Package ‘NCmisc’

January 20, 2025

Type Package
Version 1.2.0

Date 2022-10-14

Title Miscellaneous Functions for Creating Adaptive Functions and
Scripts

Author Nicholas Cooper

Maintainer Nicholas Cooper <njcooper@gmx.co.uk>
Depends R (>=3.10), grDevices, graphics, stats, utils
Imports tools, methods

Suggests KernSmooth, Matrix

Description A set of handy functions. Includes a versatile one line progress bar, one
line function timer with detailed output, time delay function, text histogram, object

preview, CRAN package search, simpler package installer, Linux command install check,

a flexible Mode function, top function, simulation of correlated data, and more.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-10-17 09:15:22 UTC

Contents
NCmisc-package L 3
check.linux.install 6
comify e e 7
comma.dist e e e e e 7
cor.with e e e 8
Dim . . . e 9
dup.pairs e 10
eStimate.MeMOLY vttt et e e e e e e e 10
exists.notfunction L. 12
extend.pCo e e e e 13

Contents

fakeLines e 14
file.split L e 15
force.percentage L. L e 16
force.scalar 17
get.distinct.cols L e 18
gEtRepOSItOTies o e e e e 18
has.method 19
Header e 20
headl e 21
is.vecdogical 22
ISOVECHIUMETIC « . . v v v v e v et e e e e e e e e e e e e 23
list.functions.in.file L 24
LHSLIOCNV e e e e e e e e e e e e e 25
loess.scatter e e e 26
loop.tracker L. e e e e e 27
MEMOTY.SUIMMATY« o v vt v e e e e e et e e e e e e e e e e e 29
Mode e e e e e 29
must.use.package e e e 30
DAL . . ot et e e e e e e e e e e e e e e e e e 31
NEATESL.LO e 32
Numerify o 33
out.of . .. e 34
PLOZ e 35
packagesdoaded 35
paddefto e e 36
petile . .o e e e e 37
PP o o o e e 38
PIEVIEW . . . o o v i e e e e 39
DIV o o e e e e e 40
prv.argeo e 41
replace.missing.df oL 42
Rfiledndex o 44
TIV.OAMES « .« o . v v o v v e 45
TIOV.SPC « v v v v v e 45
search.cran e 46
SIMLCOT . . v v et it e e e e e e e e e 47
simple.date L e e 48
SPC & o e e e e e e e 49
standardize L. 49
Substitute e e e e e 50
summarise.r.datasets e e e e e e e e 51
SUMMATYZ . . v v v v v v e 52
table2d L L e 53
EXIOZIAM .« . . o v vt ot e 54
MEIt o o e e 55
toheader 56
TOD . . o e 56

NCmisc-package 3

WAl . . . e e 58
which.outlier 59
ZAOP o o o e e e e 60
Index 62
NCmisc-package Miscellaneous Functions for Creating Adaptive Functions and Scripts
Description

A set of handy functions. Includes a versatile one line progress bar, one line function timer with
detailed output, time delay function, text histogram, object preview, CRAN package search, simpler
package installer, Linux command install check, a flexible Mode function, top function, simulation
of correlated data, and more.

Details

Package: NCmisc
Type: Package
Version: 1.2.0
Date: 2022-10-14
License: GPL (>=2)

A package of general purpose functions that might save time or help tidy up code. Some of these
functions are similar to existing functions but are simpler to use or have more features (e.g, timeit
and loop.tracker reduce an initialisation, ’during’ and close three-line call structure, to a single
function call. Also, some of these functions are useful for building packages and pipelines, for
instance: Header(), to provide strong visual deliniation between procedures in console output, by an
ascii bordered heading; loop.tracker() to track the progress of loops (called with only 1 line of code),
with the option to periodically backup a key object during the loop; estimate.memory() to determine
whether the object may exceed some threshold before creating it, timeit(), a one line wrapper for
proftools which gives a detailed breakdown of time taken, and time within each function called
during a procedure; and check.linux.install() to verify installation status of terminal commands
before using system(), top() to examine current memory and CPU usage [using the system 'top’
command]. prv() is useful for debugging as it allows a detailed preview of objects, and is as easy
as placing print statements within loops/functions but gives more information, and gives compact
output for large objects. For testing sim.cor() provides a simple way to simulate a correlated data
matrix, as often this is more realistic than completely random data. Otherwise summarise.r.datasets
gives a list of all available datasets and their structure and dimensionality.

List of key functions:

* check.linux.install Check whether a given system command is installed (e.g, bash)
» comma.list Nicely format output lists with comma separation and length control

* comify Function to add commas for large numbers

NCmisc-package

corwith simulate a variable with a specified correlation to an existing variable
Dim same as dim() function but works for more objects, including vectors
dup.pairs Obtain an ordered index of all instances of values with duplicates
estimate.memory Estimate the memory required for an object
exists.not.function same as exists() function but ignores functions

extend.pc Extend an interval by percentage

fakeLines Create randomized lines of text for testing

force.percentage Force argument to be a decimal percentage

force.scalar Force argument to be a scalar

get.distinct.cols Return up to 22 distinct colours

getRepositories Return list of available repositories

has.method Determine whether a function can be applied to an S4 class/object
headl A good way to preview large lists

Header Print heading text with a border

is.vec.logical Test whether vector is logical independent of type
is.vec.numeric Test whether vector is numeric independent of type
list.functions.in.file Show all functions used in an R script file, by package
list.to.env Inserts new variables in current environment from a named list
loess.scatter Draw a scatterplot with a fit line

loop.tracker Creates a progess bar within a loop with only 1 line

Mode Find the mode(s) of a vector

must.use.package Do everything possible to load an R package

narm Return an object with missing values removed

nearest.to Similar to base match function but picks nearest instead of exact match
Numerify Convert only suitable columns to numeric format in data.frame
out.of Simplify outputting fractions/percentages

p.to.Z Convert p-values to Z-scores

packages.loaded quietly test whether packages are loaded without using require
pad.left Print a vector with appropriate padding so each has equal char length
pctile Find data thresholds corresponding to percentiles

ppa Posterior probability for p-values

preview same as prv, but enter arguments as strings

prv.large tidy representation for large matrices/data.frames

prv compact preview of objects (more complete than "print’)
replace.missing.df replace missing values in data.frame automatically
Rfile.index Create an index file for an R function file

rmv.names Remove names from object

NCmisc-package 5

* rmv.spc Remove leading and trailing spaces (or other character)

* search.cran Search all CRAN packages for those containing keyword(s)
* sim.cor simulate a correlated dataset

* simple.date generate a string with compact summary of date/time

e spc Print a character a specified number of times

* standardize Convert a numeric vector to Z-scores

* Substitute multivariable version of substitute (base)

* summary2 Extension of base:summary that adds SD, SE and keeps names fixed and cleaner
* summarise.r.datasets show and summarise all available example datasets
* table2d Extension of base:table that forces fixed rows and columns

