Package 'NMRphasing'

June 24, 2025

Type Package Title Phase Error Correction and Baseline Correction for One Dimensional ('1D') 'NMR' Data Version 1.0.7 Maintainer Aixiang Jiang <aijiang@bccrc.ca> **Depends** R (>= 4.3.0) Suggests knitr, rmarkdown, ggpubr, conflicted VignetteBuilder knitr Imports stats, baseline, splines, MassSpecWavelet, signal Description There are three distinct approaches for phase error correction, they are: a single linear model with a choice of optimization functions, multiple linear models with optimization function choices and a shrinkage-based method. The methodology is based on our new algorithms and various references (Binczyk et al. (2015) <doi:10.1186/1475-925X-14-S2-S5>, Chen et al. (2002) < doi:10.1016/S1090-7807(02)00069-1>, de Brouwer (2009) <doi:10.1016/j.jmr.2009.09.017>, Džakula (2000) <doi:10.1006/jmre.2000.2123>, Ernst (1969) <doi 2364(69)90003-1>, Liland et al. (2010) <doi:10.1366/000370210792434350>). License MIT + file LICENSE **Encoding** UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Aixiang Jiang [aut, cre, cph] (ORCID: https://orcid.org/0000-0002-6153-7595>)

Repository CRAN

Date/Publication 2025-06-24 08:00:12 UTC

Contents

fdat	 2
MPC_AAM	 2

MPC_AAM

MPC_ADSM	3
MPC_DANM	4
MPC_DSM	5
MPC_EMP	6
NLS	7
NMRphasing	8
SPC_AAM	9
SPC_ADSM	10
SPC_DANM	11
SPC_DSM	12
SPC_EMP	13
	15

Index

fdat

This is an example data in NMR phasing

Description

This dataset contains sample data for NMR phasing.

Usage

fdat

Format

A data frame with two columns, one is for NMR data in complex format, the other one is ppm

Author(s)

Aixiang Jiang

MPC_AAM

MPC_AAM

Description

Multiple single linear models that minimize absolute area.

Usage

MPC_AAM(specdat, withBC = TRUE)

MPC_ADSM

Arguments

specdat	A complex number vector of observed frequency domain data.
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is used to process phase error correction through multiple single linear models that minimize absolute area, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_aam_phased1 <- MPC_AAM(fdat\$frequency_domain)</pre>

MPC_ADSM

MPC_ADSM

Description

Multiple single linear models that minimize the absolute total dispersion.

Usage

MPC_ADSM(specdat, withBC = TRUE)

Arguments

specdat	A complex number vector of observed frequency domain data.
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is used to process phase error correction through multiple single linear models that minimize the absolute total dispersion, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_dsm_phased1 <- MPC_ADSM(fdat\$frequency_domain)</pre>

MPC_DANM

MPC_DANM

Description

Multiple linear models that minimize the difference between absolute area and net area.

Usage

```
MPC_DANM(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection.

MPC_DSM

Details

This function processes phase error correction through multiple linear models that minimize the difference between absolute area and net area, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_danm_phased1 <- MPC_DANM(fdat$frequency_domain)</pre>
```

MPC_DSM

MPC_DSM

Description

Multiple single linear models that minimize the total dispersion.

Usage

```
MPC_DSM(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data.
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is used to process phase error correction through multiple single linear models that minimize the total dispersion, followed by polynomial baseline correction when necessary.

Value

Aixiang Jiang

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_dsm_phased1 <- MPC_DSM(fdat$frequency_domain)</pre>
```

MPC_EMP

 MPC_EMP

Description

Multiple single linear models based on entropy minimization with negative peak penalty.

