
Package ‘NVCSSL’
January 20, 2025

Type Package

Title Nonparametric Varying Coefficient Spike-and-Slab Lasso

Version 2.0

Date 2023-09-17

Author Ray Bai

Maintainer Ray Bai <raybaistat@gmail.com>

Description Fits Bayesian regularized varying coefficient models with the Nonparametric Varying Co-
efficient Spike-and-Slab Lasso (NVC-SSL) intro-
duced by Bai et al. (2023) <arXiv:1907.06477>. Functions to fit frequentist penalized vary-
ing coefficients are also provided, with the option of employ-
ing the group lasso penalty of Yuan and Lin (2006) <doi:10.1111/j.1467-
9868.2005.00532.x>, the group minimax concave penalty (MCP) of Bre-
heny and Huang <doi:10.1007/s11222-013-9424-2>, or the group smoothly clipped absolute de-
viation (SCAD) penalty of Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>.

License GPL-3

LazyData true

Depends R (>= 3.6.0)

Imports stats, splines, dae, plyr, Matrix, GIGrvg, MASS, MCMCpack,
grpreg, mvtnorm

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-09-17 22:50:19 UTC

Contents
NVC_frequentist . 2
NVC_predict . 5
NVC_SSL . 6
SimulatedData . 11

Index 13

1

https://arxiv.org/abs/1907.06477
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1007/s11222-013-9424-2

2 NVC_frequentist

NVC_frequentist Fits frequentist penalized nonparametric varying coefficient (NVC)
models

Description

This function implements frequentist penalized nonparametric varying coefficient (NVC) models.
It supports the following penalty functions: the group lasso penalty of Yuan and Lin (2006), the
group minimax concave penalty (MCP) of Breheny and Huang (2015), and the group smoothly
clipped absolute deviation (SCAD) penalty of Breheny and Huang (2015). This function solves a
penalized regression problem of the form,

argmaxγ
1

N
ℓ(γ) + penλ(γ),

where N is the total number of observations, ℓ(γ) is the loss function, and penλ(·) is a penalty
function with regularization parameter λ > 0. Since the objective function is rescaled by 1/N , the
penalty λ is typically smaller than the spike hyperparameter λ0 used by the NVC_SSL function. The
BIC criterion is used to select the optimal tuning parameter λ.

Usage

NVC_frequentist(y, t, X, n_basis=8, penalty=c("gLASSO","gSCAD","gMCP"),
lambda=NULL, include_intercept=TRUE)

Arguments

y N × 1 vector of response observations y11, ..., y1m1
, ..., yn1, ..., ynmn

t N × 1 vector of observation times t11, ..., t1m1
, ..., tn1, ..., tnmn

X N × p design matrix with columns [X1, ..., Xp], where the kth column contains
the entries xik(tij)’s

n_basis number of basis functions to use. Default is n_basis=8.

penalty string specifying which penalty function to use. Specify "gLASSO" for group
lasso, "gSCAD" for group SCAD, or "gMCP" for group MCP.

lambda grid of tuning parameters. If lambda is not specified (i.e. lambda=NULL), then
the program automatically chooses a grid for lambda. Note that since the ob-
jective function is scaled by 1/N , the automatically chosen grid for lambda
typically consists of smaller values than the default grid for lambda0 used by
the function NVC_SSL.

include_intercept

Boolean variable for whether or not to include an intercept function β0(t) in the
estimation. Default is include_intercept=TRUE.

NVC_frequentist 3

Value

The function returns a list containing the following components:

t_ordered all N time points ordered from smallest to largest. Needed for plotting.

classifications

p × 1 vector of indicator variables, where "1" indicates that the covariate is
selected and "0" indicates that it is not selected. These classifications are deter-
mined by the optimal lambda chosen from BIC. Note that this vector does not
include an intercept function.

beta_hat N × p matrix of the estimates for varying coefficient functions βk(t), k =
1, ..., p, using the optimal lambda chosen from BIC. The kth column in the ma-
trix is the kth estimated function at the observation times in t_ordered.

