Package ‘OceanView’

January 20, 2025

Version 1.0.7
Title Visualisation of Oceanographic Data and Model Output

Author Karline Soetaert <karline.soetaert@nioz.nl>

Maintainer Karline Soetaert <karline.soetaert@nioz.nl>
Depends plot3D, plot3Drgl, R (>=3.2)

Imports methods, graphics, grDevices, stats, rgl, shape

Description

Functions for transforming and viewing 2-D and 3-D (oceanographic) data and model output.

License GPL (>=3.0)
LazyData yes

NeedsCompilation yes
Repository CRAN
Date/Publication 2024-02-06 13:30:06 UTC

Contents
OceanView-package . . . . . . . . . . i e 2
Chesapeake dataset . . . . . . . . . . . . . . e 2
Map and extractdata . . . . . . . ... e 6
Matrix plotting . . . . . . .. L. 13
Movingslicesin3D . . . . . . ... 16
Moving surfaces in 3D . . . . ... 18
NIOZ Westerschelde monitoring . . . . . . . . . . .. ... . 19
Profiledataset. . . . . . . . . . . .. 22
Quiverand flow paths . . . . . . . . . . L 24
Reshapingtoacrosstable . . . . . . . . . . . ... ... 31
Syltdataset . . . . . . . . . 33
Tracersin 2D . . . . . . 39
Tracersin 3D . . . . . . 42
VECIOT PIOLS . . o o o e e e e e e e 47

Index 50



2 Chesapeake data set

OceanView-package Functions for visualising oceanic data sets and model output.

Description

Visualisation of oceanic data.

Author(s)

Karline Soetaert

References

https://www.rforscience.com/oceanview.html

See Also

db2cross, converts a dataset from database format to cross table.

flowpath, plots velocities as trajectory plot.

remap, transect, extract, mapsigma, transectsigma, mapping and extracting from 2-D or 3-D data.
Mcommon, Mplot, Msplit, functions for plotting matrices.

quiver2D, velocities plotted as arrows.

vectorplot, vector velocity plot.

Chesapeake data set Particle transport in Chesapeake Bay

Description

Chesapeake is a 1ist with the bathymetry of Chesapeake Bay, Mid-Atlantic Bight and the initial
position of the particles.

Ltrans is an array with output of the Lagrangian Transport model (Ltrans v.2) from Chesapeake
Bay mouth, at 37 dgN in the Mid-Atlantic Bight (Schlag and North, 2012).

Usage

data(Chesapeake)
data(Ltrans)


https://www.rforscience.com/oceanview.html

Chesapeake data set 3

Format

* Chesapeake is a 1ist with the bathymetry of the area. There are 154 x-values, at 77 y-values.
It contains:

lon, the longitude, (154 x 77), dg East.
lat, the latitude, (154 x 77), dg North.
depth, the bathymetry (154 x 77), metres.

init, the initial condition of the particles, a (608 x 4) matrix with (lon, lat, depth,
source) values.

* Ltrans contains output of the Lagrangian particle transport model, in the Chesapeake mouth
area. 608 particles were released in two square regions, and their positions followed over 108
output steps. It is an array of dimension (608 x 4 x 108), and which contains for each of the
608 particles, and at each of the 108 output steps the following:

— lon, the longitude of each particle.

— lat, the latitude of each particle.

— depth, the depth of each particle.

— source, the square region of release, either 1 or 2.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

References

Schlag, Z. R., and E. W. North. 2012. Lagrangian TRANSport model (LTRANS v.2) User’s Guide.
University of Maryland Center for Environmental Science, Horn Point Laboratory. Cambridge,
MD. 183 pp.

North, E. W., E. E. Adams, S. Schlag, C. R. Sherwood, R. He, S. Socolofsky. 2011. Simulating oil
droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. AGU Book Series:
Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise.

See Also
Sylt3D for output of a 3-D hydrodynamical model, GETM.
Oxsat for a 3-D data set, package plot3D.
tracers2D for plotting time series of tracer distributions in 2D

tracers3D for plotting time series of tracer distributions in 3D

Examples

# save plotting parameters
pm <- par("mfrow")
mar <- par("mar"”

##
## Show bathymetry and initial distribution of particles
##




Chesapeake data set

par(mfrow = c(1, 1))

lon <- Chesapeake$lon

lat <- Chesapeake$lat

depth <- Chesapeake$depth

init <- Chesapeake$init

image2D(z = depth, x = lon, y = lat, clab = c("depth”, "m"),
xlab = "lon"”, ylab = "lat")

# position of particles
with (init, scatter2D(lon, lat, colvar = source, pch = 16, cex = 0.5,
col = c("green", "orange"), add = TRUE, colkey = FALSE))

par (mar = c(2, 2, 2, 2))
# same, as persp plot
persp3D(x = lon, y = lat, z = -depth, scale = FALSE,
expand = 0.02, main = "initial particle distribution”,
plot = FALSE)

points3D(x = init$lon, y = init$lat, z = -init$depth,
colvar = init$source, col = c("green”, "orange"),
pch = 16, cex = 0.5,

add = TRUE, colkey = FALSE, plot = FALSE)

## Not run:
plotdev(lighting = TRUE, lphi = 45)

## End(Not run)
plotrgl(lighting = TRUE, smooth = TRUE)

#H#
## Tracer output in 3D, traditional device
#it
## Not run:
par(mfrow = c(2, 1), mar = c(2, 2, 2, 2))
for (i in c(50, 100))
tracers3D(Ltrans[, 1, il, Ltrans[, 2, i], Ltrans[, 3, il,
colvar = Ltrans[ ,4, i], col = c("green”, "orange"),
pch = 16, cex = 0.5,
surf = list(x = lon, y = lat, z = -depth, scale = FALSE,
expand = 0.02, colkey = FALSE, shade = 0.3,
colvar = depth), colkey = FALSE,
main = paste("time ", 1i))

## End(Not run)

##
## Tracer output in 3D, using rgl
#H#

persp3D(x = lon, y = lat, z = -depth, colvar = depth, scale = FALSE,



Chesapeake data set

expand = 0.02, main = "particle distribution”, plot = FALSE)
plotrgl(lighting = TRUE, smooth = TRUE)

# you may zoom to the relevant region, or cut a region
# cutrgl()
for (i in seq(1, 108, by = 4)) {
tracers3Drgl(Ltrans[, 1, i], Ltrans[, 2, i], Ltrans[, 3, il],

colvar = Ltrans[ ,4, i], col = c("green”, "orange"),
main = paste("time ", 1))

# remove # to slow down

#  Sys.sleep(@0.1)

}
# using function moviepoints3D
## Not run:
persp3Drgl(x = lon, y = lat, z = -depth, colvar = depth, scale = FALSE,
expand = 0.02, main = "particle distribution”,

lighting = TRUE, smooth = TRUE)

nt <- dim(Ltrans)[3] # number of time points
np <- dim(Ltrans)[1] # number of particles

times <- rep(l:nt, each = np)

moviepoints3D(x = Ltrans[, 1, 1, y = Ltrans[, 2, 1, z = Ltrans[, 3, 1,
t = times, colvar = Ltrans[ ,4, 1, col = c("green”, "orange"),
cex = 5, ask = TRUE)

## End(Not run)

##

## Tracer output in 2D, traditional device

#it

par(mfrow = c(2, 2))
for (i in seq(10@, 106, length.out = 4))
tracers2D(Ltrans[, 1, il, Ltrans[, 2, il,
colvar = Ltrans[ ,4, i], col = c("green”, "orange"),
pch = 16, cex = 0.5,
image = list(x = lon, y = lat, z = depth), colkey = FALSE,

main = paste("time ", 1))
#H#
## Tracer output in 2D, rgl
##

image2Drgl (x = lon, y = lat, z = depth)
for (i in seq(1, 108, by = 3)) {
tracers2Drgl(Ltrans[, 1, i], Ltrans[, 2, i],
colvar = Ltrans[ ,4, i], col = c("green”, "orange"))
# remove # to slow down
#  Sys.sleep(0.1)



6 Map and extract data

}

# reset plotting parameters
par(mar = mar)
par(mfrow = pm)

Map and extract data Functions for remapping, changing the resolution, and extracting from
2-D or 3-D data.

Description

S3 functions remap maps a variable (var) (a matrix or array) with x, y (and z) coordinates to a
matrix or array with coordinates given by xto, yto (and zto). x, y, z, xto, yto and zto are
all vectors. The functions interpolate to all combinations of xto, yto and zto. Simple 2-D linear
interpolation is used. Result is amatrix or array.

Function changeres changes the resolution of a variable (var) (amatrix or array) with x, y (and
z) coordinates. If var is a matrix, then x, y can be either a vector or a matrix; if var is an array,
then x, y, z should all be vectors. Simple 2-D linear interpolation is used. Result is a matrix or
array.

S3-functions extract map a variable (var) from a matrix with (x, y) coordinates or from an array
with (X, y, z) coordinates to the xy coordinate pair xyto or xyz coordinate triplets xyzto by linear
interpolation. Result is a vector.

transect takes a cross section across an array (var). Result is a matrix.

mapsigma maps a matrix or array var containing values defined at (x, sigma) (or (X, y, sigma))
coordinates to (x, depth) (or (X, y, depth)) coordinates. The depths corresponding to the sigma
values in var are in an input matrix or array called sigma with same dimensions as var. The result
is a matrix or array which will contain NAs where the depth-coordinates extend beyond the sigma
values.

Usage
remap (var, ...)
## S3 method for class 'matrix'

remap(var, x, y, xto = NULL, yto = NULL,
na.rm = TRUE, ...)

## S3 method for class 'array'
remap(var, x, y, z, xto = NULL, yto = NULL, zto = NULL,
na.rm = TRUE, ...)

changeres (var, ...)

## S3 method for class 'matrix'
changeres(var, x, y, resfac, na.rm = TRUE, ...)



Map and extract data

## S3 method for class 'array'
changeres(var, x, y, z, resfac, na.rm = TRUE, ...)

extract (var, ...)

## S3 method for class 'matrix'
extract(var, x, y, xyto, ...)

## S3 method for class 'array'

extract(var, x, y, z, xyzto, ...)
transect(var, x, y, z, to, margin = "xy", ...)
mapsigma  (var, ...)

## S3 method for class 'matrix'

mapsigma(var =

NULL, sigma, signr = 2,

x

= NULL,

depth = NULL, numdepth = NULL, xto = NULL, resfac =1, ...)

## S3 method for class 'array'

mapsigma(var =

NULL, sigma, signr = 3, x = NULL, y
depth = NULL, numdepth = NULL, xto
resfac = 1,

NULL,
NULL,

NULL, yto
L)

transectsigma(var = NULL, sigma, x, y, to, depth = NULL,

Arguments

var

xto

yto

numdepth = NULL, resfac =1, ...)

Matrix or array with values to be mapped to other coordinates (remap), or to
lower or higher resolution (changeres), or whose values have to be extracted
(extract, transect), or which has to be mapped from sigma to depth coordi-
nates (mapsigma). For transect and transectsigma, var has to be an array.

Vector with original x-coordinates of the matrix or array var to be mapped.
Length should be = first dimension of var.

