
PPLasso package

Wencan Zhu, Céline Lévy-Leduc, Nils Ternès

Introduction
This package provides functions for implementing the PPLasso (Prognostic Predictive Lasso) approach
described in [1] to identify prognostic and predictive biomarkers in high dimensional settings. This method
is designed by taking into account the correlations that may exist between the biomarkers. It consists in
rewriting the initial high-dimensional linear model to remove the correlation existing between the predictors
and in applying the generalized Lasso criterion. We refer the reader to the paper for further details.

We suppose that the response variable y satisfy the following linear model:

y = Xγ + ε, (1)

where
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with γ = (α1, α2,β
′
1,β

′
2)′. α1 (resp. α2) corresponding to the effects of treatment t1 (resp. t2). Moreover,

β1 = (β11, β12, . . . , β1p)′ (resp. β2 = (β21, β22, . . . , β2p)′) are the coefficients associated to each of the p
biomarkers in treatment t1 (resp. t2) group. When t1 stands for the standard treatment (placebo), prognostic
(resp. predictive) biomarkers are defined as those having non-zero coefficients in β1 (resp. in β1 − β2) and
non prognostic (resp. non predictive) biomarkers correspond to the indices having null coefficients in β1
(resp. in β1 − β2). The vector β1 and β2 − β1 are assumed to be sparse, i.e. a majority of its components is
equal to zero. The goal of the PPLasso approach is to retrieve the indices of the nonzero components of β1
and β2 − β1.

Concerning the biomarkers,
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are the design matrices for t1 and t2 groups, respectively. The rows of X1 and X2 are assumed to be the
realizations of independent centered Gaussian random vectors having a covariance matrix equal to Σ.

Data generation
Correlation matrix Σ
We consider a correlation matrix having the following block structure:
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Σ =
[
Σ11 Σ12
ΣT

12 Σ22

]
(3)

where Σ11 is the correlation matrix of active variables (non null associated coefficients) with off-diagonal
entries equal to a1, Σ22 is the one of non active variables (null associated coefficients) with off-diagonal
entries equal to a3 and Σ12 is the correlation matrix between active and non active variables with entries
equal to a2. In the following example: (a1, a2, a3) = (0.3, 0.5, 0.7).
The first 10 variables are assumed to be active, among which the first 5 are also predictive.

In the following, p = 50 and n = 50 are used for the example but the approach can handle much larger values
of n and p as it is shown in the paper describing PPLasso.
p <- 50 # number of variables
d <- 10 # number of actives
n <- 50 # number of samples
actives <- 1:d
nonacts <- c(1:p)[-actives]
Sigma <- matrix(0, p, p)
Sigma[actives, actives] <- 0.3
Sigma[-actives, actives] <- 0.5
Sigma[actives, -actives] <- 0.5
Sigma[-actives, -actives] <- 0.7
diag(Sigma) <- rep(1,p)
actives_pred <- 1:5

Generation of X and y
The design matrix is then generated with the correlation matrix Σ previously defined by using the function
mvrnorm and the response variable y is generated according to the linear model (1) where the non null
components of β1 are equal to 1 and non null components of β2 − β1 are equal to 0.5, α1 = 0 and α2 = 1.
X_bm <- MASS::mvrnorm(n = n, mu=rep(0,p), Sigma, tol = 1e-6, empirical = FALSE)
colnames(X_bm) <- paste0("X",(1:p))
n1=n2=n/2 # 1:1 randomized
beta1 <- rep(0,p)
beta1[actives] <- 1
beta2 <- beta1
beta2[actives_pred] <- 2
beta <- c(beta1, beta2)
TRT1 <- c(rep(1,n1), rep(0,n2))
TRT2 <- c(rep(0,n1), rep(1,n2))
Y <- cbind(X_bm*TRT1,X_bm*TRT2)%*%beta+TRT2+rnorm(n,0,1)

Estimation of Σ
Given y and X, we can estimate the block-wise correlation matrix Σ containing the correlations between the
columns of X. We propose to use the function cvCovEst of the R package cvCovEst by keeping the default
parameters.
cv_cov_est_out <- cvCovEst(

dat = X_bm,
estimators = c(

linearShrinkLWEst, denseLinearShrinkEst,
thresholdingEst, poetEst, sampleCovEst
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),
estimator_params = list(

thresholdingEst = list(gamma = c(0.2, 0.4)),
poetEst = list(lambda = c(0.1, 0.2), k = c(1L, 2L))

),
cv_loss = cvMatrixFrobeniusLoss,
cv_scheme = "v_fold",
v_folds = 5

)
Sigma_est <- cov2cor(cv_cov_est_out$estimate)

The optimal estimation of Σ can be obtained by the object estimate in the output.

Variable selection
With the previous X and y, the function ProgPredLasso of the package PPLasso can be used to select the
active variables. If the parameter cor_matrix (correlation matrix) is not provided, it will be automatically
estimated by the function cvCovEst of the R package cvCovEst presented in the previous section. However,
it can also be provided by the users. Here we use the previously estimated Σ̂: Sigma_est.
mod <- ProgPredLasso(X1 = X_bm[1:n1, ], X2 = X_bm[(n1+1):n, ], Y = Y, cor_matrix = Sigma_est)

Additional arguments:

• delta: parameter of thresholding appearing in the method described in [1] which is set to 0.95 by
default.

• maxsteps: integer specifying the maximum number of steps for the generalized Lasso algorithm. Its
default value is 500.

Outputs:

• lambda: all the λ considered.
• beta: matrix of the estimations of γ for all the λ considered. Each row of beta corresponds to γ̂ for a

given λ. More precisely, the first (resp. second) column corresponds to the estimation of treatment
effect α1 (resp. α2). The 3rd to (p+ 2)th columns correspond to the estimation of β1 and the last p
columns correspond to the estimation of β2 − β1.

• beta.min: estimation of γ obtained for the λ minimizing the BIC criterion.
• bic: BIC criterion for all the λ considered.
• mse: MSE (Mean Squared Error) for all the λ considered.

Estimation of γ
The estimation of the treatment effects α1 and α2 are obtained as follows:
#alpha1
mod$beta.min[1]

## [1] -0.096178

#alpha2
mod$beta.min[2]

## [1] 1.110355

The identified prognostic (resp. predictive) biomarkers are displayed on the left (resp. right) of Figure 1 with
true prognostic or predictive biomarkers in blue and false positives in red.

To find the biomarkers identified as prognostic:
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Figure 1: Left: Identified prognostic biomarkers. Right: Identified predictive biomarkers.

which(beta_min[1:p]!=0)

## [1] 1 2 3 4 5 6 7 8 9 10 12 15 21 23 24 26 31 33 34 38 41 42 43 49 50

and the biomarkers identified as predictive:
which(beta_min[(p+1):(2*p)]!=0)

## [1] 1 2 3 5 8 9 10 22 29 30 33 34 35 38 41 42 46 48 49
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