be reversed
(see Details for more information). The default is FALSE.

mn The minimum possible value that score can take.

mx The maximum possible value that score can take.

https://github.com/MSKCC-Epi-Bio/PROscorerTools
https://github.com/MSKCC-Epi-Bio/PROscorerTools/issues

revcode 11

Details

The rerange function can re-range and reverse code a variable all at once. If rev = TRUE, score
will be reversed using revcode after it is re-ranged. The same could be accomplished by keeping
rev = FALSE and reversing the order of the range given to new. For example, the following two calls
to rerange will return the same values:

* rerange(score, old=c(0, 10), new=c(0, 100), rev =TRUE)

e rerange(score, old =c(@, 10), new=c(100, @), rev = FALSE)

The rerange100 function is a short-cut for rerange with the arguments set to the values typically
used when scoring a PRO measure. Specifically, rerange100 is defined as:

* rerange(score, old =c(mn, mx), new=c(0, 100), rev = FALSE)

These functions can produce verbose warning messages. If you are using this function within an-
other function, you can suppress these messages by wrapping your call to rerange in suppressWarnings().

Value

A re-ranged vector.

A version of score that is rescaled to range from 0 to 100.

Examples

gol_score <- c(0:4)

Default is to rerange to c(@, 100)
rerange(qol_score, old = c(0, 4))

Below gives same result as above
rerangel100(qol_score, 0, 4)

These two lines are different ways to rerange and reverse code at same time
rerange(qol_score, old = c(@, 4), new = c(@, 100), rev = TRUE)
rerange(qol_score, old = c(0@, 4), new = c(100, 0))

revcode Reverse code an item or score.

Description

Given an item (or score) and the minimum and maximum possible values that the item can take,
this helper function reverse codes the item. For example, it turns c(@, 1, 2, 3, 4) into c(4, 3, 2,
1, 0).

Usage

revcode(x, mn, mx)

12 scoreScale

Arguments
X A single item (or score) to reverse code.
mn The minimum possible value that x can take.
mx The maximum possible value that x can take.
Details

The user must supply the theoretically possible minimum and maximum values to this function
(using mn and mx, respectively). Some similar functions do not require users to provide the minimum
and maximum values. Instead, those functions calculate the minimum and maximum values from
the data. However, in cases where not all of the possible item values are contained in the data, this
would incorrectly reverse score the items. In the interest of scoring accuracy, these arguments are
required for revcode.

Value

A vector the same length as x, but with values reverse coded.

Examples

iteml <- c(o, 1, 2, 3, 4)
revcode(iteml, 0, 4)
item2 <- c(o, 1, 2, 3, @)
revcode(item2, 0, 4)

scoreScale Flexible function to score a single PRO or other psychometric scale

Description

scoreScale is a flexible function that can be used to calculate a single scale score from a set of

items.
Usage
scoreScale(
df,
items = NULL,

revitems = FALSE,

minmax = NULL,

okmiss = 0.5,

type = c("pomp”, "100", "sum”, "mean”),
scalename = "scoredScale”,

keepNvalid = FALSE

scoreScale

Arguments

df

items

revitems

minmax

okmiss

type

scalename

keepNvalid

Details

13

A data frame containing the items you wish to score. It can contain only the
items, or the items plus other non-scored variables. If it contains non-scored
variables, then you must use the items argument to let the function know how
to find your items in df.

(optional) A character vector with the item names, or a numeric vector indicating
the column numbers of the items in df. If items is omitted, then scoreScale
will assume that df contains only the items to be scored and no non-scored
variables.

(optional) either TRUE, FALSE, or a vector indicating which items in df should
be reverse coded before scoring. If omitted or FALSE (the default), no items
are reverse coded. If TRUE, all items are reverse coded before scoring. If only
some of the items should be reverse coded, provide either a character vector
with names of the items or a numeric vector with column numbers of the items
in df that should be reverse coded before scoring. If this argument is anything
but FALSE, then the minmax argument is required.

(optional) A vector of 2 integers of the format c(itemMin, itemMax), indicat-
ing the minimum and maximum possible item responses, e.g., c(@, 4). This
argument is required if type equals "pomp” (the default type) or "100". This is
also required only revitems is used and not set to FALSE. This function assumes
that all items have the same response range. If this is not the case, then manually
reverse code your items in df before using this function, and omit the revitems
and minmax arguments.

The maximum proportion of items that a respondent is allowed to have missing
and still have their non-missing items scored (and prorated). If the proportion of
missing items for a respondent is greater than okmiss, then the respondent will
be assigned a value of NA for their scale score. The default value is 0. 50.

The type of score that scoreScale should produce. Must be one of either "sum”
(for the sum of the item scores), "mean” (for the mean of the item scores), "100"
(for the score transformed to range from 0 to 100), or "pomp” (for a score rep-
resenting the "Percent Of the Maximum Possible", which is exactly the same as
"100" but with a better name). The default is "pomp".

The quoted variable name you want the function to give your scored scale. If
this argument is omitted, the scale will be named "scoredScale” by default.