* textogram Make an ascii histogram in the console

* timeit Times an expression, with breakdown of time spent in functions

* toheader Return a string with each first letter of each word in upper case
* top report on CPU and memory usage, overall or by process

* Unlist Unlist a list, starting only from a set depth

* wait Wait for a period of time

* which.outlier Return indexes of univariate outliers

» Z.to.p Convert Z-scores to p-values

Author(s)
Nicholas Cooper

Maintainer: Nicholas Cooper <njcooper @ gmx.co.uk>

See Also

reader ~~

Examples

#text histogram suited to working from a console without GUI graphics
textogram(rnorm(10000),range=c(-3,3))

wait 0.2 seconds

wait(@.2,silent=FALSE)

see whether a system command is installed
check.linux.install("sed")

a nice progress bar

max <- 100; for (cc in 1:max) { loop.tracker(cc,max); wait(@.004,"s") }
nice header

Header (c("SPACE","The final frontier"))

memory req'd for proposed or actual object
estimate.memory(matrix(rnorm(100),nrow=10))

a mode function (there isn't one included as part of base)
Mode(c(1,2,3,3,4,4,4))

search for packages containing text, eg, 'misc'’

6 check.linux.install

search.cran("misc”, repos="http://cran.ma.imperial.ac.uk/")
simulate a correlated dataset

corDat <- sim.cor(200,5)

cor(corDat) # show correlation matrix

prv(corDat) # show compact preview of matrix

Dim() versus dim()

Dim(1:10); dim(1:10)

find nearest match in a vector:

nearest.to(1:100, 50.5)

check.linux.install Check whether a given system command is installed (e.g, bash)

Description

Tests whether a command is installed and callable by system(). Will return a warning if run on
windows when linux.more=TRUE

Usage

check.linux.install(cmd = c("plink"”, "perl”, "sed"), linux.mode = FALSE)

Arguments
cmd character vector of commands to test
linux.mode logical, alternate way of command testing that only works on linux and mac OS
X, to turn this on, set to TRUE.
Value

returns true or false for each command in >cmd’

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

check.linux.install("R") # should be standard
check.linux.install(c("perl”,"sed","fake-cmd"))

comity 7

comify Function to add commas for large numbers

Description

Often for nice presentation of genomic locations it is helpful to insert commas every 3 digits when
numbers are large. This function makes it simple and allows specification of digits if a decimal
number is in use.

Usage
comify(x, digits = 2)

Arguments
X a vector of numbers, either as character, integer or numeric form
digits integer, if decimal numbers are in use, how many digits to display, same as input
to base::round()
Value

returns a character vector with commas inserted every 3 digits

Examples

comify("23432")
comify(x=c(1,25,306,999,1000,43434,732454,65372345326))
comify(23432.123456)

comify(23432.123456,digits=0)

comma.list Print out comma separated list of values in X, truncating if many (good
for error messages)

Description

Often for nice presentation of error messages you wish to display a list of values. This adds commas
between entries and will truncate the list above a length of 50 items with an ellipsis. Very simple
but convenient function.

Usage

comma. list(X)

Arguments

X a vector to be displayed

8 cor.with

Value

string with entries separated by commas, and if long, entries skipped indicated by an ellipsis.

Examples

comma.list(1:100)

cat("The following entries were ignored: ", comma.list(c(1,7,10:14)), "\n")
cor.with Simulate a correlated variable
Description

Simulate a variable correlated at level ’r’ with cector x (of the same length). Can either ’preserve’ the
mean and standard-deviation, leave standardizeed, or select new mean 'mn’ and standard deviation
st’.

Usage

cor.with(x, r = 0.5, preserve = FALSE, mn = NA, st = NA)

Arguments
X existing variable, to which you want to simulate a new correlated variable
r the ’expected’ correlation you want to target (randomness will mean that the
actual correlation will vary around this value)
preserve logical, whether to preserve the same mean and standard deviation(SD) as x, for
the new variable
mn optional, set the mean for the new simulated variable [must also set st if using
this]
st optional, set the SD for the new simulated variable [must also set mn if using
this]
Value

return the new variable with an expected correlation of 'r’ with x

Author(s)

Nicholas Cooper

References

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/CorrGen.html

Dim 9

See Also

sim.cor

Examples

X <- rnorm(10,100,14)

cor.with(X,r=.5) # create a variable correlated .5 with X
cor(X,cor.with(X)) # check the actual correlation

some variability in the actual correlation, so run 1000 times:
print(mean(replicate(1000,{cor(X,cor.with(X))})))
cor.with(X,preserve=TRUE) # preserve original mean and standard deviation
X[c(4,10)] <- NA # works fine with NAs, but new var will have same missing
cor.with(X,mn=50,st=2) # specify new mean and standard deviation

Dim A more general dimension function

Description

A more general ’dim’ function. For arrays simply calls the dim() function, but for other data types,
tries to provide an equivalent, for instance will call length(x) for vectors, and will recursively report
dims for lists, and will attempt something sensible for other datatypes.

Usage

Dim(x, cat.lists = TRUE)

Arguments
X the object to find the dimension for
cat.lists logical, for lists, TRUE will concatenate the dimesions to a single string, or
FALSE will return the sizes as a list of the same structure as the original.
Value

dimension(s) of the object

See Also

prv, preview

Examples

create variables of different types to show output styles
Dim(193)

Dim(1:10)

testvar <- matrix(rnorm(100),nrow=25)
Dim(matrix(rnorm(100),nrow=25))

Dim(list(first="test"”, second=testvar,third=100:110))
Dim(list(first="test", second=testvar,third=100:110),FALSE)

10 estimate.memory

dup.pairs Obtain an index of all instances of values with duplicates (ordered)

Description

The standard ’duplicated’ function, called with which(duplicated(x)) will only return the indexes
of the extra values, not the first instances. For instance in the sequence: A,B,A,C,D,B.E; it would
return: 3,6. This function will also return the first instances, so in this example would give: 1,3,2,6
[note it will also be ordered]. This index can be helpful for diagnosis if duplicates are unexpected,
for instance in a data.frame, and you wish to compare the differences between the rows with the
duplicate values occuring. Also, duplicate values are sorted to be together in the listing, which can
help for manual troubleshooting of undesired duplicates.

Usage

dup.pairs(x)

Arguments

X a vector that you wish to extract duplicates from

Value

vector of indices of which values in "x’ are duplicates (including the first observed value in pairs,
or sets of >2), ordered by set, then by appearance in x.

Examples

set <- ¢(1,1,2,2,3,4,5,6,2,2,2,2,12,1,3,3,1)
dup.pairs(set) # shows the indexes (ordered) of duplicated values
set[dup.pairs(set)] # shows the values that were duplicated (only 1's, 2's and 3's)

estimate.memory Estimate the memory required for an object.