Vector with original y-coordinates of the matrix or array var to be mapped.
Length should be = second dimension of var.

Vector with original z-coordinates of the array var to be mapped. Length should
be = third dimension of var.

Vector with x-coordinates to which var should be mapped. The elements in xto
should be embraced by the elements in x (it is not allowed to extrapolate outside
of the region). If NULL then the range of x is covered, with the same number of
points.

Vector with y-coordinates to which var should be mapped. The elements in yto
should be embraced by the elements in y (it is not allowed to extrapolate outside



8 Map and extract data

of the region). If NULL then the range of y is covered, with the same number of
points.

zto Vector with z-coordinates to which var should be mapped. The elements in zto
should be embraced by the elements in z (it is not allowed to extrapolate outside
of the region). If NULL then the range of z is covered, with the same number of
points.

xyto Two-columned matrix, with first and second column specifying the x- respec-
tively y-coordinates to which the matrix var should be mapped. The elements
should be embraced by the elements in x (first column) and y (second column)
(it is not allowed to extrapolate outside of the region).

xyzto Three-columned matrix, specifying the x-, y- and z-coordinates to which the
array var should be mapped. The elements should be embraced by the elements
in x, y and z (it is not allowed to extrapolate outside of the region).

to Two-columned matrix, specifying the values along the margin coordinates of
the transect to be taken on the array var. The elements should be embraced by
the elements in x, y and z (it is not allowed to extrapolate outside of the region).

margin String with the names of the coordinates in the matrix to, and along which the
transect is to be taken on the array var. One of "xy", "xz", "yz". If "xy", then
the first and second column in input to represent x and y values respectively, and
the transect will select all z values corresponding with these inputs.

sigma The sigma coordinates, a matrix or array with the same dimension as var. The
sigma coordinates should refer to the column as defined by signr.

signr The position of the sigma coordinates, in the matrix or array. The default is the
second or third dimension in var for a matrix and array respectively.

depth The depth (often referred to as ’z’) coordinates to which matrix var has to be
mapped. If NULL then seq(min(sigma), max(sigma), length.out = numdepth).

numdepth Only used when depth= NULL, the length of the depth vector to which the matrix
var has to be mapped. If NULL then the length will be equal to ncol(var) (if
var is a matrix), or dim(var)[3] in case var is an array.

resfac Resolution factor, one value or a vector of two or three numbers, for the x, y-
and z- values respectively. A value > 1 will increase the resolution. For instance,
if resfac equals 3 then for each adjacent pair of x- and y- values, var will be
interpolated to two intermediary points. This uses simple linear interpolation.
If resfac is one number then the resolution will be increased similarly in x, y-
and z-direction. In case of mapsigma, resfac is overruled if xto, yto or zto is
specified.

na.rm How to treat NAs in the matrix or array var. If TRUE, they are ignored while
interpolating; this will make the size of NA regions smaller; if FALSE, the size of
the NA region will increase.

any other arguments.

Details

S3-function remap can be used to increase or decrease the resolution of a matrix or array var, or to
zoom in on a certain area. It returns an object of the same class as var (i.e. a matrix or array).



Map and extract data 9

S3-function transect takes a slice from an array; it returns a matrix.
S3-function extract returns a vector with one value corresponding to each row in xyto or xyzto.

mapsigma should be used to make images from data that are in sigma coordinates.

Value

remap.matrix:

var The higher or lower resolution matrix with dimension = c(length(xto), length(yto)).

X The x coordinates, corresponding to first dimension of var (input argument
xto).

y The y coordinates, corresponding to second dimension of var (input argument
yto).

remap.array:

var The higher or lower resolution array, with dimension = c(length(xto), length(yto),
length(zto)).

X The x coordinates, corresponding to first dimension of var (input argument
xto).

y The y coordinates, corresponding to second dimension of var (input argument
yto).

z The z coordinates, corresponding to third dimension of var (input argument
zto).

extract.matrix:

var The higher or lower resolution object, with dimension = c(nrow(xyto), dim(var)[3]).

Xy The pairs of (x,y) coordinates (input argument xyto).

extract.array:

var The higher or lower resolution object, with dimension = c(nrow(xyzto), dim(var)[3]).

Xyz The triplets of (X,y,z) coordinates (input argument xyzto).

mapsigma:

var A matrix with columns in depth-coordinates.

depth The depth-coordinates, also known as ’z’-coordinates, referring to the dimen-
sion of var as specified by signr.

X The *x’-coordinates referring to the first dimension of var, except for the depth.

y Only if var is an array, the ’y’-coordinates referring to the second dimension of

var, except for the depth.

See Also

Sylt3D for other examples of mapping.



10 Map and extract data

Examples

# save plotting parameters
pm <- par("mfrow")

#H#
## Simple examples
#i#
M <- matrix(nrow = 2, data = 1:4)
remap(M, x = 1:2, y = 1:2,
xto = seq(1, 2, length.out = 3), yto = 1:2)

1:2, resfac = c(2, 1))
1:2, resfac = 2)

changeres(M, x
changeres(M, x

1:2, y
1:2, y
# x and or y are a matrix.
changeres(var = M, x =M, y =1:2, resfac = c(2, 1))
changeres(M, x = M, y = 1:2, resfac = 2)

##
## Use remap to add more detail to a slice3D plot
##

par(mfrow = c(1, 1))
X <-y <- z <- seq(-4, 4, by = 0.5)
M <- mesh(x, y, z)

R <= with (M, sqrt(x*2 + y*2 + z*2))
p <- sin(2*R) /(R+1e-3)

slice3D(x, y, z, ys = seq(-4, 4, by = 2), theta = 85,
colvar = p, pch = ".", clim = range(p))

Xto <- yto <- zto <- seq(-1.2, 1.2, 0.3)
Res <- remap (p, x, y, z, xto, yto, zto)

# expand grid for scatterplot
Mt <- mesh(Res$x, Res$y, Res$z)

scatter3D(x = Mt$x, y = Mt$y, z = Mt$z, colvar = Res$var,
pch = ".", add = TRUE, cex = 3, clim = range(p))

# same in rgl:
## Not run:
plotrgl()

## End(Not run)
# extract specific values from 3-D data

xyzto <- matrix(nrow = 2, ncol = 3, data = ¢(1,1,1,2,2,2), byrow = TRUE)
extract(var = p, x, y, z, xyzto = xyzto)



Map and extract data

# a transect
to <- cbind(seq(-4, 4, length.out = 20), seq(-4, 4, length.out = 20))
image2D( transect(p, x, y, z, to = to)$var)

#it

## change the resolution of a 2-D image

#it

par(mfrow = c(2, 2))
nr <- nrow(volcano)
nc <- ncol(volcano)

X <-1:nr
y <-1:nc
image2D(x = x, y =y, volcano, main = "original")

# increasing the resolution
x2 <- seq(from = 1, to = nr, by
y2 <- seq(from = 1, to = nc, by

1
[

.5)
.5)

1
[S]

VOLC1 <- remap(volcano, x = x, y =y, xto = x2, yto = y2)$var
image2D(x = x2, y = y2, z = VOLC1, main = "high resolution”)

# low resolution

xb <- seq(from = 1, to = nr, by = 2)

yb <- seq(from = 1, to = nc, by = 3)
VOLC2 <- remap(volcano, x, y, xb, yb)$var
image2D(VOLC2, main = "low resolution™)

# zooming in high resolution
xc <- seq(10, 40, 0.1)
yc <- seq(10, 40, 0.1)

VOLC3 <- remap(volcano,x, y, xc, yc)$var
image2D(VOLC3, main = "zoom")

# Get one value or a grid of values
remap(volcano, x, y, xto = 2.5, yto = 5)
remap(volcano, x, y, xto = c(2, 5), yto = c(5, 10))

# Specific values
extract(volcano, x, y, xyto = cbind(c(2, 5), c(5, 10)))

#i#

## take a cross section or transect of volcano

#it

par(mfrow = c(2, 1))

image2D(volcano, x = 1:nr, y = 1:nc)

xyto <- cbind(seq(from = 1, to = nr, length.out = 20),
seq(from = 20, to = nc, length.out = 20))

points(xyto[,1], xyto[,2], pch = 16)

11



12 Map and extract data

(Crossection <- extract (volcano, x = 1:nr, y = 1:nc,
xyto = xyto))

scatter2D(xyto[, 1], Crossection$var, colvar = Crossection$var,
type = "b", cex = 2, pch = 16)

##
## mapsigma: changing from sigma coordinates into depth-coordinates
#H#

par(mfrow = c(2, 2))

var <- t(matrix (nrow = 10, ncol = 10, data = rep(1:10, times = 10)))

image2D(var, ylab = "sigma", main = "values in sigma coordinates”,
clab = "var")

# The depth at each 'column'

Depth <- approx(x = 1:5, y = c(10, 4, 5, 6, 4),
xout = seq(1,5, length.out = 10))3%y

Depth <- rep(Depth, times = 10)

# Sigma coordinates
sigma <- t(matrix(nrow = 10, ncol = 10, data = Depth, byrow = TRUE) *
seq(from = 0, to = 1, length = 10))
matplot(sigma, type = "1", main = "sigma coordinates”,
xlab = "sigma"”, ylab = "depth”, ylim = c(10, @))

# Mapping to the default depth coordinates
varz <- mapsigma(var = var, sigma = sigma)
image2D(varz$var, y = varz$depth, NAcol = "black”, ylim = c(10, @),
clab = "var”, ylab = "depth”,
main = "depth-coord, low resolution”)

# Mapping at higher resolution of depth coordinates
varz <- mapsigma(var, sigma = sigma, resfac = 10)
image2D(varz$var, y = varz$depth, NAcol = "black”, ylim = c(10, @),
clab = "var”, ylab = "depth”,

main = "depth-coord, high resolution")
#H#
## mapsigma: mapping to depth for data Sylttran (x, sigma, time)
#H#

# depth values
D <- seq(-1, 20, by = 0.5)
dim(Sylttran$visc)

# sigma coordinates are the second dimension (signr)
# resolution is increased for 'x' and decreased for 'time'

visc <- mapsigma(Sylttran$visc, x = Sylttran$x, y = Sylttran$time,
sigma = Sylttran$sigma, signr = 2, depth = D, resfac = c(2, 1, 0.4))

# changed dimensions



Matrix plotting 13

dim(visc$var)

image2D(visc$var, x = visc$x, y = -visc$depth, ylim = c(-20, 1),
main = paste("eddy visc,”, format(visc$y, digits = 2), " hr"),
ylab = "m", xlab = "x", clab = c("","m2/s"),

clim = range(visc$var, na.rm = TRUE))

par(mfrow = c(1, 1))
# make depth the last dimension
cv <- aperm(visc$var, c(1, 3, 2))

# visualise as slices

slice3D(colvar = cv, x = visc$x, y = visc$y, z = -visc$depth,
phi = 10, theta = 60, ylab = "time",
xs = NULL, zs = NULL, ys = visc$y, NAcol = "transparent”)

# restore plotting parameters
par(mfrow = pm)

Matrix plotting Functions for plotting matrices, or for splitting them and for maing
suitable summaries

Description

Mplot plots data from (a list of) matrices.
Msplit splits a matrix in a list according to factors (or unique values).
Mcommon creates a list of matrices that have only common variables.