beta0_hat estmate of the intercept function β0(t) at the observation times in t_ordered for
the optimal lambda chosen from BIC. This is not returned if include_intercept
= FALSE.

gamma_hat estimated basis coefficients (needed for prediction) for the optimal lambda.

lambda_min the individual lambda which minimizes the BIC. If only one value was originally
passed for lambda, then this just returns that lambda.

lambda0_all grid of all L regularization parameters in lambda. Note that since the objec-
tive function is scaled by 1/N for the penalized frequentist methods in the
NVC_frequentist function, the lambda_all grid that is chosen automatically
by NVC_frequentist typically consists of smaller values than the default values
in the lambda0_all grid for NVC_SSL.

BIC_all L × 1 vector of BIC values corresponding to all L entries in lambda_all. The
lth entry corresponds to the lth entry in lambda_all.

beta_est_all_lambda

list of length L of the estimated varying coefficients βk(t), k = 1, ..., p, corre-
sponding to all L lambdas in lambda_all. The lth entry corresponds to the lth
entry in lambda_all.

beta0_est_all_lambda

N×L matrix of estimated intercept function β0(t) corresponding to all L entries
in lambda_all. The lth column corresponds to the lth entry in lambda_all.
This is not returned if include_intercept=FALSE.

gamma_est_all_lambda

dp × L matrix of estimated basis coefficients corresponding to all entries in
lambda_all. The lth column corresponds to the lth entry in lambda_all.

classifications_all_lambda

p × L matrix of classifications corresponding to all the entries in lambda_all.
The lth column corresponds to the lth entry in lambda_all.

iters_to_converge

number of iterations it took for the group ascent algorithm to converge for each
entry in lambda_all. The lth entry corresponds to the lth entry in lambda_all.

4 NVC_frequentist

References

Bai, R., Boland, M. R., and Chen, Y. (2023). "Scalable high-dimensional Bayesian varying coeffi-
cient models with unknown within-subject covariance." arXiv pre-print arXiv:arXiv:1907.06477.

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wei, F., Huang, J., and Li, H. (2011). "Variable selection and estimation in high-dimensional
varying coefficient models." Statistica Sinica, 21:1515-1540.

Yuan, M. and Lin, Y. (2006). "Model selection and estimation in regression with grouped variables."
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49-67.

Examples

Load data
data(SimulatedData)
attach(SimulatedData)
y = SimulatedData$y
t = SimulatedData$t
id = SimulatedData$id
X = SimulatedData[,4:103]

Fit frequentist penalized NVC model with the SCAD penalty.
Can set penalty as "gLASSO", "gSCAD", or "gMCP".
No need to specify an 'id' argument when using NVC_frequentist() function

NVC_gSCAD_mod = NVC_frequentist(y, t, X, penalty="gSCAD")

Classifications. First varying coefficients are selected as nonzero
NVC_gSCAD_mod$classifications

Optimal lambda chosen from BIC
NVC_gSCAD_mod$lambda_min

Plot first estimated varying coefficient function
t_ordered = NVC_gSCAD_mod$t_ordered
beta_hat= NVC_gSCAD_mod$beta_hat
plot(t_ordered, beta_hat[,1], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(-12,12), ylab=expression(beta[1]))

Plot third estimated varying coefficient function
plot(t_ordered, beta_hat[,3], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(-4,2), ylab=expression(beta[3]))

Plot fifth estimated varying coefficient function
plot(t_ordered, beta_hat[,5], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(0,15), ylab=expression(beta[5]))

NVC_predict 5

NVC_predict Prediction for nonparametric varying coefficient (NVC) models

Description

This is a function to predict the responses y(tnew) for new subjects at new time points tnew with
new covariates Xnew. The function accepts an estimated NVC model that was fit using either the
NVC_SSL or NVC_frequentist functions and returns the predicted y(t)’s. This function can be used
for either out-of-sample predictions or for in-sample predictions if the "new" subjects are the same
as the ones used to obtain the fitted NVC model.