Description

Can enter an existing object or just the dimensions or total length of a proposed object. The estimate
is based on the object being of numeric type. Integers use half the space of numeric, raw() use 1/8th
of the space. Factors and characters can vary, although factors will always use less than numeric,
and character variables may easily use up to twice as much depending on the length [nchar()] of
each element.

estimate.memory 11

Usage
estimate.memory(
dat,
integer = FALSE,
raw = FALSE,
unit = c("gb", "mb", "kb", "b"),
add.unit = FALSE
)
Arguments
dat either a vector/matrix/dataframe object, or else up to 10 dimensions of such an
object, or a potential object, i.e; c(nrow,ncol). If entering an object directly, you
can leave out the ’integer’ and 'raw’ arguments as these will be detected from
the object type. Any set of dimensions >10 will be assumed to be a vector, so if
you have such an object, better to submit the total product [base::prod()].
integer if the object or potential object is integer or logical type, set this argument to
TRUE, if this is TRUE, the parameter 'RAW’ will be ignored; integer and logical
types use 1/2 of the memory of numeric types
raw if the object or potential object is of 'raw’ type, set this argument to TRUE, note
that if *integer’ is TRUE, this parameter 'RAW’ will be ignored; raw types use
1/8 of the memory of numeric types
unit the storage units to use for the result, ie, "gb", "mb","kb", "b" for gigabytes,
megabytes, kilobytes, or bytes respectively.
add.unit logical, whether to append the unit being used to the result, making the result
character type instead of numeric.
Value

returns the minimum memory requirement to store and object of the specified size, as a numeric
scalar, in gigabytes (default) or else using the units specified by "unit’, and if add.unit = TRUE, then
the result will be character type instead of numeric, with the units appended.

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

myMatrix
myVec <-
estimate
estimate.
estimate.
estimate.
estimate.
estimate
estimate.
estimate.

<- matrix(rnorm(100),nrow=10)
sample(1:1000)

.memory(myMatrix,unit="bytes"”) # enter a matrix object

memory (myVec,unit="kb" ,add.unit=TRUE) # enter a vector object
memory(c(10,10,10,10,10),unit="kb") # 5 dimensional array

memory(c(10%6,10"4), add.unit=TRUE) # large matrix

memory(5.4%10”8, add.unit=TRUE) # entering argument as # total cells, rather than dims

.memory(5.4%10"8, integer=TRUE, add.unit=TRUE)

memory(5.4x10”8, raw=TRUE, add.unit=TRUE)
memory(5.4%10~8, TRUE, TRUE, add.unit=TRUE) # 'integer' overrides 'raw'

12 exists.not.function

exists.not.function Does object exist ignoring functions The exists() function can tell you
whether an object exists at all, or whether an object exists with a cer-
tain type, but it can be useful to know whether an object exists as gen-
uine data (and not a function) which can be important when a variable
or object is accidently or intentionally given the same name as a func-
tion. This function usually returns a logical value as to the existence
of the object (ignoring functions) but can also be set to return the non-
function type if the object exists.

Description

Does object exist ignoring functions

The exists() function can tell you whether an object exists at all, or whether an object exists with
a certain type, but it can be useful to know whether an object exists as genuine data (and not a
function) which can be important when a variable or object is accidently or intentionally given the
same name as a function. This function usually returns a logical value as to the existence of the
object (ignoring functions) but can also be set to return the non-function type if the object exists.

Usage

exists.not.function(x, ret.type = FALSE)

Arguments
X the object name to search for
ret.type logical, if TRUE then will return the objects’ type (if it exists) rather than TRUE
or FALSE. If the object doesn’t exist the empty string will be returned as the
type.
Value

logical, whether non-function object exists, or else the type if ret.type=TRUE

Author(s)
Nicholas Cooper

Examples

x <- "test"”

the standard exists function, for all modes, correct mode, and other modes:
exists("x")

exists("x",mode="character")

exists("x",mode="numeric")

standard case for a non-function variable

exists.not.function("x",TRUE)

compare results for a non-existent variable

extend.pc 13

exists("aVarNotSeen™)
exists.not.function("aVarNotSeen")

compare results for variable that is a function
exists("mean”)

exists.not.function("mean")

define a variable with same name as a function
mean <- 1.4

exists.not.function returns the type of the variable ignoring the function of the same name
exists.not.function("mean”, TRUE)
exists("mean"”,mode="function")
exists("mean”,mode="numeric")

extend.pc Extend an interval by percentage

Description
For various reasons, such as applying windows, setting custom range limits for plots, it may be
desirable to extend an interval by a certain percentage.

Usage

extend.pc(X, pc = 0.5, pos = TRUE, neg = TRUE, swap = FALSE)

Arguments
X a numeric range, should be length 2. If a longer numeric, will be coerced with
range()
pc percentage by which to extend X, can be entered in either percentage style:
O<pce<l; or 1<pc<100
pos logical, if TRUE, make an extension in the positive direction
neg logical, if TRUE, make an extension in the negative direction
swap logical, if TRUE, flip the extension directions if X[2]<X[1], ie, not in numerical
order
Examples

extend.pc(c(2,10),0.25) # extend X symmetrically

extend.pc(c(2:10),0.25) # extend the range of X

the following 3 examples extend X by 1% only in the 'positive' direction
extend.pc(c(25000,55000),.01,neg=FALSE) # standard positive extension
extend.pc(c(55000,25000),.01,neg=FALSE) # ranges in reverse order, not swapped
extend.pc(c(55000,25000),.01,neg=FALSE, swap=TRUE) # ranges in reverse order, swapped

14 fakeLines

fakeLines Create fake text for testing purposes

Description

Returns randomized input as if reading lines from a file, like "readLines()’ Can be used to test i/o
functions, robustness.

Usage

fakeLines(
max.lines = 10,
max.chars = 100,
pc.space = 0.35,

delim = " ",
can.null = TRUE
)
Arguments
max.lines maxmimum number of fake lines to read
max.chars maximum number of characters per line
pc.space percentage of randomly generated characters that should be a delimiter
delim what should the simulated delimiter be, e.g, a space, comma etc. If you wish not
to include such either set the delimiter as "", or set pc.space=0.
can.null whether with probability 1/max.lines to return NULL instead of any lines of
text, which simulates an empty file, which for testing purposes you may want to
be able to handle
Value

a vector of character entries up *max.chars’ long, or sometimes only NULL if can.null=TRUE

Author(s)

Nicholas Cooper

Examples

fakeLines() # should produce between zero and ten lines of random text, 35% of which are spaces

file.split

15

file.split

Split a text file into multiple parts

Description

Wrapper for the bash command ’split’ that can separate a text file into multiple roughly equal sized
parts. This function removes the need to remember syntax and suffixes of the bash command