Msummary and Mdescribe create suitable summaries of all columns of a matrix or list.

Usage

Mplot (M, ..., x = 1, select = NULL, which = select,
subset = NULL, ask = NULL,
legend = list(x = "center”), pos.legend = NULL,
xyswap = FALSE, rev = "")

Msummary (M,
select
subset

NULL, which = select,
NULL)

Mdescribe (M,
select
subset

NULL, which = select,
NULL)

Msplit (M, split = 1, subset = NULL)

Mcommon (M, ..., verbose = FALSE)



14 Matrix plotting

Arguments

M Matrix or data.frame to be plotted, or treated. For Mplot, M can be a list with
matrices or data.frames.

X Name or number of the column to be used as the x-values.

select Which variable/columns to be selected. This is added for consistency with the
R-function subset.

which The name(s) or the index to the variables that should be plotted or selected.
Default = all variables, except time.

subset Logical expression indicating elements or rows to keep in select: missing val-
ues are taken as FALSE

ask Logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask) and dev.interactive.

legend A list with parameters for the legend to be added. If FALSE, then no legend
will be drawn.

pos.legend The position of the legend, a number. The default is to put the legend in the
last figure. Also allowed is pos. legend = @, which will create a new figure with
only the legend.

Xyswap If TRUE, then the x- and y-values will be swapped.

rev a character string which contains "x" if the x axis is to be reversed, "y" if the y
axis is to be reversed and "xy" or "yx" if both axes are to be reversed.

split The name or number of the column with the factor according to which the matrix
will be split.

verbose If TRUE will write output to the screen.
Additional arguments passed to the methods. For Mplot: can also be extra ma-
trices to plot. The arguments after ... must be matched exactly.

Value

Function Msplit returns a list with the matrices, split according to the factors; the names of the
elements is set by the factor’s name. It is similar to the R-function split.

Function Mcommon returns a list with the matrices, which only have the common variables.

Function Msummary returns a data.frame with summary values (minimum, first quantile, median,
mean, 3rd quantile, maximum) for each column of the input (variable). If there are more than one
object to be summarised, or if M is a list of objects, the name of the object is in the second column.

Function Mdescribe returns a data.frame with summary values (number of data, number of missing
values, number of unique values, mean value, the standard deviation, the minimum, the p = 0.05,
0.1, 0.5, 0.9, 0.95 quantiles, and the maximum) for each column of the input (variable). If there are
more than one object to be summarised, or if M is a list of objects, the name of the object is in the
second column.



Matrix plotting

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Examples

# save plotting parameters
pm <- par("mfrow")

##
## Create three dummy matrices

#it

M1 <- matrix(nrow = 10, ncol = 5, data = 1:50)
colnames(M1) <- LETTERS[1:5]

M2 <= MI[, c(1, 3, 4, 5, 2)]
M2[ ,-1] <- M2[,-11 /2
colnames(M2)[3] <- "CC" # Different name

M3 <- matrix(nrow = 5, ncol = 4, data = runif(20)*10)
M3[,1] <- sort(M3[,1])
colnames(M3) <- colnames(M1)[-3]

# show them

head(M1); head(M2); head(M3)
Msummary (M1)

Msummary (M1, M2, M3)

# plot all columns of M3 - will change mfrow
Mplot(M3, type = "b", pch = 18, col = "red")

# plot results of all three data sets
Mplot(M1, M2, M3, lwd = 2, mtext = "All variables versus 1st column”,
legend = list(x = "top”, legend = c("M1", "M2", "M3")))

#it

## Plot a selection or only common elements

#it

Mplot(M1, M2, M3, x = "B", select = c("A", "E"), pch = c(NA, 16, 1),
type = c("1”, "p", "b"), col = c("black”, "red”, "blue"),
legend = list(x = "right"”, legend = c("M1", "M2", "M3")))

Mplot (Mcommon(M1, M2, M3), lwd = 2, mtext = "common variables”,
legend = list(x = "top"”, legend = c("M1", "M2", "M3")))

Mdescribe (Mcommon(M1, M2, M3))

#it

## The iris and Orange data set

#it

15



16 Moving slices in 3D

# Split the matrix according to the species
Irislist <- Msplit(iris, split = "Species"”)
names(Irislist)

Mdescribe(Irislist, which = "Sepal.Length")
Mdescribe(iris, which = "Sepal.Length”, subset = Species == "setosa")

# legend in a separate plot

Mplot(Irislist, type = "p", pos.legend = 0,
legend = list(x = "center"”, title = "species"”))

Mplot(Msplit(Orange,1), lwd = 2,
legend = list(x = "topleft”, title = "tree nr"))
Msummary (Msplit(Orange, 1))

# reset plotting parameters
par(mfrow = pm)

Moving slices in 3D Plotting volumetric data as moving slices in 3D using rgl

Description

movieslice3D plots 3D volumetric data as slices moving in one direction in open-GL graphics.

It is based on the plot3Drgl function slice3Drgl.

Usage

movieslice3D (x, y, z, colvar = NULL, xs = NULL,
ys = NULL, zs = NULL, along = NULL,
col = jet.col(100), NAcol = "white"”, breaks = NULL,
colkey = FALSE, clim = NULL, clab = NULL,

wait = NULL, ask = FALSE, add = FALSE, basename = NULL, ...)
Arguments

X, Y,z Vectors with x, y and z-values. They should be of length equal to the first,
second and third dimension of colvar respectively.

colvar The variable used for coloring. It should be an array of dimension equal to
c(length(x), length(y), length(z)). It must be present.

col Colors to be used for coloring the colvar variable. If col is NULL then a red-
yellow-blue colorscheme (jet.col) will be used.

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint

than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.



Moving slices in 3D

colkey

clim

clab

XS, VS, ZS

along

add
ask
wait

basename

Value

returns nothing

Author(s)

17

A logical, NULL (default), or a 1ist with parameters for the color key (legend).
If colkey = NULL then a color key will be added only if col is a vector. Set-
ting colkey = list(plot = FALSE) will create room for the color key without
drawing it. if colkey = FALSE, no color key legend will be added.

Only if colvar is specified, the range of the color variable values. Values of
colvar that extend the range will be put to NA and colored as specified with
NAcol.

Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

Vectors specify the positions in x, y or z where the slices (planes) are to be
drawn consecutively. The movie will loop over the slices, each time projecting
the values of colvar on them. If all xs, ys, zs are NULL, then xs will be taken
equal to x.

A number 1, 2, 3 denoting the dimension over which the slices are to be moved.
If NULL, then the dimension will be the one corresponding to the longest vector
XS, ys, zs.

Logical. If TRUE, then the slices will be added to the current plot. If FALSE a
new plot is started.

Logical. If TRUE, then the new slice will only be drawn after a key has been
struck. If FALSE, redrawing will depend on wait

The time interval inbetween drawing of a new slice, in seconds. If NULL, the
drawing will not be suspended.

The base name of a png file to be produced for each movieframe.

additional arguments passed to slice3D from package plot3D or to plotrgl
from package plot3Drgl.

Karline Soetaert <karline.soetaert @nioz.nl>

See Also

Sylt3D for a data set that can be displayed with movieslice3D

moviepoints3D for plotting moving points in 3D

Examples

X <-y <-z<-seq(-1, 1, by = 0.1)
grid <- mesh(x, y, z)
colvar <- with(grid, x*exp(-x*2 - y*2 - z*2))

movieslice3D (x, y, z, colvar = colvar, ticktype = "detailed")



18

Moving surfaces in 3D

Moving surfaces in 3D Plotting moving surfaces in 3D using rgl

Description

moviepersp3D plots moving perspective plots of a surface in open-GL.

It is based on the plot3Drgl function persp3Drgl.

Usage

moviepersp3D (z, x = NULL, y = NULL, t = NULL, colvar = z, tdim =1,
col = jet.col(100), NAcol = "white"”, breaks = NULL,
colkey = FALSE, clim = NULL, clab = NULL,

wait

Arguments

X,y,t
z

tdim

colvar

col

NAcol

breaks

colkey

clim

clab

add

ask

= NULL, ask = FALSE, add = FALSE, basename = NULL, ... )

Vectors with x, y and t-values. Their position in the z-array depends on tdim.
Three-dimensional array with the z-values to be plotted.

Index to where the time variable (over which the plot will loop) is to be found
in z and colvar. The default is the first position, so that z and colvar are of
dimension (length(t), length(x), (length(y).

The variable used for coloring. It should be an array of dimension equal to the
dimension of z. It need not be present.

Colors to be used for coloring the colvar variable. If col is NULL then a red-
yellow-blue colorscheme (jet.col) will be used.

Colors to be used for colvar values that are NA.

A set of finite numeric breakpoints for the colors; must have one more break-
point than color and be in increasing order. Unsorted vectors will be sorted, with
a warning.

A logical, NULL (default), or a 1ist with parameters for the color key (legend).
If colkey = NULL then a color key will be added only if col is a vector. Set-
ting colkey = list(plot = FALSE) will create room for the color key without
drawing it. if colkey = FALSE, no color key legend will be added.

Only if colvar is specified, the range of the color variable values. Values of

colvar that extend the range will be put to NA and colored as specified with
NAcol.

Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

Logical. If TRUE, then the slices will be added to the current plot. If FALSE a
new plot is started.

Logical. If TRUE, then the new slice will only be drawn after a key has been
struck. If FALSE, redrawing will depend on wait



NIOZ Westerschelde monitoring 19

wait The time interval inbetween drawing of a new slice, in seconds. If NULL, the
drawing will not be suspended.

basename The base name of a png file to be produced for each movieframe.

additional arguments passed to persp3Drgl from package plot3Drgl.

Value

returns nothing

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

See Also
Sylt3D for a data set that can be displayed with moviepersp3D

moviepoints3D for plotting moving points in 3D

movieslice3D for plotting moving slices in 3D

Examples

X <-y <=t <-seq(-1, 1, by = 0.1)
grid <- mesh(x, y, t)
z <- with(grid, xxexp(-x*2 - y*2 - z*2))

moviepersp3D (x, y, z = z, colvar = z, colkey = TRUE,
ticktype = "detailed”, wait = 0.1, main = "t = ")

## Not run:
moviepersp3D (x, y, z = z, colvar = z, colkey = TRUE,
aspect = TRUE, bty = "n", ask = FALSE, main = "t = ")

## End(Not run)

NIOZ Westerschelde monitoring
NIOZ monitoring data of Westerschelde estuary.

Description

Part of the long-term monitoring data of the Westerschelde estuary, from 1996 till 2004.
A total of 17 stations were monitored on a monthly basis.

The dataset WSnioz is in long format and contains the following variables: oxygen, temperature,
salinity, nitrate, ammonium, nitrite, phosphate, silicate and chlorophyll.

The dataset WSnioz. table is in tabular format.

The full dataset can be downloaded from: https://www.nioz.nl/monitoring-data-downloads



20 NIOZ Westerschelde monitoring

Usage

data(WSnioz)
data(WSnioz.table)

Format
WSnioz is a data. frame with the following columns:

* SamplingDateTime, a string with the date and time of sampling.
* SamplingDateTimeREAL, a numeric value with day as per 1900.
e Station, the station number.