Logical value indicating whether a variable containing the number of valid, non-
missing items for each respondent should be returned in a data frame with the
scale score. The default is FALSE. Set to TRUE to return this variable, which will
be named "scalename_N" (with whatever name you gave to the scalename
argument). Most users should probably omit this argument entirely. This argu-
ment might be removed from future versions of the package, so please let me
know if you think this argument useful and would rather it remain a part of the
function.

The scoreScale function is the workhorse of the PROscorerTools package, and it is intended to
be the building block of other, more complex scoring functions tailored to specific PRO measures.

14 scoreScale

It can handle items that need to be reverse coded before scoring, and it has options for handling
missing item responses. It can use three different methods to score the items: (1) sum scoring (the
sum of the item scores), mean scoring (the mean of the item scores), and 0-100 scoring (like sum
or mean scoring, except that the scores are rescaled to range from O to 100). This latter method is
also called "POMP" scoring (Percent Of the Maximum Possible), and is the default scoring method
of scoreScale since it has numerous advantages over other scoring methods (see References).

This function assumes that all items have the same numeric response range. It can still be used to
score scales comprised of items with different response ranges with two caveats:

* First, if your items have different ranges of possible response values AND some need to be
reverse coded before scoring, you should not use this function’s revitems plus minmax ar-
guments to reverse your items. Instead, you should manually reverse code your items (see
revcode) before using scoreScale, and omit the revitems and minmax arguments.

» Second, depending on how the different item response options are numerically coded, some
items might contribute more/less to the scale score than others. For example, consider a
questionnaire where the first item has responses coded as "0 = No, 1 = Yes" and the rest of
the items are coded as "0 = Never, 1 = Sometimes, 2 = Always". The first item will contribute
relatively less weight to the scale score than the other items because its maximum value is
only 1, compared to 2 for the other items. This state of affairs is not ideal, and you might want
to reconsider including items with different response ranges in one scale score (if you have
that option).

Value

A data frame with a variable containing the scale score. Optionally, the data frame can additionally
have a variable containing the number of valid item responses for each respondent.

Further Explanation of Arguments

The scoreScale function technically has only 1 required argument, df. If none of your items need
to be reverse coded before scoring, your items are in a data frame named myData, and myData
contains ONLY the items to be scored and no non-scored variables, then scoreScale(myData) is
sufficient to score your items.

In most real-world situations, however, you will likely have a data frame containing a mix of items
and other variables. In this case, you should additionally use the items argument to indicate which
variables in your data frame are the items to be scored. For example, assume that myData contains
an ID variable named "ID", followed by three items named "Q1", "Q2", and "Q3", none of which
need to be reverse coded. You can score the scale by providing the items argument with either (1)
a numeric vector with the column indexes of the items, like scoreScale(myData, items =2:4)
or scoreScale(myData, items = c(2, 3, 4), or (2) a character vector with the item names, like
scoreScale(myData, items =c("Q1", "Q2", "Q3").

References

Cohen, P, Cohen, J, Aiken, LS, & West, SG (1999). The problem of units and the circumstance for
POMP. Multivariate Behavioral Research, 34(3), 315-346.

scoreScale 15

Examples

Make a data frame using default settings of makeFakeData() function
(20 respondents, 9 items with values @ to 4, and about 20% missing)
dat <- makeFakeData()

First "sum” score the items, then "mean” score them
scoreScale(dat, type = "sum")
scoreScale(dat, type = "mean")

Must use "minmax” argument if the "type" argument is "100"
scoreScale(dat, type = "100", minmax = c(0@, 4))

If you omit "type"”, the default is "pomp” (which is identical to "100")
scoreScale(dat, minmax = c(@, 4))

"minmax” is also required if any items need to be reverse coded for scoring
Below, the first two items are reverse coded before scoring

scoreScale(dat, type = "sum”, revitems = c("g1", "qg2"), minmax = c(@, 4))

n

Index

chk_imax, 10

chk_imin, 10

chk_nitems, 2, 9

chk_values, 9

chk_values (chk_nitems), 2
chkstop_df, 10
chkstop_minmax, 10
chkstop_nitems, 9
chkstop_nitems (chk_nitems), 2
chkstop_okmiss, 10
chkstop_revitems, 10
chkstop_type, 10
chkstop_values, 9
chkstop_values (chk_nitems), 2

get_dfItems, 4,9
get_dfItemsrev, 9
get_dfItemsrev (get_dfItems), 4

makeFakeData, 5, 9
makeItemNames, 6, 9
missTally, 6, 9
msgWrap, 7, 9

PROscorerTools, 8, 13
PROscorerTools-package
(PROscorerTools), 8

rerange, 9, 10
rerangel0o, 9
rerangel100 (rerange), 10
revcode, 9, 11,11, 14

scoreScale, 24,6, 8, 9, 12

16

	chk_nitems
	get_dfItems
	makeFakeData
	makeItemNames
	missTally
	msgWrap
	PROscorerTools
	rerange
	revcode
	scoreScale
	Index