Usage
file.split(
fn,
size = 50000,

same.dir = FALSE,
verbose = TRUE,

suf = "part”,
win = TRUE

Arguments

fn

size

same.dir

verbose

suf

win

Value

character, file name of the text file to split, if the file is an imcompatible format
the linux command should return an error message to the console

integer, the maximum number of lines for the split parts of the file produced

logical, whether the resulting files should be moved to the same directory as the
original file, or simply left in the working directory [getwd()]

logical, whether to report the resulting file names to the console

character, suffix for the split files, default is *part’, the original file extension will
be appended after this suffix

logical, set to FALSE if running a standard windows setup (cmd.ext), and the file
split will run natively in R. Set to TRUE if you have a unix-alike command sys-
tem, such as CygWin, sh.exe, csh.exe, tsh.exe, running, and this will then check
to see whether the POSIX ’split” command is present (this provides a speed ad-
vantage). If in doubt, windows users can always set win=TRUE; the only case
where this will cause an issue is if there is a different command installed with
the same name (i.e, "split’).

returns the list of file names produced (including path)

Author(s)

Nicholas Cooper

16 force.percentage

Examples

orig.dir <- getwd(); setwd(tempdir()); # move to temporary dir
file.name <- "myfile.txt”
writeLines(fakeLines(max.lines=1000),con=file.name)

new.files <- file.split(file.name,size=50)

unlink(new.files); unlink(file.name)

setwd(orig.dir) # reset working dir to original

force.percentage Force argument to be a percentage with length one

Description

Sometimes it is nice to be able to take a percentage as an argument and not have to specify whether
it should be entered as a number between 0 and 100, e.g, 50 = 50 than 1 and less than 100 will be
divided by 100. Anything outside 0,100 will be set to 0,100 respectively.

Usage

force.percentage(x, default = 0.5)

Arguments

X the object to ensure is a oercentage

default the value to revert to if the format of x is illegal
Value

the object x if already legal, first element if a vector, the min or max value if x is outside the specified
bounds, or the value of default otherwise

See Also

force.scalar

Examples

create variables of different types to show output styles
force.percentage(45)

force.percentage(450)

force.percentage(.45)

force.percentage(-45)

force.percentage("twenty")

force.percentage(NA,default=0.25)

force.scalar 17

force.scalar Force argument to be a numeric type with length one

Description

Sometimes arguments must be numeric, scalar and within a certain range. Rather than using many
if statements, this will do everything possible to coerce input to a scalar, failing that will replace
with a default value. Can also provide a maximum and minimum range that the result must lie

within.

Usage

force.scalar(x, default = 1, min = -10*10, max = 10%10)

Arguments
X the object to ensure is a scalar
default the value to revert to if the format of x is illegal
min a lower bound for the output, anything below this is set to min
max an upper bound for the output, anything above this is set to max
Value

the object x if already legal, first element if a vector, the min or max value if x is outside the specified
bounds, or the value of default otherwise

See Also

force.percentage

Examples

force.scalar(1.5)

force.scalar(NULL,default=.5)
force.scalar(NA,default=.4,min=5,max=10) # default is outside range!
force.scalar(rnorm(1000))

force.scalar (101, max=50)

force.scalar(list(0.4,1,2,3,4,"test"))
force.scalar(data.frame(test=c(1,2,3),name=c("test"”,"me","few")))
force.scalar(Inf)

18 getRepositories

get.distinct.cols Return up to 22 distinct colours.

Description

Useful if you want to colour 22 autosomes, etc, because most R colour palettes only provide 12
or fewer colours, or else provide, a gradient which is not distinguishable for discrete categories.
Manually curated so the most similar colours aren’t side by side.

Usage

get.distinct.cols(n = 22)

Arguments

n number of unique colours to return

Value

returns vector of n colours

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

get.distinct.cols(10)
plot(1:22,pch=19,col=get.distinct.cols(22))

getRepositories Detect all available R repositories.

Description

In addition to the default CRAN repository, there are other repositories such as R-Forge, Omegahat,
and bioConductor (which is split in to software, annotation, experiments and extras). This func-
tion allows you to retrieve which are available. This function complements (and takes code from)
utils::setRepositories(), which will just set, not return which are available, but see there for more
information about how this works. Detecting the available repositories can be useful to precede a
call to setRepositories, and allows you to utilise these repositories without calling setRepositories
(which is hard to reverse). This function can be used to expand the search space of the function
search.cran() to include bioconductor packages.

Usage

getRepositories(ind = NULL, table = FALSE)

has.method 19

Arguments
ind index, same as for ’setRepositories’, if NULL this function returns all available
repositories, or if an index, returns a subset.
table logical, if TRUE, return a table of information, else just return the URLs, which
are the required input for the ‘repos’ argument for relevant functions, e.g, avail-
able.packages() or search.cran()
Value

list of repositories with URLS, note that it is the URL that works best for use for passing a value for
’repos’ to various functions.

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

repos <- "http://cran.ma.imperial.ac.uk/" # OR: repos <- getOption("repos”)
getRepositories(table=TRUE) # shows all available

getRepositories(2:5,FALSE) # returns index for all bioconductor repositories (on my system at least)
does not find this bioconductor package on CRAN

not run # search.cran(”genoset”,repos=getRepositories(1))

should now, because all repositories are used

not run # search.cran("genoset”, repos=getRepositories())

has.method Determine whether a function can be applied to an §4 class/object

Description

Wrapper for ’showMethods’, allows easy testing whether a function (can be specified as a string, or
the actual function itself (FUN)) can be applied to a specific object or class of objects (CLASS)

Usage
has.method(FUN, CLASS, false.if.error = FALSE, ...)

Arguments
FUN the function to test, can be specified as a string, or the actual function itself
CLASS a specific object or a class of objects specified by a string, e.g, "GRanges"

false.if.error logical, the default value is FALSE, in which case an error is returned when
FUN is not an S4 generic function. If this parameter is set to TRUE, "FALSE’
will be returned with a warning instead of an error.

additional arguments to showMethods(), e.g, "where’ to specify the environment

20 Header

Value

returns logical (TRUE/FALSE), or if the function is not S4 will return an error, although this could
potentially be because the function’s package has not been loaded.

Examples

require(Matrix); require(methods)

has.method("t","dgeMatrix"”) # t() is the transpose method for a dgeMatrix object
has.method(t, "dgeMatrix"”) # also works without quotes for the method

m.example <- as(matrix(rnorm(100),ncol=5),"dgeMatrix")

has.method(t, m.example) # works with an instance of an object type too
has.method("band”, m.example) # band is a function for a 'denseMatrix' but not 'dgeMatrix'
not run # has.method(”"notAFunction”,”GRanges") # should return error

not run # has.method("notAFunction”,"GRanges",TRUE) # should return FALSE and a warning

Header Print heading text with a border.

Description

Makes highly visible headings, can separately horizontal, vertical and corner characters

Usage
Header(txt, h = "=", v = h, corner = h, align = "center")
Arguments
txt The text to display in the centre
h the ascii character to use on the horizontal sections of the border, and used for
v,corner too if not specified separately
v the character to use on vertical sections of the border
corner the character to use on corner sections of the border
align alignment of the writing, when there are multiple lines, e.g, "right", "left", "cen-
tre"/"center"
Value

returns nothing, simply prints the heading to the console

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

headl 21

Examples

Header ("Section 1")

Header("Section 1", h="-" v="|" corner="x")

Header (c("SPACE","The final frontier"))

Header (c("MY SCRIPT”,"Part 1"),align="left”, h=".")

headl A good way to preview large lists.