* Latitude, Longitude, the station position.

* VariableName, the variable acronym.

* VariableDesc, description of the variable.

e VariableUnits, units of measurement.

e DataValue, the actual measurement.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

References

Soetaert, K., Middelburg, JJ, Heip, C, Meire, P., Van Damme, S., Maris, T., 2006. Long-term change
in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Netherlands).
Limnology and Oceanography 51: 409-423. DOI: 10.4319/10.2006.51.1_part_2.0409

http://aslo.org/lo/toc/vol_51/issue_1_part_2/0409.pdf

See Also

image2D for plotting images, package plot3D.

ImageOcean for an image of the ocean’s bathymetry, package plot3D.
scatter2D for making scatterplots, package plot3D.

Oxsat for a 3-D data set, package plot3D.

Examples

# save plotting parameters
pm <- par("mfrow")
mar <- par("mar")

#H#

## Show stations and measured variables

#H#
unique(WSnioz[,c("Station"”, "Latitude”, "Longitude")])
unique(WSnioz[,c("VariableName", "VariableDesc")])




NIOZ Westerschelde monitoring

##
## An image for Nitrate:

#it

# 1. use db2cross to make a cross table of the nitrate data
# assume that samples that were taken within 5 days belong to the same
# monitoring campaign (df.row).

NO3 <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "Station”, val = "DataValue”,
subset = (VariableName == "WN03"), df.row = 5)

# 2. plot the list using image2D; increase resolution
image2D(NO3, resfac = 3)

#it

## All timeseries for one station

#it

st1 <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "VariableName", val = "DataValue”,
subset = (WSnioz$Station == 1), df.row = 5)

Mplot (cbind(st1$x/365+1900,st1$z))

#i#t

## All timeseries for multiple stations
##

dat <- NULL

for (st in 1:17) {
dd <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "VariableName", val = "DataValue”,
subset = (WSnioz$Station == st), df.row = 5)
dat <- rbind(dat, cbind(st, time = dd$x/365+1900, dd$z))
3

# select data for station 1, 17
dat2 <- Msplit(dat, split = "st”, subset = st %in% c(1, 17))
names(dat2)

Mplot(dat2, 1ty = 1)

#i#

## tabular format of the same data

#it

head(WSnioz. table)

# plot all data from station 1:
Mplot(WSnioz.table, select = 3:11, subset = Station == 1, legend = FALSE)

Mplot(Msplit(WSnioz.table, "Station”, subset = Station %in% c(1, 13)) ,
select = c("WNO3”, "WNO2", "WNH4", "W02"), lty = 1, lwd = 2,



22 Profile data set

Xlab = HDaynr‘I’ log = C(Ilyll’ Ily”, llle’ NII)’
legend = list(x = "left”, title = "Station”))

# reset plotting parameters
par(mar = mar)
par(mfrow = pm)

Profile data set Temperature profiles made along a ship track.

Description

Profiles of temperature made along a ship track, originally made available by US NOAA NODC.
The data were merged from 29 input files named gtspp_103799_xb_111.nc till gtspp_103827_xb_111.nc.

These data were acquired from the US NOAA National Oceanographic Data Center (NODC) on
9/06/2012 from https://www.nodc.noaa.gov/gtspp/.

Usage

data(TrackProf)

Format

list with

* meta, a data. frame with the metadata, containing for each of the 29 profiles the following:

station, the number of the station (part of the original filename).

— filename, the original name of the NetCDF file.

date, the date of sampling.

time, the time of sampling, a number relative to 1-1-1900 0 hours.

longitude, dg E.
latitutde, dg N.

* temp, the seawater temperature, at the depth of the measurement in dg C. A matrix of dimen-
sion (29, 93) for the 29 profiles and (at most) 93 depth values; NA means no measurement.

* depth, the depth of the measurement in temp, in metres, positive downward. A matrix of
dimension (29, 93) for the 29 profiles and (at most) 93 depth values; NA means no measure-
ment.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>


https://www.nodc.noaa.gov/gtspp/

Profile data set 23

References

https://www.nodc.noaa.gov/gtspp/

U.S. National Oceanographic Data Center: Global Temperature-Salinity Profile Programme. June
2006. U.S. Department of Commerce, National Oceanic and Atmosphere Administration, National
Oceanographic Data Center, Silver Spring, Maryland, 20910. Date of Access: 9/06/2012.

See Also

image2D for plotting images, package plot3D.

ImageOcean for an image of the ocean bathymetry, package plot3D.
scatter2D for making scatterplots, package plot3D.

Oxsat for a 3-D data set, package plot3D.

Examples

# save plotting parameters
pm <- par(mfrow = c(2, 2))
mar <- par("mar")

H#H#
## show the metadata
##
print(TrackProf$meta)

#H#
## display the cruisetrack on the Ocean Bathymetry data
#H#
# 1. plots the ocean's bathymetry and add sampling positions
ImageOcean(xlim = c(-50, 50), ylim = c(-50, 50),

main = "cruise track")
points(TrackProf$meta$longitude, TrackProf$meta$latitude, pch = "+")

# mark starting point
points(TrackProf$meta$longitude[1], TrackProf$meta$latitude[1],
pch = 18, cex = 2, col = "purple”)

##
## image plots of raw data
##

image2D(z = TrackProf$depth, main = "raw depth values”,
xlab = "station nr"”, ylab = "sample nr"”, clab = "depth”)
image2D(z = TrackProf$temp, main = "raw temperature values”,
xlab = "station nr", ylab = "sample nr", clab = "dgC")

##
## image plots of temperatures at correct depth
##

# water depths to which data set is interpolated


https://www.nodc.noaa.gov/gtspp/

24 Quiver and flow paths

depth <- @ : 809

# map from "sigma” to "depth"” coordinates
Temp_Depth <- mapsigma (TrackProf$temp, sigma = TrackProf$depth,
depth = depth)$var

# image with depth increasing downward and increased resolution (resfac)
image2D(z = Temp_Depth, main = "Temperature-depth”,
ylim = c(809, @), y = depth, NAcol ="black”, resfac = 2,
xlab = "station nr"”, ylab = "depth, m", clab = "dgC")

##
## scatterplot of surface values on ocean bathymetry
##

par(mar = mar + c(9, 0, 0, 2))
par(mfrow = c(1, 1))

# No colors, but add contours
ImageOcean(xlim = c(-30, 30), ylim = c(-40, 40),
main = "cruise track”, col = "white”, contour = TRUE)

# use data set TrackProf to add measured temperature, with color key
with (TrackProf,
scatter2D(colvar = temp[,1], x = metal ,"longitude"],
y = metal ,"latitude"], clab = "temp”,
add = TRUE, pch = 18, cex = 2))

# reset plotting parameters
par(mar = mar)
par(mfrow = pm)

Quiver and flow paths Plots velocities as arrows or as trajectory plots.

Description
Function quiver2D displays velocity vectors as arrows, using ordinary graphics.
Function quiver2Drgl displays velocity vectors as arrows using rgl.

Function flowpath displays the flow paths of particles, based on velocity vectors.

Usage

quiver2D(u, ...)

## S3 method for class 'matrix'
quiver2D(u, v, x = NULL, y = NULL,
colvar = NULL, ...,
scale = 1, arr.max = 0.2, arr.min = @, speed.max = NULL,



Quiver and flow paths

25

by = NULL, type = "triangle”, col = NULL, NAcol = "white”,
breaks = NULL, colkey = NULL, mask = NULL,
image = FALSE, contour = FALSE,
clim = NULL, clab = NULL,
add = FALSE, plot = TRUE)
## S3 method for class 'array'
quiver2D(u, v, margin = c(1, 2), subset, ask = NULL, ...)
quiver2Drgl (u, v, x = NULL, y = NULL, colvar = NULL, ...,

scale = 1, arr.max = 0.2, arr.min = @, speed.max = NULL,

by =

NULL, type = "triangle”,

col = NULL, NAcol = "white", breaks = NULL,

mask

= NULL, image = FALSE, contour = FALSE,

colkey = NULL, clim = NULL, clab = NULL, add = FALSE, plot = TRUE)

flowpath(u, v, x = NULL, y = NULL, startx = NULL, starty = NULL, ...,
scale = 1, numarr = @, arr.length = 0.2, maxstep = 1000,
add = FALSE, plot = TRUE)

Arguments

u

startx

starty

colvar

col

NAcol

A matrix (quiver2D) or array (quiver2D.array) with velocities in x-direction.
For quiver2D the number of rows should be = Nx or Nx+1 (Nx = length(x), if
x given), the number of columns should be = Ny or Ny+1 (Ny = length(y), if y
given).

A matrix (quiver2D) or array (quiver2D.array) with velocities in y-direction.
For quiver2D the number of rows should be = Nx or Nx+1, the number of
columns should be = Ny or Ny+1.

Vector with x-coordinates of the velocities. If NULL, it is taken to be a sequence
between (0, 1), and with length = nrow(u).

Vector with y-coordinates of the velocities. If NULL, it is taken to be a sequence
between (0, 1), and with length = ncol(v).

Vector with the start position in x-direction of the flow paths. Length > =1. If
not specified, then all combinations of x and y at the outer margins will be used
as starting point.

Vector with start position in y-direction of flow paths. Length = length of
startx.

The variable used for coloring. It need not be present, but if specified, it should
be a vector of dimension equal to c(nrow(u), ncol(v)). Values of NULL, NA,
or FALSE will toggle off coloration according to colvar.

Colors to be used for coloring the arrows as specified by the colvar variable.
If col is NULL and colvar is specified, then a red-yellow-blue colorscheme
(jet.col) will be used. If col is NULL and colvar is not specified, then col
will be "black".

Colors to be used for colvar values that are NA.



Quiver and flow paths

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

scale Scaling factor for the arrows. When scale = 1, the longest arrow will fill a grid

cell in x- and y- direction. When scale = 2, it will be twice as long.

arr.max Maximal size of the arrowhead, in cm (approximately). The arrows are scaled
according to the velocity (sqrt(u*2 +v*2)). arr.max is associated with the
maximal velocity.

arr.min Minimal size of the arrowhead, in cm (approximately). Set arr.min = arr.max
for constant size.

speed.max Speed that corresponds to arr.max. Everything with speed larger than speed. max
will be depicted with size equal to arr.max. If unspecified (max(sqrt(u*2 +
vi2))).

by Number increment for plotting the vectors; one value or two (X, y) values. For

example, setting by = 2 will plot every second velocity value in x and in y direc-
tion. Setting by = c(1, 2) will plot all vectors in x and every second vector in
y. Useful if the vector density is too high.

colkey A logical, NULL (default), or a 1ist with parameters for the color key (legend).
List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, 1ty, lwd,
lwd. ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length
=1, width=1, dist =0, shift =0, addlines = FALSE, col.clab =NULL, cex.clab
=par("cex.lab"), side.clab =NULL, line.clab=NULL, adj.clab =NULL,
font.clab = NULL) See colkey from package plot3D.
The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

type The type of the arrow head, one of "triangle" (the default) or "simple”, which
uses R-function arrows.

contour, image If present, then a contour2D or image2D plot will be added to the quiver plot.
They should be a 1ist with arguments for the contour2D or image2D function.

clim Only if colvar is specified, the range of the colors, used for the color key.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

margin A vector giving the subscripts which the plotting function will be applied over.
The plotting function will loop over the index that is not in margin. For instance,
c(1, 2), indicates to plot rows(x) and columns(y) and to loop over index 3; c(2,
1) will do the same but transposed. margin should be a vector with two numbers
inbetween 1, and 3.

ask A logical; if TRUE, the user is asked before each plot, if NULL the user is only
asked if more than one page of plots is necessary and the current graphics device
is set interactive, see par(ask) and dev.interactive.