Usage

```
MPC_EMP(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data.
withBC	A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through multiple single linear models with entropy minimization with negative peak penalty, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_emp_phased1 <- MPC_EMP(fdat$frequency_domain)</pre>
```

NLS

NLS

Description

Non-linear shrinkage

Usage

NLS(specdat, withBC = TRUE)

Arguments

specdat	A complex number vector of observed frequency domain data.
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is used to process phase error correction through non-linear shrinkage, followed by Polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

NLS

Examples

```
data("fdat")
nls_phased1 <- NLS(fdat$frequency_domain)</pre>
```

NMRphasing NMRphasing

Description

Phase error correction wrap up function

Usage

```
NMRphasing(
   specDatIn,
   absorptionOnly = FALSE,
   method = c("NLS", "MPC_DANM", "MPC_EMP", "MPC_AAM", "MPC_DSM", "MPC_ADSM", "SPC_DANM",
        "SPC_EMP", "SPC_AAM", "SPC_DSM", "SPC_ADSM"),
   withBC = TRUE
)
```

Arguments

specDatIn	Input spectrum data, which can be one of the four formats: a vector of absorption spectrum; a complex vector; a data matrix or a data frame with two columns of spectrum data, which 1st column is for absorption spectrum, and 2nd column is for dispersion spectrum
absorptionOnly	A logical variable to tell us if specDatIn is a a vector of absorption spectrum, default is false
method	One of phase correction and baseline correction methods. There are eleven available choices, which are "NLS", "MPC_DAOM", "MPC_EMP", "MPC_AAM", "MPC_DSM", "MPC_ADSM", "SPC_DAOM", "SPC_EMP", "SPC_AAM", "SPC_DSM", "SPC_ADSM", with "NLS", non-linear shrinkage as default.
withBC	A logical parameter that enables/disables baseline correction after baseline correction

Details

This is a wrap function to process phase error correction and baseline correction with eleven different choices.

Value

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

Chen L, Weng Z, Goh L, Garland M (2002) An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J Magn Reson 158:164–168.

de Brouwer H (2009) Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson 201:230–238.

Džakula Ž (2000) Phase Angle Measurement from Peak Areas (PAMPAS). J Magn Reson 146:20–32.

Ernst RR (1969) Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. J Magn Reson 1969 1:7–26.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
nls_phased <- NMRphasing(specDatIn = fdat$frequency_domain, method = "NLS")</pre>
```

SPC AA	М
--------	---

SPC_AAM

Description

A single linear model with minimization on absolute area.

Usage

SPC_AAM(specdat, withBC = TRUE)

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is to process phase error correction through a single linear model with minimization on absolute area, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_aam_phased1 <- SPC_AAM(fdat$frequency_domain)</pre>
```

SPC_ADSM

SPC_DSM

Description

A single linear model with absolute dispersion summation minimization.

Usage

```
SPC_ADSM(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline cor-
	rection

Details

This function is to process phase error correction through a single linear model with absolute dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26 Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
spc_dsm_phased1 <- SPC_ADSM(fdat\$frequency_domain)</pre>

SPC_DANM

SPC_DANM

Description

A single linear model with Minimization of difference between absolute area and net area

Usage

```
SPC_DANM(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with minimization of difference between absolute area and net area, followed by polynomial baseline correction if necessary

Value

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_danm_phased1 <- SPC_DANM(fdat$frequency_domain)</pre>
```

SPC_DSM

SPC_DSM

Description

A single linear model with dispersion summation minimization.

Usage

SPC_DSM(specdat, withBC = TRUE)

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

SPC_EMP

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_dsm_phased1 <- SPC_DSM(fdat$frequency_domain)</pre>
```

SPC_EMP

SPC_EMP

Description

A single linear model with entropy minimization with negative peak penalty

Usage

```
SPC_EMP(specdat, withBC = TRUE)
```

Arguments

specdat	A complex number vector of observed frequency domain data
withBC	A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with entropy minimization with negative peak penalty, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_emp_phased1 <- SPC_EMP(fdat$frequency_domain)</pre>
```

Index

* datasets fdat, 2* phase correction MPC_AAM, 2 MPC_ADSM, 3 MPC_DANM, 4 MPC_DSM, 5 $MPC_EMP, 6$ NLS, 7 SPC_AAM, 9 SPC_ADSM, 10 $SPC_DANM, 11$ SPC_DSM, 12 $SPC_EMP, 13$ * phase error correction NMRphasing, 8 fdat, 2MPC_AAM, 2 MPC_ADSM, 3 MPC_DANM, 4 MPC_DSM, 5 $MPC_EMP, 6$ NLS, 7 NMRphasing, 8 SPC_AAM, 9 SPC_ADSM, 10 SPC_DANM, 11 SPC_DSM, 12 $SPC_EMP, 13$