Description

An alternative to head(list) which allows limiting of large list components in the console display

Usage
headl(x, n = 6, skip = 20, skip2 = 10, ind = "", ind2 =" ")
Arguments
X a list to preview
n The number of values to display for the deepest nodes of the list
skip number of first level elements to display before skipping the remainder
skip2 number of subsequent level elements to display before skipping the remainder
ind indent character for first level elements
ind2 indent character for subsequent level elements
Value

prints truncated preview of a large list

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

subl <- list(list(1:100),1list(2:101),1ist(101:200),1ist(201:300),1ist(301:400))
big.list <- list(subl,subl,subl,subl,subl,subl)

headl (sub1)

headl(big.list,skip=2)

22 is.vec.logical

is.vec.logical Determine robustly whether a vector contains logical data

Description

This is an improvement on base:is.logical because data may be encoded as a different type (e.g,
string, "TRUE", "FALSE") especially if imported from a file. This does not include logical vectors
coded as 0,1; such will return FALSE with this function.

Usage

is.vec.logical(x, thresh = 0.9)

Arguments
X a vector to check for logical status
thresh threshold to decide that a variable is logical. NA values will be ignored in the
test. Then it looks at the proportion of values that are successfully coerced to
logical without giving *NA’. If this threshold is 0.9, then any column where at
least 90 converted to logical type, will return TRUE for this function call.
Value

returns a logical TRUE or FALSE for the logical status of x.

Author(s)

Nicholas Cooper

Examples

numeric <- 1:10

string <- paste(”one”, "two", "three”, "four")
logicl <- c(TRUE,FALSE,FALSE, TRUE,FALSE,NA)
logic2 <- c("TRUE", "FALSE", "TRUE", NA, "TRUE”, NA, NA, NA)
logic3 <- c("True”, "False”, "True"”, "False")
numlogic <- ¢(0,1,0,0,0,1,1,1,0)
is.vec.logical(numeric)

is.vec.logical(string)

is.vec.logical(logic1)

is.vec.logical(logic2)

is.vec.logical(logic3)
is.vec.logical(numlogic)

” n

is.vec.numeric 23

is.vec.numeric Determine robustly whether a vector contains numeric data

Description

This is an improvement on base:is.numeric because data may be encoded as a different type (e.g,
string) especially if imported from a file.

Usage

is.vec.numeric(x, logical.is.numeric = FALSE, thresh = 0.9)

Arguments

X a vector to check for numeric status

logical.is.numeric
by default this is FALSE, which means logical vectors will return FALSE to
being numeric. If set to TRUE, then a variable will get a return value of TRUE
if it is based on numbers or appears to be of "logical’ type.

thresh threshold to decide that a variable is numeric. NA values will be ignored in the
test. Then it looks at the proportion of values that are successfully coerced to
numeric without giving "NA’. If this threshold is 0.9, then any column where at
least 90 converted to numeric type, will return TRUE for this function call.

Value

returns a logical TRUE or FALSE for the numeric status of x.

Author(s)

Nicholas Cooper

Examples

numericl <- 1:10

numeric?2 <- paste(1:10)

string <- paste("one"”, "two", "three", "four")
logicl <- c(TRUE,FALSE,FALSE, TRUE,FALSE,NA)
numericish <- paste(c(NA, NA, 6:10, "5|6", "7|8", 1))
is.vec.numeric(numericl)
is.vec.numeric(numeric?2)

is.vec.numeric(string)

is.vec.numeric(logic1)

is.vec.numeric(logicl, logical.is.numeric=TRUE)
is.vec.numeric(numericish)
is.vec.numeric(numericish, thresh=0.7)

24 list.functions.in.file

list.functions.in.file
Show all functions used in an R script file, by package

Description

Parses all functions called by an R script and then lists them by package. Wrapper for ’getParse-
Data’. Inspired by "hrbrmstr’, on StackExchange 3/1/2015. May be of great use for those develop-
ing a package to help see what namespace "importsFrom’ calls will be required.

Usage

list.functions.in.file(filename, alphabetic = TRUE)

Arguments
filename path to an R file containing R code.
alphabetic logical, whether to list functions alphabetically. If FALSE, will list in order of
appearance.
Value

Returns a list. Parses all functions called by an R script and then lists them by package. Those from
the script itself are listed under *.GlobalEnv’ and any functions that may originate from multiple
packages have all possibilities listed. Those listed under ’character(0)’ are those for which a package
could not be found- may be functions within functions, or from packages that aren’t loaded.

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

See Also

Rfile.index

Examples

not run: rfile <- file.choose() # choose an R script file with functions
not run: list.functions.in.file(rfile)

list.to.env 25

list.to.env Create variables from a list

Description

Places named objects in a list into the working environment as individual variables. Can be partic-
ularly helpful when you want to call a function that produces a list of multiple return variables; this
gives a way to access them all at once in the environment from which the function was called.

Usage

list.to.env(list)

Arguments
list list, with named objects, each element will become a named variable in the
current environment
Value

New variables will be added to the current environment. Use with care as any already existing with
the same name will be overwritten.

See Also

base::list2env

Examples

list.to.env(list(myChar="a string”, myNum=1234, myList=list("list within a list",c(1,2,3))))
print(myChar)

print (myNum)

print(myList)

two.arg.return <- function(X) { return(list(Y=X+1,Z=X*10)) }

result <- two.arg.return(11) # function returns list with 2 variables

list.to.env(result)

print(Y); print(Z)

26

loess.scatter

loess.scatter Draw a scatterplot with a fit line

Description

Drawing a fit line usually requires some manual steps requiring several lines of code, such as
ensuring the data is sorted by x, and for some functions doesn’t contain missing values. This
function takes care of these steps and automatically adds a loess fitline, or non-linear fitline. The
type of scatter defaults to “plot’, but other scatter plot functions can be specified, such as graph-
ics::smoothScatter(), for example. If *file’ is specifed, will automatically plot to a pdf of that name.

Usage

loess.scatter(
X!
Y,
file = NULL,
loess = TRUE,
span = 0.75,

scatter = plot,

ylim = NULL,
return.vectors = FALSE,
fit.col = "red",

fit.lwd = 2,
fit.1lty = "solid",
fit.leg = TRUE,

fit.r2 = TRUE,
fast.loess = FALSE

F(x,y,...) can be used, for example graphics::smoothScatter().