Quiver and flow paths

add

mask

plot

numarr
arr.length

maxstep

subset

Details

27

If TRUE, will add to current plot. Else will start a new plot. Note: to use this in a
consistent way, the previous plot should have been done with one of the plot3D
functions.

A matrix or list defining the grid cells outside the domain as NA. Use a list
with argument NAcol to specify the color that the masked cells (that are NA)
should get; the default is "black”. The unmasked cells are left "white".

If x and y are a vector, then mask can be a matrix with dimension equal to
length(x), length(y). If either x or y is itself a matrix, then mask should be
a list that contains the x, y, and z values (and that are named ’x’, ’y’, ’z’). A
mask cannot be combined with add = TRUE.

If FALSE, will not plot the flow paths, but will return the matrix with path values
instead.

The number of arrows added on the flow paths.
Constant size of the arrowhead, in cm (approximately).
Maximum number of steps for calculating the flow paths.

Additional arguments passed to the plotting methods (arrows2D), The argu-
ments after ... must be matched exactly.

A logical expression indicating over which elements to loop; missing values are
taken as FALSE.

S3 function quiver2D plots vectors specified by u, v at the coordinates x, y.

flowpath uses the velocities u, v at the coordinates x, y to create trajectories, starting at points
startx, starty. It can also be used to return the flow path points by setting plot equal to FALSE.
It uses very simple Euler integration and may not be very accurate.

Value

flowpath returns (as invisible) a 2-column matrix with the x-y coordinates of the flow paths.
Separate flow paths are separated with NA.

quiver2D returns (as invisible) a list containing the coordinates of the arrows (x@, x1, yo,
y1), the color of each arrow (col), the length of the arrowhead (length) and the maximal speed
corresponding to arr.max (speed.max). This output can be used e.g. with function arrows.

Note

There was a slight error in the scaling of the arrows in versions previous to 1.0.3, which has been
corrected. See last example.

See Also

arrows3D for an arrows function from package plot3D.

vectorplot for plotting velocity vectors as spikes.

Arrows for the arrow function from package shape on which quiver2D is based.



28 Quiver and flow paths

Examples

#H#

## EXAMPLE 1:

##
pm <- par("mfrow")
par(mfrow = c(2, 2))

# generate velocities

x <- seq(-1, 1, by = 0.2)

y <-seq(-1, 1, by = 0.2)

dx <- outer(x, y , function(x, y) -y)
dy <- outer(x, y , function(x, y) x)

# velocity plot, with legend
F <- quiver2D(u = dx, v =dy, x =X, y =Y)
legend("topright”, bg = "white",

n

legend = paste("max = ", format(F$speed.max, digits = 2)))

# different color for up/downward pointing arrows
quiver2D(u = dx, v =dy, x = x, y =y, colvar = dx > 0,
col = c("red”, "blue"), colkey = FALSE,
arr.max = 0.4, arr.min = 0.1)

# different scale

quiver2D(u = dx, v y, by = 2, scale = 2)

dy, x = x, ¥y

# three flow paths
flowpath(u = dx, v = dy, x = x, y =y, startx = 0.1, starty = 0.1)
flowpath(u = dx, v =dy, x = x, y =y,
startx = c(0.9, -0.9), starty = c(0.0, 0.0), col = "red",
numarr = 2, add = TRUE)

##
## EXAMPLE 2: note: has changed in version 1.0.3 - uses contour2D!
##
par(mfrow = c(1, 1))
2,
1,

x <- seq(-2, by = 0.2)

y <- seq(-1, by = 0.2)

z <- outer (x, y, function(x, y) x*3 - 3*x -2%y*2)
contour2D(x, y, z = z, col = jet.col(10))

# gradients in x- and y-direction (analytical)
dX <- outer(x, y, function(x,y) 3*x*2 - 3)
dY <- outer(x, y, function(x,y) -4xy)

quiver2D(u = dX, v =dY, x = x, y =y, scale =1, add = TRUE, by = 1)
flowpath(u = dX, v =dY, x = x, y =y, startx = c(-2, 1.1),
starty = c(-1, -1), add = TRUE, arr.length = 0.5,

col = "darkgreen”, lwd = 3, numarr = 1)

H#
## EXAMPLE 3:




Quiver and flow paths

##
X <-y <-1:20
u <- outer (x, y, function (x, y) cos(2*pixy/10))
v <- outer (x, y, function (x, y) cos(2xpi*x/10))

quiver2D(x = x, y =y, u=u, v = v, col = "grey")

# flowpaths using all combinations of x and y at edges
flowpath(x = x, y =y, u=u, v =v, add = TRUE,

lwd = 2, col = "orange")
##
## EXAMPLE 4: quiver of an array..
#H

X <-y <-1:20
u2 <- outer (x, y, function (x, y) sin(2xpixy/10))
v2 <- outer (x, y, function (x, y) sin(2*pi*x/10))

# merge u, u2 and v, v2 to create an "array"”
U <- array(dim = c(dim(u2), 2), data = c(u, u2))
V <- array(dim = c(dim(v2), 2), data = c(v, v2))

quiver2D(u = U, v =V, x = x, y =y, main = c("time 1", "time 2"))

# quiver over x and time, for a subset of y-values:

quiver2D(u = U, v =V, x = x, y = 1:2,
margin = c(1, 3), main = paste("y
subset = y <= 4)

"

» Y,

## Not run:
quiver2D(u = U, v =V, x = x, y =y, ask = TRUE,
mfrow = c(1, 1))

quiver2D(u = U, v =V, x = x, y = 1:2, ask = TRUE,

margin = c(1, 3), main = paste("y ", y),
mfrow = c(1, 1))

## End(Not run)

#it

## EXAMPLE 5:

##
par(mfrow = c(1, 1))

image2D(x = 1:nrow(volcano), y = 1:ncol(volcano),
z = volcano, contour = TRUE)

# Assume these are streamfunctions, we calculate the velocity field as:
dx <- dy <- 1
v <- (volcano[-1, 1 - volcano[-nrow(volcano), 1 )/dx

29



30 Quiver and flow paths

u <- - (volcano[, -1] - volcano[ ,-ncol(volcano)] )/dy

quiver2D(x = T:nrow(u), y = 1:ncol(v),
u=u, v=yv, add = TRUE, by = 3)

flowpath(x = T:nrow(u), y = 1:ncol(v), numarr = 10,
u=u, v=v, add = TRUE, lwd = 2, col = "grey”,
startx = 20, starty = 30)

##
## EXAMPLE 6: boundary mask, images, contours
#H#

par (mfrow = c(2, 2))

mask <- volcano; mask[volcano < 120] <- NA
quiver2D(by = c¢(3, 2), u = u, v = v, mask = mask)

quiver2D(by = c(3, 2), u=u, v = v,
image = list(z = mask, NAcol = "black"))

quiver2D(by = c(4, 3), u=u, v = v,
contour = list(z = volcano, lwd = 2))

quiver2D(by = c(4, 3), u=u, v = v,

contour = list(z = volcano, col = "black"),
image = list(z = volcano, NAcol = "black"))
##
## Same in rgl
#H#
## Not run:

quiver2Drgl(by = ¢c(3, 2), u =u, v = v, mask = mask, NAcol = "black")

quiver2Drgl(by = c(3, 2), u=u, v = v,
image = list(z = volcano, NAcol = "black"))

quiver2Drgl(by = c(4, 3), u =u, v = v, scale = 2,
contour = list(z = volcano, lwd = 2))

quiver2Drgl(by = c(4, 3), u=u, v = v,

contour = list(z = volcano, col = "black"),
image = list(z = volcano, NAcol = "black"))
cutrgl()
uncutrgl()

## End(Not run)

#H#
## 2-D Data set SyltSurf
H#H#

par(mfrow = c(1, 1))
with (Syltsurf,



Reshaping to a crosstable

quiver2D(x = x, y =y, u=ul , ,2], v=v[, ,2],
xlim = c(5, 20), ylim = c(10, 25), by = 3,
main = paste(formatC(time[1]), " hr"), scale = 1.5,
image = list(z = depth, x = x, y =y, NAcol = "black”,
colkey = TRUE),
contour = list(z = depth, x = x, y =y, col
drawlabels = FALSE)

"black”,

)
)
##
## 2-D Data set SyltSurf, several time points
##

# now for an array (first and 4th time point only)
ii <- c(1, 4)
with (Syltsurf,
quiver2D(x = x, y =y, u=u[ ,,iil, v = v[ ,,ii],
xlim = c(5, 20), ylim = c(10, 25), by = 4,

mask = list(z = depth, x = x, y =y, NAcol = "blue"),
main = paste(formatC(time[iil), " hr"), scale = 1.5,
contour = list(z = depth, x = x, y =y, drawlabels = FALSE)
)
)

##

## Adding quivers ...

#H#

x <-1:2

y <-1:3

u <- matrix(data = 1:6, nrow = 2, ncol = 3)

v <- matrix(data = 6:1, nrow = 2, ncol = 3)

par(mfrow = c(1, 1))

A <- quiver2D(x = X, =y, u=u, v =yV)

X = y[-11, u =ul,-11, v = v[,-1], col
X

y[-31, u = ul,-3], v = v[,-3], col

B <- quiver2D(x
C <- quiver2D(x =

< <K <
|

# restore parameter settings
par(mfrow = pm)

TRUE)
TRUE)

31

Reshaping to a crosstable

Converts a dataset from database-format to a cross table

Description

Reshapes data arranged in 3 columns to a “crosstable” matrix.



32

Usage

Reshaping to a crosstable

db2cross (input, row = 1, col = 2, value = 3, subset = NULL,
df.row = NA, df.col = NA, out.row = NA, out.col = NA,
full.out = FALSE)

Arguments
input
row
col
value

subset

df.row, df.col

out.row, out.col

full.out

Details

A matrix in database format, (X,y,z) .

Number or name of the column in input, to be used as rows in the result.
Number or name of the column in input, to be used as columns in the result.
Number or name of the column in input, to be used as values in the result.

Logical expression indicating elements or rows to keep; missing values are taken
as FALSE

Maximal distance in row and column values that should be considered the same.
The default is to use each unique row or column value in input as a row or col-
umn value in the crosstable. Overrruled when out. row or out.col are defined.

Values of rows and columns to be used in the cross table. The default is to
use each unique row or column value in input as a row or column value in the
crosstable. Each value in input is mapped to out. row and out. col to which it
is closest. Overrrules df . row or df . col.

If TRUE, will also output how the input values were mapped to the output values.
This is only relevant if either of df.row, df.col, out.row or out.col is not
NULL.

Uses a simple fortran function.

rows and columns are generated by the unique values in each x- and y-column.