Usage

NVC_predict(NVC_mod, t_new, id_new, X_new)

Arguments

NVC_mod an object with a fitted NVC model returned by the NVC_SSL or NVC_frequentist
function

t_new vector of new observation times

id_new vector of new labels, where a label corresponds to one of the new subjects

X_new new design matrix with columns [X1, . . . , Xp] where the kth column corre-
sponds to the kth covariate. X_new must have the p columns, i.e. the same
number of varying coefficients estimated by NVC_mod.

Value

The function returns a list containing the following components:

id vector of each ith subject’s label

time vector of each jth observation time for each ith subject

y_pred vector of predicted responses corresponding to each jth observation time for
each ith subject

References

Bai, R., Boland, M. R., and Chen, Y. (2023). "Scalable high-dimensional Bayesian varying coeffi-
cient models with unknown within-subject covariance." arXiv pre-print arXiv:arXiv:1907.06477.

Examples

Load simulated data
data(SimulatedData)
attach(SimulatedData)
y = SimulatedData$y
t = SimulatedData$t
id = SimulatedData$id

6 NVC_SSL

X = SimulatedData[,4:103]

Fit frequentist penalized NVC model with the group lasso penalty.
No need to specify an 'id' argument when using NVC_frequentist() function.

NVC_gLASSO_mod = NVC_frequentist(y=y, t=t, X=X, penalty="gLASSO")

Make in-sample predictions. Here, we DO need to specify 'id' argument

NVC_gLASSO_predictions = NVC_predict(NVC_gLASSO_mod, t_new=t, id_new=id, X_new=X)

Subjects
NVC_gLASSO_predictions$id

Observation times
NVC_gLASSO_predictions$time

Predicted responses
NVC_gLASSO_predictions$y_pred

Fit NVC-SSL model to the data instead. Here, we do need to specify id

NVC_SSL_mod = NVC_SSL(y=y, t=t, id=id, X=X)
NVC_SSL_predictions = NVC_predict(NVC_SSL_mod, t_new = t, id_new=id, X_new=X)

Subjects
NVC_SSL_predictions$id

Observation times
NVC_SSL_predictions$time

Predicted responses
NVC_SSL_predictions$y_pred

NVC_SSL Nonparametric Varying Coefficient Spike-and-Slab Lasso (NVC-SSL)

Description

This function implements the Nonparametric Varying Coefficient Spike-and-Slab Lasso (NVC-
SSL) model of Bai et al. (2023) for high-dimensional NVC models. The function returns the
MAP estimator for the varying coefficients βk(t), k = 1, ..., p, obtained from the ECM algorithm
described in Bai et al. (2023). The BIC criterion is used to select the optimal spike hyperparameter
lambda0.

If the user specifies return_CI=TRUE, then this function will also return the 95 percent pointwise
posterior credible intervals for the varying coefficients βk(t), k = 1, ..., p, obtained from Gibbs

NVC_SSL 7

sampling. If the number of covariates p is large, then the user can additionally use the approximate
MCMC algorithm introduced in Bai et al. (2023) (approx_MCMC=TRUE) which is much faster than
the exact Gibbs sampler and gives higher simultaneous coverage.

Finally, this function returns the number of iterations and the runtime for the ECM algorithms and
MCMC algorithms which can be used for benchmarking and timing comparisons.

Usage

NVC_SSL(y, t, id, X, n_basis=8,
lambda0=seq(from=300,to=10,by=-10), lambda1=1,
a=1, b=ncol(X), c0=1, d0=1, nu=n_basis+2, Phi=diag(n_basis),
include_intercept=TRUE, tol=1e-6, max_iter=100,
return_CI=FALSE, approx_MCMC=FALSE,
n_samples=1500, burn=500, print_iter=TRUE)

Arguments

y N × 1 vector of response observations y11, ..., y1m1
, ..., yn1, ..., ynmn

t N × 1 vector of observation times t11, ..., t1m1
, ..., tn1, ..., tnmn

id N × 1 vector of labels, where each unique label corresponds to one of the sub-
jects

X N × p design matrix with columns [X1, ..., Xp], where the kth column contains
the entries xik(tij)’s

n_basis number of basis functions to use. Default is n_basis=8.