)
Arguments

X data for the horizontal axis (independent variable)

y data for the vertical axis (dependent variable)

file file name for pdf export, leave as NULL if simply plotting to the GUI. File
extension will be added automatically if missing

loess logical, if TRUE, fit using loess(), else use a polynomial fit

span numeric scalar, argument passed to the ’span’ parameter of loess(), see ?loess
for details

scatter function, by default is graphics::plot(), but any scatter-plot function of the form

further arguments to the plot function specified by ’scatter’, e.g, 'main’, ’xlab’,

etc

ylim numeric range for y axis, argument passed to plot(), see ?plot.

loop.tracker 27

return.vectors logical, if TRUE, do not plot anything, just return the x and y coordinates of the
fit line as a list of vectors, x and y.

fit.col colour of the fit line

fit.lwd width of the fit line

fit.1lty type of the fit line

fit.leg whether to include an automatic legend for the fit line (will alter the y-limits to
fit)

fit.r2 logical, whether to display r squared of the fit in the fit legend

fast.loess logical, if TRUE will alter control parameters to make the loess calculation

faster, which is useful for datasets with more than 1000 points. Also reduce
the value of ’span’ to increase speed.

Value

if file is a character argument, plots data X,y to a file, else will generate a plot to the current plotting
environment/GUI. The display of the x,y points defaults to *plot’, but alternate scatter plot functions
can be specified, such as graphics::smoothScatter() which used density smoothing, for example.
Also, another option is to set return.vectors=TRUE, and then the coordinates of the fit line will be
returned, and no plot will be produced.

Examples
library(NCmisc)
require(KernSmooth)
DD <- sim.cor(1000,4) # create a simulated, correlated dataset
loess.scatter(DD[,3],DD[,4],loess=FALSE,bty="n",pch=".", cex=2)

loess.scatter(DD[,3],DD[,4],scatter=smoothScatter)
xy <- loess.scatter(DD[,3],DD[,4],return.vectors=TRUE)
prv(xy) # preview the vectors produced

loop. tracker Creates a progess bar within a loop

Description

Only requires a single line within a loop to run, in contrast with the built-in tracker which requires
a line to initialise, and a line to close. Also has option to backup objects during long loops. Ideal
for a loop with a counter such as a for loop. Tracks progress as either percentage of time remaining
or by intermittently displaying the estimated number of minutes to go

Usage

loop. tracker(
cc,
max,
st.time = NULL,

28 loop.tracker

sav.obj = NULL,

sav.fn = NA,

sav.freq = 10,

unit = c("m", "s", "h")[1]

)
Arguments
cc integer, current value of the loop counter
max integer, final value of the loop counter
st.time ’start time’ when using ’time to go’ mode, taken from a call to proc.time()
sav.obj optionally an object to backup during the course of a very long loop, to restore
in the event of a crash.
sav.fn the file name to save ’save.obj’
sav.freq how often to update ’sav.obj’ to file, in terms of percentage of run-time
unit time units h/m/s if using ’time to go’ mode
Value

returns nothing, simply prints progress to the console

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

simple example with a for-loop
max <- 100; for (cc in 1:max) { loop.tracker(cc,max); wait(0.004,"s") }
#example using the 'time to go' with a while loop
cc <- 0; max <- 10; start <- proc.time()
while(cc < max) { cc <- cc + 1; wait(0.05,"s"); loop.tracker(cc,max,start,unit="s") }
example with saving an object, and restoring after a crash
X <= matrix(rnorm(5000),nrow=50); max <- nrow(X); sums <- numeric(max)
for (cc in 1:max) {
sums[cc] <- sum(X[cc,])
wait(.05) # just so this trivial loop doesn't finish so quickly
loop.tracker(cc,max, sav.obj=sums, sav.fn="temp.rda”, sav.freq=5);
if(cc==29) { warning("faked a crash at iteration 29!"); rm(sums); break }
3
cat(”"\nloaded latest backup from iteration 28:" 6 paste(load(”"temp.rda”)),"”\n")
print(sav.obj); unlink("temp.rda")

memory.summary 29

memory.summary Summary of RAM footprint for all R objects in the current session.
Not my function, but taken from an R-Help response by Elizabeth Pur-
dom, at Berkeley. Simply applies the function ’object.size’ to the ob-
jects in Is(). Also very similar to an example in the 'Help’ for the
utils::object.size() function.

Description

Summary of RAM footprint for all R objects in the current session. Not my function, but taken from
an R-Help response by Elizabeth Purdom, at Berkeley. Simply applies the function *object.size’ to
the objects in Is(). Also very similar to an example in the "Help’ for the utils::object.size() function.

Usage

memory.summary(unit = c("kb", "mb", "gb", "b"))

Arguments
unit default is to display "kb", but you can also choose "b"=bytes, "mb"= megabyte,
or "gb" = gigabytes. Only the first letter is used, and is not case sensitive, so
enter units how you like.
Value

a list of object names with memory usage in bytes

Examples

memory.summary() # shows memory used by all objects in the current session in kb
memory.summary("mb"”) # change units to megabytes

Mode Find the mode of a vector.

Description
The mode is the most common value in a series. This function can return multiple values if there
are equally most frequent values, and can also work with non-numeric types.

Usage

Mode(x, multi = FALSE, warn = FALSE)

30

Arguments

X

multi

warn

Value

must.use.package

The data to take the mode from. Dimensions and NA’s are removed if possible,
strings, factors, numeric all permitted

Logical, whether to return multiple modes if values have equal frequency

Logical, whether to give warnings when multiple values are found (if multi=FALSE)

The most frequent value, or sorted set of most frequent values if multi==TRUE and there are more
than one. Numeric if x is numeric, else as strings

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

Mode(c(1,2,3,3,4,4)) # 2 values are most common, as multi=FALSE,

selects the last value (after sort)

Mode(c(1,2,3,3,4,4) ,multi=TRUE) # same test with multi=T,

returns both most frequent

Mode(matrix(1:16,ncol=4),warn=TRUE) # takes mode of the entire

matrix treating as a vector, but all values occur once

Mode (c("Tom","Dick”,"Harry"),multi=FALSE,warn=TRUE) # selects last
sorted value, but warns there are multiple modes

Mode (c("Tom","Dick”, "Harry"),multi=TRUE,warn=TRUE) # multi==TRUE so
warning is negated

must.use.package

Do everything possible to load an R package.

Description

Like 'require()’ except it will attempt to install a package if necessary. Installation of bioconductor
packages is deprecated. Useful if you wish to share code with people who may not have the same
libraries as you, you can include a call to this function which will simply load the library if present,
or else install, then load, if they do not have it.

Usage

must.use.package(

pcknms,
ask = FALSE,

reload = FALSE,
avail = FALSE,
quietly = FALSE

narm

Arguments

pcknms

ask

reload
avail

quietly

Value

31

list of packages to load/install

whether to get the user’s permission to install a required package, or just go
ahead and do it

indicates to reload the package even if loaded
see whether pcknms are in the list of available CRAN packages

passed to library/require, display installation text or not

nothing, simply loads the packages specified if possible

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

not run :

run if you are ok to install/already have these packages

must.use.package(c("MASS", "nlme","1me4"),ask=FALSE)
search() # show packages have loaded, then detach them again:
sapply(paste("package”,c("MASS","nlme"”,"1me4"),sep=":"),detach,character.only=TRUE)

narm

Return an object with missing values removed.