Value

a list containing:

X

y

The values of the rows.
The values of the columns.

The crosstable, a matrix.

and if full.out = TRUE also

map

Author(s)

The mapping of the x and y values, consisting of var. input, factor, var.output,
with the original values, how they are mapped, and the resulting values respec-
tively.

Karline Soetaert <karline.soetaert@nioz.nl>



Sylt data set

See Also

reshape, the official (slow) R-function

remap to remap a matrix or array to higher or lower resolution

Examples

##
## test the function on a small data set

#it

df3 <- data.frame(school = rep(c("a","b","c"), each = 4),
class = rep(9:10, 6),
time = rep(c(1,1,2,2), 3),
score = rnorm(12))

head(df3)

db2cross(df3, val = 4)

#it

## Defining the output rows

#it

Samples <- data.frame(time = c(1, 1.1, 1.2, 2, 2.1, 2.2, 4, 4.1, 4.2),

var = rep(c(”02", "NO3", "NH3"), 3),
val = 1:9)
Samples

db2cross(Samples)

db2cross(Samples, df.row = 0.5)
db2cross(Samples, out.row = c(1, 2, 4))
db2cross(Samples, out.row = 1:4)

#it

## A larger dataset; requires OceanView.Data

#it

## Not run:
data (pp.aug2009.db)
crosstab <- db2cross(pp.aug2009.db)
crosstab$z[crosstab$z>1000] <- 1000
crosstab$z[crosstab$z<0] <- NA

image2D(z = crosstab$z, x = crosstab$x, y = crosstabsy,
main = "primary production august 2009 mgC/m2/d",
NAcol = "black™)

## End(Not run)

33

Sylt data set Hydrodynamic model output (getm) of Sylt-Romo Bight




34 Sylt data set

Description

3D Sylt-tidal simulation model output generated by the GETM model version 2.2.2.

The Sylt-Romo bight is a Wadden Sea embayment in the North Sea, between the Danish island
Romo and the German island Sylt at about 55 dg N and 8 dg E, an area of approximately 300 km”2.

e Sylttran contains (X, sigma, time) data from an E-W transect.

e Syltsurf contains 2-D surface data, at 5 time intervals.

* Sylt3D contains 3-D (x, y, z) data, at 2 time intervals.

Usage

data(Sylttran)
data(Syltsurf)
data(Sylt3D)

Format

e Sylttranis a data.frame with (x, sigma, time) data from an E-W transect (8.1 - 17.9 km)
taken at km 18.5. There are 50 x-values, 21 sigma levels and 21 model output times.
It contains:

X, Yy, the positions in km, of length 50 and 1 respectively.

time, the model output time in hours, of length 21.

visc, the viscosity (getm variable num), (50 x 21 x 21), m2/s.

tke, the turbulent kinetic energy (getm variable tke), (50 x 21 x 21), m2/s2.
u, v, the zonal and meridional velocity, (50 x 21 x 21), m/s.

sigma, the depth of the sigma coordinates (50 x 21 x 21), metres.

* Syltsurf contains 2-D surface data of the entire model domain, at 5 time intervals (hour 24.7
to 37.1). It is a data. frame with:

X, Y, the positions in km, of length 135 and 160 respectively.

time, the output time in hours, of length 5.

u, v, the vertically averaged zonal and meridional velocity (135 x 160 x 5), m/s.
elev, tidal elevation (135 x 160 x 5), metres.

depth, the bathymetry (135 x 160), metres.

* Sylt3D contains 3-D (X, y, z) data, at 2 time intervals (hour 0 and 9.94). The box extends from
x inbetween [12.1, 14.9] and from y inbetween [12.7 - 16.3]; there are 21 sigma levels.

Itis a data. frame with:

X, Y, the positions in km, of length 15 and 19 respectively.

time, the output time in hours, of length 2.

visc, the viscosity (getm model variable num), (55 x 19 x 21 x 2), m2/s.

sigma, the sigma depth levels, (55 x 19 x 21 x 2), m2/s. metres.
depth, the bathymetry (15 x 19), metres.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>



Sylt data set

References

35

Hans Burchard and Karsten Bolding, 2002. GETM, A General Estuarine Transport Model, Scien-

tific Documentation. EUR 20253 EN.
https://getm.eu

See Also

image2D for plotting images, package plot3D.

ImageOcean for an image of the ocean’s bathymetry, package plot3D.
scatter2D for making scatterplots, package plot3D.

Oxsat for a 3-D data set, package plot3D.

Examples

# save plotting parameters
pm <- par("mfrow")
mar <- par("mar")

#it

## Show position of transect and 3D box in bathymetry

#it

par(mfrow = c(2, 2))
par(mar = c(4, 4, 4, 4))

x <= Syltsurf$x ; y <- Syltsurf$y ; depth <- Syltsurf$depth
image2D(z = depth, x = x, y =y, clab = c("depth”, "m"))

# position of transect
with (Sylttran, points (x, rep(y, length(x)),
pch = 16, col = "grey"))
# position of 3-D area
with (Sylt3D, rect(x[11, y[1]1, x[length(x)1, y[length(y)], lwd = 3))

non

image2D(z = depth, x = x, y =y, clab = c("depth”, "m"), log = "z")

# sigma coordinates of the transect (at time = 10)
matplot(Sylttran$x, Sylttran$sigmal,,10], type = "1",
main = "sigma"”, ylim = c(25, -2), col = "black”, 1ty = 1)

# perspective view - reduce resolution for speed
ix <- seq(1, length(x), by = 3)
iy <- seq(1, length(y), by = 3)

par(mar = c(1, 1, 1, 2))

persp3D(z = -depth[ix, iy], x = x[ix], y = y[iyl,
scale = FALSE, expand = 0.2, ticktype = "detailed”,
col = "grey"”, shade = 0.6, bty = "f",
plot = FALSE)


https://getm.eu

36

# add 3-D region; small amount added to z so that it is visible in rgl
persp3D(z = -Sylt3D$depth + 1e-3, x = Sylt3D$x, y = Sylt3D$y,
col = alpha.col("red”, alpha = 0.4), add = TRUE,
plot = FALSE)

# transect
with (Sylttran, points3D(x

= x, y = rep(y, length(x)),
z = rep(@, length(x)), pch = 16,

add = TRUE, colkey = FALSE))
## Not run:

plotrgl()

plotrgl(lighting = TRUE, new = FALSE, smooth = TRUE)

## End(Not run)

Sylt data set

##
## Data Syltsurf: Surface elevation

#it

par(mfrow = c(2, 2), mar = c(0, @, 1, 0))
# reduce resolution for speed

ix <- seq(1, length(x), by = 3)

iy <- seq(1, length(y), by = 3)

clim <- range(Syltsurf$elev, na.rm = TRUE)
for (i in 1:3)
persp3D(z = -depth[ix, iy], colvar = Syltsurf$elev[ix,iy,il],
x = x[ix], y = y[iy], clim = clim, inttype =2, d = 2,
scale = FALSE, expand = 0.1, colkey = FALSE, shade = 0.5,
main = paste(format(Syltsurf$time[i], digits = 3), " hr"))
par(mar = c(3, 3, 3, 3))
colkey(clim = clim, clab = c("elevation”, "m"))

# can also be done using shaded image2D plots, faster
par(mfrow = c(2, 2), mar = c(3, 3, 3, 3))
clim <- range(Syltsurf$elev, na.rm = TRUE)
for (i in 1:3)
image2D(z = -depth[ix, iy], colvar = Syltsurf$elev[ix,iy,il],
x = x[ix], y = y[iy], clim = clim,
colkey = FALSE, shade = 0.3, resfac = 2,
main = paste(format(Syltsurf$time[i], digits = 3), " hr"))

colkey(clim = clim, clab = c("elevation”, "m"))
#H#
## Data Syltsurf: Surface currents
##

par(mfrow = c(1, 1))
Speed <- sqrt(Syltsurf$ul,,2]*2 + Syltsurf$v[,,2]1%2)

with (Syltsurf,
quiver2D(x = x, y =y, u =u[,,2], v = v[,,2], col = gg.col(100),
xlim = c(5, 20), ylim = c(1@, 25), by = 3,



Sylt data set

colvar = Speed, clab = c("speed”, "m/s"),

main = paste(formatC(time[1]), " hr"), scale = 1.5,

image = list(z = depth, x = x, y =y, col = "white”, #background
NAcol = "darkblue"),

contour = list(z = depth, x = x, y =y, col = "black"”,#depth

lwd = 2)
)
)
##
## Data Sylttran: plot a transect
#H#

par(mfrow = c(1, 1), mar = c(4, 4, 4, 2))
D <- seq(-1, 20, by = 0.02)

Sylttran$x,

visc <- mapsigma (Sylttran$visc [ , ,11, x =
= D, resfac = 2)

sigma = Sylttran$sigmal , ,1], depth

image2D(visc$var, x = visc$x, y = -visc$depth, ylim = c(-20, 1),
main = "eddy viscosity”, ylab = "m", xlab = "hour”,
clab = "m2/s")

# show position of timeseries in next example
abline(v = visc$x[45])

#it

## Data Sylttran: plot a time-series

##

par(mfrow = c(1, 1), mar = c(5, 4, 4, 3))
ix <- 45

visct <- Sylttran$visc [ix, ,]
sig <- Sylttran$sigma [ix, ,]

# sigma coordinates are first dimension (signr)
visc <- mapsigma(visct, sigma = sig, signr =1,
x = Sylttran$time, numdepth = 100, resfac = 3)
D <- -visc$depth

image2D(t(visc$var), x = visc$x, y = D, NAcol = "black”,
ylim = range(D), main = "eddy viscosity”,
ylab = "m", xlab = "hour"”, clab = "m2/s")

#it

## Data Sylt3D: increase resolution and map from sigma to depth

#it

# select a time series point
it <- 1
par(mfrow = c(1, 1))
sigma <- Sylt3D$sigmal,,,it]



38

visc <- Sylt3D$visc [,,,it]
(D <- dim(sigma)) #x,y, z

# remap the data from sigma coordinates to depth coordinates
# depth from max in first box to max in last box
depth <- seq(max(sigmal,,D[3]]1, na.rm = TRUE),
max (sigmal, ,1 1, na.rm = TRUE), length.out = 20)

# Step-bystep mapping, increasing the resolution
z <-1:21

X <- Sylt3D$x

y <- Sylt3D$y

xto <- seq(min(x), max(x), length.out = 30)
yto <- seq(min(y), max(y), length.out = 30)

# higher resolution
Sigma <- remap(sigma, x, y, z, xto, yto, zto = z)$var
Visc <- remap(visc, x, y, z, xto, yto, zto = z)$var

# viscosity in sigma coordinates
visc_sig <- mapsigma(Visc, sigma = Sigma, depth = depth)

Sylt data set

#it

## The 3-D data set - plotted as slices

#H#

slice3D(xto, yto, -visc_sig$depth, colvar = visc_sig$var,
scale = FALSE, expand = 0.1, NAcol = "transparent”,
ys = yto[seq(1, length(yto), length.out = 10)], plot = FALSE,
colkey = list(side = 1))
persp3D(x = x, y =y, z = -Sylt3D$depth, add = TRUE,
border = "black", facets = NA, colkey = FALSE)

# visualise it in rgl window
plotrgl()

## the same, as a movie

-Sylt3D$depth, smooth = TRUE,

persp3Drgl(x = x, y =y, z =
= TRUE)

col = "grey", lighting

movieslice3D(xto, yto, -visc_sig$depth, colvar = visc_sig$var,
add = TRUE, ys = yto)

# in order to wait inbetween slice drawings until a key is hit:
## Not run:
persp3Drgl(x = x, y =y, z = -Sylt3D$depth, smooth = TRUE,

col = "grey"”, lighting = TRUE)

movieslice3D(xto, yto, -visc_sig$depth, colvar = visc_sig$var, add = TRUE,

ask = TRUE, ys = yto)

## End(Not run)



Tracers in 2D 39

##
## The 3-D data set - plotted as isosurfaces
##

isosurf3D(xto, yto, -visc_sig$depth, colvar = visc_sig$var,
level = c(0.005, 0.01, 0.015), col = c("red”, "blue”, "green"),
scale = FALSE, expand = 0.1, ticktype = "detailed”,
main = "viscosity”, clab = "m2/s",
plot = FALSE, colkey = list(side = 1))
persp3D(x = x, y =y, z = -Sylt3D$depth, border = "black”,
col = "white"”, add = TRUE, plot = FALSE)

## Not run:
plotdev(alpha = 0.3, phi = 30) # this is slow

## End(Not run)
plotrgl(alpha = 0.3)

# reset plotting parameters
par(mar = mar)
par(mfrow = pm)

Tracers in 2D Plots tracer distributions in 2-D.