lambda0 grid of spike hyperparameters. Default is to tune lambda0 from the grid of
decreasing values (300, 290, ..., 20, 10).

lambda1 slab hyperparameter. Default is lambda1=1.

a hyperparameter in B(a, b) prior on mixing proportion θ. Default is a = 1.

b hyperparameter in B(a, b) prior on mixing proportion θ. Default is b = p.

c0 hyperparameter in Inverse-Gamma(c0/2, d0/2) prior on measurement error vari-
ance σ2. Default is c0 = 1.

d0 hyperparameter in Inverse-Gamma(c0/2, d0/2) prior on measurement error vari-
ance σ2. Default is d0 = 1.

nu degrees of freedom for Inverse-Wishart prior on Ω. Default is n_basis+2.

Phi scale matrix in the Inverse-Wishart prior on Ω. Default is the identity matrix.
include_intercept

Boolean variable for whether or not to include an intercept function β0(t) in the
estimation. Default is include_intercept=TRUE.

tol convergence criteria for the ECM algorithm. Default is tol=1e-6.

max_iter maximum number of iterations to run ECM algorithm. Default is max_iter=100.

return_CI Boolean variable for whether or not to return the 95 percent pointwise credible
bands. Set return_CI=TRUE if posterior credible bands are desired.

8 NVC_SSL

approx_MCMC Boolean variable for whether or not to run the approximate MCMC algorithm
instead of the exact MCMC algorithm. If approx_MCMC=TRUE, then an approx-
imate MCMC algorithm isused. Otherwise, if approx_MCMC=FALSE, the exact
MCMC algorithm is used. This argument is ignored if return_CI=FALSE.

n_samples number of MCMC samples to save for posterior inference. The default is to save
n_samples=1500. This is ignored if return_CI=FALSE.

burn number of initial MCMC samples to discard during the warm-up period. Default
is burn=500. This is ignored if return_CI=FALSE.

print_iter Boolean variable for whether or not to print the progress of the algorithms. De-
fault is print_iter=TRUE.

Value

The function returns a list containing the following components:

t_ordered all N time points ordered from smallest to largest. Needed for plotting
classifications

p × 1 vector of indicator variables, where "1" indicates that the covariate is
selected and "0" indicates that it is not selected. These classifications are deter-
mined by the optimal lambda0 chosen from BIC. Note that this vector does not
include an intercept function.

beta_hat N × p matrix of the MAP estimates for varying coefficient functions βk(t), k =
1, ..., p, using the optimal lambda0 chosen from BIC. The kth column in the
matrix is the kth estimated function at the observation times in t_ordered.

beta0_hat MAP estimate of the intercept function β0(t) at the observation times in t_ordered
for the optimal lambda0 chosen from BIC. This is not returned if include_intercept
= FALSE.

gamma_hat MAP estimates of the basis coefficients (needed for prediction) for the optimal
lambda0.

beta_post_mean N×p matrix of the posterior mean estimates of the varying coefficient functions.
The kth column in the matrix is the kth posterior mean estimate for βk(t) at the
observation times in t_ordered. This is not returned if return_CI=FALSE.

beta_CI_lower N × p matrix of the lower endpoints of the 95 percent pointwise posterior cred-
ible interval (CI) for the varying coefficient functions. The kth column in the
matrix is the lower endpoint for the CI of βk(t) at the observation times in
t_ordered. This is not returned if return_CI=FALSE.

beta_CI_upper N × p matrix of the upper endpoints of the 95 percent pointwise posterior cred-
ible interval (CI) for the varying coefficient functions. The kth column in the
matrix is the upper endpoint for the CI of βk(t) at the observation times in
t_ordered. This is not returned if return_CI=FALSE.

beta0_post_mean

Posterior mean estimate of the intercept function β0(t) at the observation times
in t_ordered. This is not returned if return_CI=FALSE.

beta0_CI_lower Lower endpoints of the 95 percent pointwise posterior credible intervals (CIs)
for the intercept function β0(t) at the observation times in t_ordered. This is
not returned if return_CI=FALSE.