Description

Convenience function, removes NAs from most standard objects. Uses function na.exclude for
matrices and dataframes. Main difference to na.exlude is that it simply performs the transformation,
without adding attributes For unknown types, leaves unchanged with a warning.

Usage

narm(X)

Arguments

X

Value

The object to remove NAs, any vector, matrix or data.frame

Vector minus NA’s, or the matrix/data.frame minus NA rows. If it’s a character vector then values
of "NA" will also be excluded in addition to values = NA, so be careful if "NA" is a valid value of
your character vector. Note that "NA" values occur when ’paste(...,NA.,...)" is applied to a vector of
any type, whereas ’as.character(...,NA,...)” avoids this.

32 nearest.to

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

narm(c(1,2,4,NA,5))

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))

DF; narm(DF)

if a list, will only completely remove NA from the lowest levels
empty places will be left at top levels
print(narm(list(1,2,3,NA,list(1,2,3,NA))))

nearest.to Select the nearest point in an array to a given value

Description

Similar to the base function match() but allows for data where you won’t find an exact match.
Selects the nearest value from ’array’ to the value ’point’. Sometimes there are multiple points with
equal distance in which case choose from 3 possible ’dispute.method’s for choosing which of the
equidistant array values to index. returns the index of ’array’ to which ’point’ is nearest.

Usage

nearest.to(array, point, dispute.method = c("first”, "last"”, "random"))
Arguments

array a numeric vector or POSIXct vector of date-times.

point the value that you want to find the nearest point to.

dispute.method when there are equidistant values to ’point’ in array, choose either the first, last,
or a random select, based on the original order in ’array.
Value

index value of the nearest point in ’array’.

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

myArray <- 1:100

nearest.to(myArray, 7.7)

nearest.to(myArray, 50.5)

nearest.to(myArray, 50.5, dispute.method="last")

Numerify

33

Numerify

Convert all possible columns of a data.frame to numeric

Description

Importing data from csv files can often lead to numeric variables being coded as factors or strings.
This will not work well with many R functions. This function provides a quick way to deal with
this across a whole data frame while attempting to leave columns untouched that are not genuinely
numeric data. In edge cases you might need to adjust "threshold’ to get the correct result, usually
an issue if mostly numeric columns often have strings amongst them, for instance a column with
mostly numbers, but occassionally pipe-separated values like °4.415.016.1°, etc.

Usage

Numerify(df, except = NULL, force = FALSE, digits = NA, thresh = 0.9)

Arguments

df
except
force

digits

thresh

Value

data.frame to transform to numeric (where possible)
avoid changing any colnames in this array
force all columns to numeric without checking types

if a non-NA integer value is used, will round numeric columns to this many
decimal places after making numeric.

threshold to decide that a variable is numeric. NA values will be ignored in the
test. Then it looks at the proportion of values that are successfully coerced to
numeric without giving *"NA’. If this threshold is 0.9, then any column where at
least 90 converted to numeric type, will be kept as numeric, else they will be left
as they were.

data.frame with numeric type for any applicable columns

Author(s)

Nicholas Cooper

Examples

df <- data.frame(first=c(1:5),

second=paste(6:10),

third=c("jake", "fred”, "cathy", "sandra”, "mike"))
sapply(sapply(df, is), "[", 1) # check type of each column
dfN <- Numerify(df)
sapply(sapply(dfN, is), "[", 1) # now second column is numeric
df2 <- data.frame(first=c(1:10),

second=paste(c(NA, NA, 6:10, "5|6", "7|8", 1)),

34 out.of

third=rep(c("jake", "fred", "cathy”, "sandra”, "mike"),2))

sapply(sapply(df2, is), "[", 1)

df2N1 <- Numerify(df2, thresh=0.7)

df2N2 <- Numerify(df2, thresh=0.8)

sapply(sapply(df2N1, is), "[", 1) # at this threshold second column goes to numeric
sapply(sapply(df2N2, is), "[", 1) # second column stays a string at this threshold

out.of Easily display fraction and percentages

Description

For a subset 'n’ and total ’N’, nicely prints text n/N and/or percentage Often we want to display pro-
portions and this simple function reduces the required amount of code for fraction and percentage
reporting. If insufficient digits are provided small percentage may truncate to zero.

Usage

out.of(n, N = 100, digits = 2, pc = TRUE, oo = TRUE, use.sci = FALSE)

Arguments

n numeric, the count for the subset of N (the numerator)

N numeric, the total size of the full set (the denominator)

digits integer, the number of digits to display in the percentage

pc logical, whether to display the percentage of N that n comprises

00 logical, whether to display n/N as a fraction

use.sci logical, whether to allow scientific notation for small/large percentages.
Value

A string showing the fraction n/N and percentage (or just one of these)

Examples

out.of(345,12144)

out.of(345,12144,pc=FALSE)
out.of(3,1076,digits=6,00=FALSE)
out.of(3,1076,digits=6,00=FALSE,use.sci=TRUE)

p.to.Z 35

p.to.Z Convert p-values to Z-scores

Description

Simple conversion of two-tailed p-values to Z-scores. Written in a way that allows maximum pre-
cision for small p-values.

Usage
p.to.Z(p)
Arguments
p p-values (between O and 1), numeric, scalar, vector or matrix, or other types
coercible using as.numeric()
Value

Z scores with the same dimension as the input

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

See Also

Z.to.p

Examples

p.to.Z(0.0001)

p.to.Z("5E-8")
p.to.Z(c(".05",".01",".005"))
p.to.Z(matrix(runif(16),nrow=4))

packages.loaded Check whether a set of packages has been loaded

Description

Returns TRUE if the whole set of packages entered has been loaded, or FALSE otherwise. This
can be useful when developing a package where there is optional functionality depending if another
package is in use (but the other package is not part of ’depends’ because it is not essential). Because
’require’ cannot be used within functions submitted as part of a CRAN package.

36 pad.left

Usage
packages.loaded(pcks = "", ..., cran.check = FALSE, repos = getRepositories())
Arguments
pcks character, a package name, or vector of names, if left blank will return all loaded
further package names as character (same as entering via pcks, but avoids need
for c() in pcks)
cran.check logical, in the case at least one package is not found, whether to search CRAN
and see whether the package(s) even exist on CRAN.
repos repository to use if package is not loaded and cran.check=TRUE, if NULL, will
attempt to use the repository in getOptions("repos") or will default to the impe-
rial.ac.uk mirror. Otherwise the default is to use all available repositories from
getRepositories()
Value

logical TRUE or FALSE whether the whole list of packages are available

Author(s)

Nicholas Cooper

Examples

non

packages.loaded("”"NCmisc”, "reader")
packages.loaded() # no argument means all loaded packages are listed

pad.left Print a vector with appropriate padding so each has equal char length.