Description

tracers2D plots a tracer distribution using traditional R graphics. The topography can be defined
when calling this function.

tracers2Drgl plots a tracer distribution in open-GL graphics. A suitable topography has to be
created before calling this function.

Usage

tracers2D(x, y, colvar = NULL, ...,
col = NULL, NAcol = "white"”, colkey = NULL,
mask = NULL, image = FALSE, contour = FALSE,
clim = NULL, clab = NULL)

tracers2Drgl(x, y, colvar = NULL, ...,
col = NULL, NAcol = "white", breaks = NULL,
colkey = FALSE, clim = NULL, clab = NULL)

Arguments

X,y Vectors with x- and y-coordinates of the tracers. Should be of equal length.



40 Tracers in 2D

colvar The variable used for coloring. It need not be present, but if specified, it should
be a vector of dimension equal to x. Values of NULL, NA, or FALSE will toggle off
coloration according to colvar.

col Colors to be used for coloring each individual point (if colvar not specified)
or that define the colors as specified by the colvar variable. If col is NULL
and colvar is specified, then a red-yellow-blue colorscheme (jet.col) will be
used. If col is NULL and colvar is not specified, then col will be "black".

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a 1ist with parameters for the color key (legend).

List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, 1ty, lwd,
lwd. ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length

=1, width=1, dist =0, shift =0, addlines = FALSE, col.clab =NULL, cex.clab
=par("cex.lab"”), side.clab =NULL, line.clab=NULL, adj.clab =NULL,
font.clab = NULL) See colkey from package plot3D.

The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-

ing it. if colkey = FALSE, no color key legend will be added.

contour, image If TRUE, then a contour2D or image2D plot will be added to the quiver plot.
Also allowed is to pass a 1ist with arguments for the contour2D or image2D

function.
clim Only if colvar is specified, the range of the colors, used for the color key.
clab Only if colkey is not NULL or FALSE, the label to be written on top of the color

key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

mask A list defining the grid cells outside the domain as NA. Use a list with argument
NAcol to specify the color that the masked cells (that are NA) should get; the
default is "black”. The unmasked cells are left "white".

mask should be a 1ist that contains the x, y, and z values (and that are named
’x’,’y’,’z’). A mask cannot be combined with add = TRUE.

additional arguments passed to the plotting method scatter2D. The arguments
after ... must be matched exactly.

Value

returns nothing

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>



Tracers in 2D

See Also

tracers3D for plotting time series of tracer distributions in 3D

Ltrans for the output of a particle tracking model

Examples

# save plotting parameters
pm <- par("mfrow")

##

## Create topography, data

#it

# The topographic surface

x <- seq(-pi, pi, by = 0.2)
y <- seq(@, pi, by = 0.1)

M <- mesh(x, y)

z <- with(M, sin(x)*sin(y))

# Initial condition
xi <= ¢(0.125 * rnorm(100) - pi/2, ©.125 *x rnorm(100Q) - pi/4)
yi <= 0.25 * rnorm(200) + pi/2

# the species
species <- c(rep(1, 100), rep(2, 100))

# set initial conditions
xp <- xi; yp <- yi

#it

## using a mask and contour

#it

Z <- z; Z[abs(Z) < 0.1]1 <- NA
par(mfrow = c(2, 2))

for (i in 1:4) {

# update tracer distribution
Xp <= xp + 0.25 * rnorm(200)
yp <- yp + 0.025 * rnorm(200)

# plot new tracer distribution
tracers2D(xp, yp, colvar = species, pch = ".", cex = 5,
main = paste("timestep ", i), col = c("orange", "blue"),
colkey = list(side = 1, length = 0.5, labels = c("sp1”,"sp2"),
at = c(1.25, 1.75), dist = 0.075), NAcol = "black”,
mask = list(x = x, y =y, z = Z),
contour = list(x = x, y =y, z =12) )

#it

## using image and contour

41



42

#it

for (i in 1:4) {

# update tracer distribution
Xp <= Xp + 0.25 * rnorm(200)
yp <- yp + 0.025 * rnorm(200)

# plot new tracer distribution
tracers2D(xp, yp, colvar = species, pch = , cex = 5,
main = paste("timestep ", i), col = c("orange”", "blue"),
colkey = list(side = 1, length = 0.5, labels = c("sp1”,"sp2"),
at = c(1.25, 1.75), dist = 0.075), NAcol = "black”,
contour = list(x = x, y =y, z = z),
image = list(x = x, y =y, z = z, colkey = TRUE))

non

#it

## rgl tracer plot

#it

# here the image has to be drawn first
image2Drgl(x = x, y =y, z = z)

# set initial conditions
Xp <= xi; yp <- yi
nstep <- 40
for (i in 1:nstep) {
# update tracer distribution
Xp <= xp + 0.25 * rnorm(200)
yp <- yp *+ 0.025 * rnorm(200)

# plot new tracer distribution
tracers2Drgl(xp, yp, colvar = species, cex =1,
main = paste("timestep ", i), col = c("orange”, "blue"))

3

# reset plotting parameters
par(mfrow = pm)

Tracers in 3D

Tracers in 3D Plotting tracer distributions in 3D

Description

tracers3D plots 3D tracer distributions in traditional graphics. The topography can be defined

when calling this function or created before calling this function.

tracers3Drgl plots 3D tracer distributions in open-GL graphics. A suitable topography has to be

created before calling this function. It does not create a movie.



Tracers in 3D 43

moviepoints3D creates a movie of tracer distributions in open-GL graphics.

It is based on the plot3Drgl function points3Drgl.

Usage

tracers3D (x, y, z, colvar = NULL, ...,
col = NULL, NAcol = "white", breaks = NULL,
colkey = FALSE, clim = NULL, clab = NULL, surf = NULL)

tracers3Drgl (x, y, z, colvar = NULL, ...,
col = NULL, NAcol = "white"”, breaks = NULL,
colkey = FALSE, clim = NULL, clab = NULL)

moviepoints3D (x, y, z, colvar, t, by =1,
col = jet.col(100), NAcol = "white"”, breaks = NULL,
clim = NULL, wait = NULL, ask = FALSE, add = FALSE,

basename = NULL, ...)
Arguments
X, Y, Z Vectors with (x, y, z) positions of tracers. Should be of equal length.
colvar The variable used for coloring. It need not be present, but if specified, it should

be a vector of dimension equal to x, y, z. Values of NULL, NA, or FALSE will
toggle off coloration according to colvar.

t Vectors with time points of tracers. Should be of length equal to length of x, y
,Z, colvar.

by Number increment of the time sequence.

col Colors to be used for coloring each individual point (if colvar not specified)

or that define the colors as specified by the colvar variable. If col is NULL
and colvar is specified, then a red-yellow-blue colorscheme (jet.col) will be
used. If col is NULL and colvar is not specified, then col will be "black".

NAcol Colors to be used for colvar values that are NA.

breaks a set of finite numeric breakpoints for the colors; must have one more breakpoint
than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

colkey A logical, NULL (default), or a 1ist with parameters for the color key (legend).

List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab

and the axis parameters at, labels, tick, line, pos, outer, font, 1ty, lwd,

lwd. ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length

=1, width=1, dist =0, shift =@, addlines = FALSE, col.clab =NULL, cex.clab
=par(”cex.lab"), side.clab=NULL, line.clab=NULL, adj.clab =NULL,
font.clab = NULL) See colkey from package plot3D.

The default is to draw the color key on side = 4, i.e. in the right margin. If

colkey = NULL then a color key will be added only if col is a vector. Setting



44 Tracers in 3D

colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

clim Only if colvar is specified, the range of the colors, used for the color key.

clab Only if colkey is not NULL or FALSE, the label to be written on top of the color
key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

surf If not NULL, a list specifying a surface to be added on the scatterplot. They
should include at least x, y, z, equal sized matrices, and optional: colvar, col,
NAcol, border, facets, lwd, resfac, clim, ltheta, 1phi, shade, lighting.
Note that the default is that colvar is not specified.

add Logical. If TRUE, then the points will be added to the current plot. If FALSE a
new plot is started.

ask Logical. If TRUE, then new points will only be drawn after a key has been struck.
If FALSE, redrawing will depend on wait

wait The time interval inbetween drawing of a set of new points, in seconds. If NULL,
the drawing will not be suspended.

basename The base name of a png file to be produced for each movieframe.

additional arguments passed to scatter3D from package plot3D. Typical argu-
ments are cex, main (both functions), and pch, ... for tracers3D.
Value

returns nothing

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

See Also

tracers2D for plotting time series of tracer distributions in 2D
movieslice3D for plotting slices in 3D

Ltrans for 3-D output of a particle tracking model

Examples

# save plotting parameters
pm <- par("mfrow")

##
## Create topography, data
#H#

# The topographic surface

x <- seq(-pi, pi, by = 0.2)
y <- seq(@, pi, by = 0.1)
M <- mesh(x, y)



Tracers in 3D

z <= with(M, sin(x)*sin(y))

# Initial condition

xi <- ¢(0.25 * rnorm(100) - pi/2, ©.25 * rnorm(100Q) - pi/4)
yi <- 0.25 * rnorm(200) + pi/2

zi <- 0.005*rnorm(200) + 0.5

# the species
species <- c(rep(1, 100), rep(2, 100))

# set initial conditions
Xp <= xi; yp <- yi; zp <- zi

#it

## Traditional graphics

#it

par(mfrow = c(2, 2))

# Topography is defined by argument surf
for (i in 1:4) {
# update tracer distribution
Xp <= Xp + 0.25 * rnorm(200)
yp <- yp *+ 0.025 * rnorm(200)
zp <- zp + 0.25 *rnorm(200)