NVC_SSL 9

beta0_CI_upper Upper endpoints of the 95 percent pointwise posterior credible intervals (CIs)
for the intercept function β0(t) at the observation times in t_ordered. This is
not returned if return_CI=FALSE.

gamma_post_mean

Posterior mean estimates of all the basis coefficients. This is not returned if
return_CI=FALSE.

gamma_CI_lower Lower endpoints of the 95 percent posterior credible intervals for the basis co-
efficients. This is not returned if return_CI=FALSE.

gamma_CI_upper Upper endpoints of the 95 percent posterior credible intervals for the basis coef-
ficients. This is not returned if return_CI=FALSE.

post_incl p× 1 vector of estimated posterior inclusion probabilities (PIPs) for each of the
varying coefficients. The kth entry in post_incl is the PIP for βk. This is not
returned if return_CI=FALSE.

lambda0_min the individual lambda0 which minimizes the BIC. If only one value was origi-
nally passed for lambda0, then this just returns that lambda0.

lambda0_all grid of all L regularization parameters in lambda0. Note that since the ob-
jective function is scaled by 1/N for the penalized frequentist methods in the
NVC_frequentist function, the lambda_all grid that is chosen automatically
by NVC_frequentist typically consists of smaller values than the default values
in the lambda0_all grid for NVC_SSL.

BIC_all L× 1 vector of BIC values corresponding to all L entries in lambda0_all. The
lth entry corresponds to the lth entry in lambda0_all.

beta_est_all_lambda0

list of length L of the estimated varying coefficients βk(t), k = 1, ..., p, corre-
sponding to all L lambdas in lambda0_all. The lth entry corresponds to the lth
entry in lambda0_all.

beta0_est_all_lambda0

N×L matrix of estimated intercept function β0(t) corresponding to all L entries
in lambda0_all. The lth column corresponds to the lth entry in lambda0_all.
This is not returned if include_intercept=FALSE.

gamma_est_all_lambda0

dp × L matrix of estimated basis coefficients corresponding to all entries in
lambda0_all. The lth column corresponds to the lth entry in lambda0_all.

classifications_all_lambda0

p× L matrix of classifications corresponding to all the entries in lambda0_all.
The lth column corresponds to the lth entry in lambda0_all.

ECM_iters_to_converge

number of iterations it took for the ECM algorithm to converge for each entry in
lambda0_all. The lth entry corresponds to the lth entry in lambda0_all.

ECM_runtimes L×1 vector of the number of seconds it took for the ECM algorithm to converge
for each entry in lambda0_all. The lth entry corresponds to the lth entry in
lambda0_all.

gibbs_runtime number of minutes it took for the Gibbs sampling algorithm to run for the total
number of MCMC iterations given in gibbs_iters

gibbs_iters total number of MCMC iterations run for posterior inference

10 NVC_SSL

References

Bai, R., Boland, M. R., and Chen, Y. (2023). "Scalable high-dimensional Bayesian varying coeffi-
cient models with unknown within-subject covariance." arXiv pre-print arXiv:arXiv:1907.06477.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2022). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, 117:184-197.

Examples

Load data
data(SimulatedData)
attach(SimulatedData)
y = SimulatedData$y
t = SimulatedData$t
id = SimulatedData$id
X = SimulatedData[,4:103]

Fit NVC-SSL model. Default implementation uses a grid of 30 lambdas.
Below illustration uses just two well-chosen lambdas

NVC_SSL_mod = NVC_SSL(y, t, id, X, lambda0=c(60,50))

NOTE: Should use default, which will search for lambda0 from a bigger grid
NVC_SSL_mod = NVC_SSL(y, t, id, X)

Classifications. First 6 varying coefficients are selected as nonzero
NVC_SSL_mod$classifications

Optimal lambda chosen from BIC
NVC_SSL_mod$lambda0_min

Plot first estimated varying coefficient function
t_ordered = NVC_SSL_mod$t_ordered
beta_hat= NVC_SSL_mod$beta_hat
plot(t_ordered, beta_hat[,1], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(-12,12), ylab=expression(beta[1]))

