Package 'NPHMC'

January 20, 2025

Type Package Title Sample Size Calculation for the Proportional Hazards Mixture Cure Model Version 2.3 Date 2022-05-08 Author Chao Cai, Songfeng Wang, Wenbin Lu, Jiajia Zhang Maintainer Chao Cai <caic@email.sc.edu> Description An R-package for calculating sample size of a survival trial with or without cure fractions. Depends survival, smcure License GPL-2 LazyLoad yes RoxygenNote 7.1.2 **Encoding** UTF-8 NeedsCompilation no **Repository** CRAN Date/Publication 2022-05-08 23:10:02 UTC

Contents

NPHMC-package
e1684szdata
f1
f2 4
f3
f4
НО
m
NPHMC
S0
Sc 10
11

Index

NPHMC-package

An R-package for Estimating Sample Size of Proportional Hazards Mixture Cure Model

Description

Estimating sample size for survival trial with or without cure fractions

Details

Package:	NPHMC
Type:	Package
Version:	2.2
Date:	2013-09-23
License:	GPL-2
LazyLoad:	yes

Author(s)

Chao Cai, Songfeng Wang, Wenbin Lu, Jiajia Zhang

Maintainer: Chao Cai <caic@email.sc.edu>

References

S. Wang, J. Zhang, and W. Lu. Sample size calculation for the proportional hazards cure model. Statistics in medicine, 31:3959-3971, 2012

C. Cai, et al., smcure: An R-Package for estimating semiparametric mixture cure models. Computer Methods and Programs in Biomedicine, 108(3):1255-60, 2012

See Also

smcure

e1684szdata

Description

Example data of nonparametric estimation approach with treatment as only covariate

Usage

data(e1684szdata)

Format

A data frame with 285 observations on the following 3 variables:

Time observed relapse-free time

Status censoring indicator (1 = event of interest happens, and 0 = censoring)

X arm indicator (1 = treatment and 0 = control)

Examples

data(e1684szdata)

f1

Function One

Description

The first integrate function

Usage

f1(t, survdist, k, lambda0)

Arguments

t	time variable
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if $survdist =$ "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.

lambda0the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.The density function of Weibull distribution with shape parameter k and scale

$$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

parameter λ_0 is given by

Description

f2

The second integrate function

Usage

f2(t, accrualtime, followuptime, accrualdist, survdist, k, lambda0)

Arguments

t	time variable
accrualtime	length of accrual period.
followuptime	length of follow-up time.
accrualdist	accrual pattern. It can be "uniform", "increasing" or "decreasing".
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.
	The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by
	$e(i)$ $\lambda i(\lambda i)k-1$ $((\lambda i)k)$

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

 $S(t) = \exp(-(\lambda_0 t)^k).$

Description

The third integrate function

Usage

f3(t, beta0, gamma0, pi0, survdist, k, lambda0)

Arguments

t	time variable
beta0	log hazard ratio of uncured patients
gamma0	log odds ratio of cure rates between two arms
pi0	cure rate for the control arm, which is between 0 and 1.
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm. The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by
	$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$

for t > 0, and the corresponding survival distribution is

 $S(t) = \exp(-(\lambda_0 t)^k).$

5

f4

Function Four

Description

The fourth integrate function

Usage

```
f4(t, accrualtime, followuptime, accrualdist, beta0, gamma0, pi0, survdist,
   k, lambda0)
```

f3

Arguments

t	time variable
accrualtime	length of accrual period.
followuptime	length of follow-up time.
accrualdist	accrual pattern. It can be "uniform", "increasing" or "decreasing".
beta0	log hazard ratio of uncured patients
gamma0	log odds ratio of cure rates between the two arms
pi0	cure rate for the control arm, which is between 0 and 1.
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.
	The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by
	$k(x) \rightarrow k(x, y)k - 1 = (x, y)k$

$$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

H0

Cumulative hazard function

Description

Cumulative Hazard Function for Exponential and Weibull Distributions

Usage

H0(t, survdist, k, lambda0)

Arguments

t	time variable
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.

lambda0the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.The density function of Weibull distribution with shape parameter k and scale

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

m

M Function

parameter λ_0 is given by

Description

M integrate function

Usage

m(t, beta0, gamma0, pi0, survdist, k, lambda0)

Arguments

t	time variable
beta0	log hazard ratio of uncured patients
gamma0	log odds ratio of cure rates between two arms
pi0	cure rate for the control arm, which is between 0 and 1.
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.
	The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

 $S(t) = \exp(-(\lambda_0 t)^k).$

NPHMC

Title

Description

Title

Usage

```
NPHMC(
 n = NULL,
power = 0.8,
alpha = 0.05,
 accrualtime = NULL,
followuptime = NULL,
p = 0.5,
accrualdist = c("uniform", "increasing", "decreasing"),
hazardratio = NULL,
oddsratio = NULL,
pi0 = NULL,
 survdist = c("exp", "weib"),
k = 1,
lambda0 = NULL,
data = NULL
```

Arguments

)

n	sample size needed for power calculation
power	powered needed for sample size calculation
alpha	level of significance of statistical test (default is 0.05)
accrualtime	level of accrual period
followuptime	length of follow up time
р	proportion of subjects in treatment arm (default is 0.5)
accrualdist	accrual pattern (uniform, decreasing, increasing)
hazardratio	hazard ratio of uncured patients between two arms (must be greater than 0)
oddsratio	odds ratio of cured patients between two arms. It must be greater than 0. If it is 0, the model is reduced to standard proportional hazards model.
pi0	cure rate for the control arm (between 0 and 1)
survdist	distribution of uncured patients (exp or weib)
k	shape parameter if survdist = 'weib' (By default, it is 1 referring to exponential distribution)
lambda0	scale parameter of exponential or Weibull distribution for survival times of un- cured patients in the control arm.
data	observed or historical data if available

Value

a NPHMC object

Examples

```
S0
```

S0 Function

Description

Baseline survival function for mixture cure model

Usage

S0(t, pi0, survdist, k, lambda0)

Arguments

t	time variable
pi0	cure rate for the control arm, which is between 0 and 1.
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if survdist = "weib", the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm. The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by

$$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

Sc Function

Description

Sc

Survival distribution of censoring times

Usage

Sc(t, accrualtime, followuptime, accrualdist)

Arguments

t	time variable
accrualtime	length of accrual period.
followuptime	length of follow-up time.
accrualdist	accrual pattern. It can be "uniform", "increasing" or "decreasing".

Index