# plot new tracer distribution
tracers3D(xp, yp, zp, colvar = species, pch = , cex =5,
main = paste("timestep ", i), col = c("orange"”, "blue"),
surf = list(x, y, z = z, theta = @, facets = FALSE),
colkey = list(side = 1, length = 0.5, labels = c("sp1”,"sp2"),
at = ¢(1.25, 1.75), dist = 0.075))

"o

3

# same, but creating topography first
## Not run:
# create the topography on which to add points
persp3D(x, y, z = z, theta = 0, facets = FALSE, plot = FALSE)

for (i in 1:4) {

# update tracer distribution
Xp <= xp + 0.25 * rnorm(200)
yp <- yp + 0.025 * rnorm(200)
zp <- zp + 0.25 *rnorm(200)

# plot new tracer distribution
tracers3D(xp, yp, zp, colvar = species, pch = , cex = 5,
main = paste(“"timestep ", i), col = c("orange"”, "blue"),
colkey = list(side = 1, length = 0.5, labels = c("sp1”,"sp2"),
at = ¢(1.25, 1.75), dist = 0.075))

non

## End(Not run)

45



46 Tracers in 3D

##
## rgl graphics
##

# pause <- 0.05
# create a suitable topography
persp3D(x, y, z = z, theta = @, facets = NA, plot = FALSE)

plotrgl( )
Xp <= xi; yp <- yi; zp <- zi

nstep <- 10

for (i in 1:nstep) {
Xp <= xp + 0.05 * rnorm(200) + 0.05
yp <- yp + 0.0025 * (rnorm(200) + 0.0025)
zp <- zp + 0.05 *rnorm(200)

#  tracers3Drgl(xp, yp, zp, col = c(rep("orange”, 100), rep("blue”, 100)),

# main = paste("timestep ", i))
# or:
tracers3Drgl(xp, yp, zp, colvar = species, col = c("orange”, "blue"),
main = paste("timestep ", i))

#  Sys.sleep(pause)
# or: readline("hit enter for next")

3

# using function moviepoints3D

## Not run:
# first create the data in matrices
Xp <- matrix(nrow = 200, ncol = nstep, data = rep(xi, times=nstep))
yp <- matrix(nrow = 200, ncol = nstep, data = rep(yi, times=nstep))
zp <- matrix(nrow = 200, ncol = nstep, data = rep(zi, times=nstep))
tp <- matrix(nrow = 200, ncol = nstep, data = 0)
cv <- matrix(nrow = 200, ncol = nstep, data = rep(species, times=nstep))
nstep <- 10
for (i in 2:nstep) {
xpl,1i] <- xp[,i-1] + 0.05 * rnorm(200) + 0.05
ypl,i] <- yp[,i-1]1 + 0.0025 * (rnorm(200) + 0.0025)
zp[,i] <- zp[,i-1]1 + 0.05 *rnorm(200)
tp[,i] <- 1
}
# create the topography
persp3Drgl(x, y, z = z, theta = @, lighting = TRUE, smooth = TRUE)

# add moviepoints:

moviepoints3D (xp, yp, zp, colvar = cv, t = tp,
wait = 0.05, cex = 10, col = c("red”, "orange"))

## End(Not run)



vector plots

47

# reset plotting parameters

par(mfrow = pm)

vector plots

Vector velocity plot.

Description

Displays (velocity) vectors as segments.

Usage
vectorplot(u, v
col
by =
clim

Arguments

y
colvar

col

NAcol

breaks

colkey

, X =0, y =0, colvar = NULL, ...,

= NULL, NAcol = "white”, breaks = NULL, colkey = NULL,

1, arr = FALSE, xfac = NULL,
= NULL, clab = NULL, add = FALSE)

A vector with quantities (velocities) in x-direction.

A vector with quantities (velocities) in y-direction. Should have the same length
as u

A vector with x-axis values. If 9, everything will be radiating from the origin.
Usually x will be equal to time.

The y-axis value. One number, or a vector of length = u.

The variable used for coloring. It need not be present, but if specified, it should
be a vector of dimension equal to c(nrow(u), ncol(v)). Values of NULL, NA,
or FALSE will toggle off coloration according to colvar.

Colors to be used for coloring the arrows as specified by the colvar variable.
If col is NULL and colvar is specified, then a red-yellow-blue colorscheme
(jet.col) will be used. If col is NULL and colvar is not specified, then col
will be "black".

Colors to be used for colvar values that are NA.

a set of finite numeric breakpoints for the colors; must have one more breakpoint

than color and be in increasing order. Unsorted vectors will be sorted, with a
warning.

A logical, NULL (default), or a 1ist with parameters for the color key (legend).

List parameters should be one of side, plot, length, width, dist, shift,
addlines, col.clab, cex.clab, side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, 1ty, lwd,
lwd. ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck,
tcl, las. The defaults for the parameters are side = 4, plot = TRUE, length

=1, width=1, dist =0, shift =0, addlines = FALSE, col.clab =NULL, cex.clab
=par("cex.lab"), side.clab =NULL, line.clab =NULL, adj.clab =NULL,
font.clab = NULL) See colkey from package plot3D.



48

clim

clab

by

xfac

arr
add

Value

none

See Also

vector plots

The default is to draw the color key on side = 4, i.e. in the right margin. If
colkey = NULL then a color key will be added only if col is a vector. Setting
colkey = list(plot = FALSE) will create room for the color key without draw-
ing it. if colkey = FALSE, no color key legend will be added.

Only if colvar is specified, the range of the colors, used for the color key.
Only if colkey is not NULL or FALSE, the label to be written on top of the color

key. The label will be written at the same level as the main title. To lower it,
clab can be made a vector, with the first values empty strings.

Number increment for plotting vectors. Set this to an integer > 1 if the vector
density is too high.

Only for x not NULL, the proportionality factor with which the vectors on the
x-axis must be drawn. A value of 1 means that the distance of one will be drawn
as one x-unit on the x-axis. For a value of 2 a distance of 1 will appear as 2
x-units on the x-axis. if NULL, the range on the y-axis is used. In that case, it
may be necessary to manually set the x1im of the figure.

If TRUE, then Arrows will be drawn; if FALSE, segments will be drawn.
If TRUE, will add to the current plot.

additional arguments passed to the plotting methods.

quiver2D, flowpath, for other functions to plot velocities.

Examples

# save plotting

parameters

mf <- par("mfrow")

#it

## EXAMPLE 1:

#it

par(mfrow = c(2, 2))

u <- cos(seq(0,
v <- sin(seq(9,

vectorplot(u =
vectorplot(u

x <- seq(o, 1,
vectorplot(u =

2xpi, 0.1))
2xpi, 0.1)+ 1)

u, v =v)
u, v =v, col =1:10)

length.out = length(u))
u, v =v, x =x, xfac = 3)

points(x, rep(@, length(u)), pch = "+", col = "red")

vectorplot(u =

u, v =v, x = l:length(u), xfac = 10)



vector plots

#it

## EXAMPLE 2: adding to a plot

#it

par(mfrow = c(2, 2))

x <= 1:length(u)

plot(x, u)

vectorplot(u = u, v = v, x = x, xfac = 10,
add = TRUE, col = "red")

vectorplot(u = u, v = v, x = x, xfac = 10,
colvar = sgrt(u*2+v*2), clab = "m/s")

vectorplot(u = u, v = v, x = x, xfac = 10,
colvar = sqgrt(u*2+v*2), clab = "m/s", log = "c")

# reset plotting parameters
par(mfrow = mf)

49



Index

+ datasets
Chesapeake data set, 2
NIOZ Westerschelde monitoring, 19
Profile data set, 22
Sylt data set, 33

* hplot
Map and extract data, 6
Matrix plotting, 13
Moving slices in 3D, 16
Moving surfaces in 3D, 18
Quiver and flow paths, 24
Tracers in 2D, 39
Tracers in 3D, 42
vector plots, 47

+ package
OceanView-package, 2

* utility
Reshaping to a crosstable, 31

Arrows, 27, 48
arrows, 26, 27
arrows2D, 27
arrows3D, 27

changeres (Map and extract data), 6
Chesapeake (Chesapeake data set), 2
Chesapeake data set, 2
colkey, 26, 40, 43, 47
contour2D, 26, 40

db2cross, 2
db2cross (Reshaping to a crosstable), 31
dev.interactive, 14, 26

extract, 2
extract (Map and extract data), 6

flowpath, 2, 48
flowpath (Quiver and flow paths), 24

image2D, 20, 23, 26, 35, 40

50

ImageOcean, 20, 23, 35
jet.col, 16, 18, 25,47

Ltrans, 41, 44
Ltrans (Chesapeake data set), 2

Map and extract data, 6

mapsigma, 2

mapsigma (Map and extract data), 6
Matrix plotting, 13

Mcommon, 2

Mcommon (Matrix plotting), 13
Mdescribe (Matrix plotting), 13
moviepersp3D (Moving surfaces in 3D), 18
moviepoints3D, 17, 19

moviepoints3D (Tracers in 3D), 42
movieslice3D, 19, 44

movieslice3D (Moving slices in 3D), 16
Moving slices in 3D, 16

Moving surfaces in 3D, 18

Mplot, 2

Mplot (Matrix plotting), 13

Msplit, 2

Msplit (Matrix plotting), 13

Msummary (Matrix plotting), 13

NIOZ Westerschelde monitoring, 19

OceanView (OceanView-package), 2
OceanView-package, 2
Oxsat, 3, 20, 23, 35

par, 14, 26
persp3Drgl, 18, 19
points3Drgl, 43
Profile data set, 22

Quiver and flow paths, 24
quiver2D, 2,48
quiver2D (Quiver and flow paths), 24



INDEX

quiver2Drgl (Quiver and flow paths), 24

remap, 2, 33
remap (Map and extract data), 6
reshape, 33
Reshaping to a crosstable, 31

scatter2D, 20, 23, 35, 40
scatter3D, 44

segments, 48

slice3D, 17

slice3Drgl, 16

split, /14

Sylt data set, 33

Sylt3D, 3,9,17, 19

Sylt3D (Sylt data set), 33
Syltsurf (Sylt data set), 33
Sylttran (Sylt data set), 33

Tracers in 2D, 39

Tracers in 3D, 42

tracers?2D, 3, 44

tracers2D (Tracers in 2D), 39
tracers2Drgl (Tracers in 2D), 39
tracers3D, 3, 41

tracers3D (Tracers in 3D), 42
tracers3Drgl (Tracers in 3D), 42
TrackProf (Profile data set), 22
transect, 2

transect (Map and extract data), 6
transectsigma, 2
transectsigma (Map and extract data), 6

vector plots, 47
vectorplot, 2, 27
vectorplot (vector plots), 47

WSnioz (NIOZ Westerschelde monitoring),
19

51



	OceanView-package
	Chesapeake data set
	Map and extract data
	Matrix plotting
	Moving slices in 3D
	Moving surfaces in 3D
	NIOZ Westerschelde monitoring
	Profile data set
	Quiver and flow paths
	Reshaping to a crosstable
	Sylt data set
	Tracers in 2D
	Tracers in 3D
	vector plots
	Index