Plot third estimated varying coefficient function
plot(t_ordered, beta_hat[,3], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(-4,2), ylab=expression(beta[3]))

Plot fifth estimated varying coefficient function
plot(t_ordered, beta_hat[,5], lwd=3, type='l', col='blue',

xlab="Time", ylim = c(0,15), ylab=expression(beta[5]))

If you want credible intervals, then set return_CI=TRUE to also run Gibbs sampler.
Below, we run a total of 1000 MCMC iterations, discarding the first 500 as burnin
and keeping the final 500 samples for inference.

NVC_SSL_mod_2 = NVC_SSL(y, t, id, X, return_CI=TRUE, approx_MCMC=FALSE,

SimulatedData 11

n_samples=500, burn=500)

Note that NVC_SSL() always computes a MAP estimator first and then
initializes the Gibbs sampler with the MAP estimator.

Plot third varying coefficient function and its credible bands
t_ordered = NVC_SSL_mod_2$t_ordered
beta_MAP = NVC_SSL_mod_2$beta_hat
beta_mean = NVC_SSL_mod_2$beta_post_mean
beta_CI_lower = NVC_SSL_mod_2$beta_CI_lower
beta_CI_upper = NVC_SSL_mod_2$beta_CI_upper

plot(t_ordered, beta_MAP[,3], lwd=3, type='l', col='blue', xlab="Time", ylim=c(-5,3), lty=1,
ylab=expression(beta[3]), cex.lab=1.5)

lines(t_ordered, beta_mean[,3], lwd=3, type='l', col='red', lty=4)
lines(t_ordered, beta_CI_lower[,3], lwd=4, type='l', col='purple', lty=3)
lines(t_ordered, beta_CI_upper[,3], lwd=4, type='l', col='purple', lty=3)
legend("bottomleft", c("MAP", "Mean", "95 percent CI"), lty=c(1,4,3), lwd=c(2,2,3),

col=c("blue","red","purple"), inset=c(0,1), xpd=TRUE, horiz=TRUE, bty="n")

Plot fifth varying coefficient function and its credible bands
plot(t_ordered, beta_MAP[,5], lwd=3, type='l', col='blue', xlab="Time", ylim=c(-1,14), lty=1,

ylab=expression(beta[5]), cex.lab=1.5)
lines(t_ordered, beta_mean[,5], lwd=3, type='l', col='red', lty=4)
lines(t_ordered, beta_CI_lower[,5], lwd=4, type='l', col='purple', lty=3)
lines(t_ordered, beta_CI_upper[,5], lwd=4, type='l', col='purple', lty=3)
legend("bottomleft", c("MAP", "Mean", "95 percent CI"), lty=c(1,4,3), lwd=c(2,2,3),

col=c("blue","red","purple"), inset=c(0,1), xpd=TRUE, horiz=TRUE, bty="n")

SimulatedData Simulated data for illustration

Description

This is a simulated dataset for illustration. It contains a total of N = 436 observations at irregularly
spaced time points for n = 50 subjects. There are p = 100 covariates.

Usage

data(SimulatedData)

Details

This simulated dataset contains N = 436 observations for n = 50 subjects, with p = 100 covari-
ates. The first column y gives the response variables, the second column t gives the observation
times, the third column id gives the unique IDs for each of the 50 subjects, and columns 4-103 (x1,
..., x100) give the covariate values.

This synthetic dataset is a slight modification from Experiment 2 in Section 5.1 of Bai et al. (2023).
We use p = 100 for illustration, instead of p = 500 as in the paper.

12 SimulatedData

References

Bai, R., Boland, M. R., and Chen, Y. (2023). "Scalable high-dimensional Bayesian varying coeffi-
cient models with unknown within-subject covariance." arXiv pre-print arXiv:1907.06477.

Index

NVC_frequentist, 2
NVC_predict, 5
NVC_SSL, 6

SimulatedData, 11

13

	NVC_frequentist
	NVC_predict
	NVC_SSL
	SimulatedData
	Index