Description

Print a vector with appropriate padding so each has equal char length.

Usage
pad.left(X, char = " ", numdigits = NA)
Arguments
X vector of data to pad to equal length
char character to pad with, space is default, but zero might be a desirable choice for

padding numbers

numdigits if using numeric data, the number of digits to keep

pctile 37

Value

returns the vector in character format with equal nchar()

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

pad.left(1:10)

phone.numbers <- c("07429719234","7876345123","7123543765")
pad. left(phone.numbers, "0")

pad.left(rnorm(10),numdigits=3)

pctile Find data thresholds corresponding to percentiles

Description

Finds the top and bottom bounds corresponding to percentile *pc’ of the data ’dat’.

Usage

pctile(dat, pc = 0.01)

Arguments

dat numeric vector of data

pc the percentile to seek, c(pc, 1-pc)
Value

returns the upper and lower threshold

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

pctile(rnorm(100000), .025)
pctile(sample(100),.9)

38 ppa

ppa Posterior probability of association function

Description

Estimate the probability of your hypothesis being true, given the observed p-value and a prior
probability of the hypothesis being true.

Usage

ppa(p = 0.05, prior = 0.5, BF = NULL, quiet = TRUE)

Arguments
p p-value you want to test [p<0.367], or ’bayes factor’
prior prior odds for the hypothesis (Ha) being tested
BF logical, set to TRUE if you have entered a bayes factor as 'p’ rather than a p-
value
quiet logical, whether to display verbose information for calculation
Value

prints calculations, then returns the posterior probability of association given the observed p-value
under the specified prior

References

Equations 1, 2 from http://www.readcube.com/articles/10.1038/nrg2615 Equations 2, 3 from http://www.tandfonline.com/doi

Examples

ps <- rep(c(.05,.01),3)

prs <- rep(c(.05,.50,.90),each=2)
mapply(ps,prs,FUN=ppa) # replicate Nuzzo 2014 table
try with bayes factors

ppa(BF=3,prior=.9)

ppa(BF=10,prior=.5)

preview 39

preview Output variable states within functions during testing/debugging

Description

A versatile function to compactly display most common R objects. Will return the object name,
type, dimension, and a compact representation of object contents, for instance using prv.large()
to display matrices, so as to not overload the console for large objects. Useful for debugging,
can be placed inside loops and functions to track values, dimensions, and data types. Particularly
when debugging complex code, the automatic display of the variable name prevents confusion
versus using regular print statements. By listing variables to track as character(), provides ’cat()’
output of compact and informative variable state information, e.g, variable name, value, datatype
and dimension. Can also specify array or list elements, or custom labels. prv() is the same as
preview() except it can take objects without using double quotes and has no ’labels’ command (and
doesn’t need one).

Usage
preview(
varlist,
labels = NULL,
counts = NULL,

assume.char = FALSE,
prv.call = FALSE

)
Arguments

varlist character vector, the list of variable(s) to report, which will trigger automatic
labelling of the variable name, otherwise if entered as the variable value (ie.
without quotes, then will by default be displayed as 'unknown variable’)

labels will label *unknown variables’ (see above) if entered as variables without quotes

counts a list of array index values; so if calling during a counting loop, the value can
be reported each iteration, also printing the count index; if the list is named the
name will also appear, e.g, variable[count=1]. This list must be the same length
as varlist (and labels if not NULL), and each element [[i]] must contain as many
values as the original corresponding varlist[i] has dimensions. The dimensions
must result in a 1x1 scalar

assume.char usually ’varlist’ is a character vector of variable names, but in the case that it is

actually a character variable, using assume.char=TRUE will ensure that it will
be assumed the character variable is the object to preview, rather than a list of
variable names. So long as none of the values are found to be variable names in
the global environment. preview() can also find variables in local environments,
and if this is where the target variable lies, it is best to use assume.char=FALSE,
otherwise the search for alternative environments might not happen. Note that
in most cases the automatic detection of the input should understand what you
want, regardless of the value of assume.char.

40

prv

prv.call It is recommended to always leave this argument as FALSE when calling pre-
view() directly. If set to TRUE, it will first search 2 generations back for the
parent frame, instead of one, as it will assume that the variable(s) to preview
are not directly called by preview(), but through a wrapper for preview, such as

prvQ).

See Also

Dim

Examples

create variables of different types to show output styles
testvarl <- 193
testvar2 <- "Atol”
testvar3 <- c(1:10)
testvar4 <- matrix(rnorm(100),nrow=25)
testvar5 <- list(first="test"”,second=testvar4,third=100:110)
preview("testvar1”)
preview("testvar4")
preview(paste(”testvar”,1:5,sep=""))
preview(testvari, "myvarname”)
preview(testvarl)
examples with loops and multiple dimensions / lists
for (cc in 1:4) {
for (dd in 1:4) { preview("testvar4"”, counts=list(cc,dd)) }}

for (dd in 1:3) { preview("testvar5",counts=1list(dd=dd)) }

prv Output variable states within functions/loops during test-
ing/debugging

Description

Same as preview but no labels command, and input is without quotes and should be plain variable
names of existing variables (no indices, args, etc) A versatile function to compactly display most
common R objects. Will return the object name, type, dimension, and a compact representation of
object contents, for instance using prv.large() to display matrices, so as to not overload the console
for large objects. Useful for debugging, can be placed inside loops and functions to track values,
dimensions, and data types. Particularly when debugging complex code, the automatic display of
the variable name prevents confusion versus using regular print statements. By listing variables to
track as character(), provides ’cat()’ output of compact and informative variable state information,
e.g, variable name, value, datatype and dimension. Can also specify array or list elements, or custom
labels. prv() is the same as preview() except it can take objects without using double quotes and
has no ’labels’ command (and doesn’t need one). If expressions are entered rather than variable
names, then prv() will attempt to pass the arguments to preview(). prv() assumes that the variable(s)
to report originate from the environment calling prv(), and if not found there, then it will search
through all accessible environments starting with the global environment, and then will report the

prv.large 41

first instance found, which in exceptional circumstances (be warned) may not be the instance you
intended to retrieve.

Usage
prv(..., counts = NULL)
Arguments
series of variable(s) to report, separated by commas, which will trigger auto-
matic labelling of the variable name
counts a list of array index values; so if calling during a counting loop, the value can
be reported each iteration, also printing the count index; if the list is named the
name will also appear, e.g, variable[count=1]. This list must be the same length
as the variable list ... , and each element [[i]] must contain as many values as the
original corresponding variable list[i] has dimensions
See Also
Dim
Examples

create variables of different types to show output styles

testvarl <- 193

testvar2 <- "Atol”

testvar3 <- c(1:10)

testvar4 <- matrix(rnorm(100),nrow=25)

testvar5 <- list(first="test"”,second=testvar4,third=100:110)
preview("testvar1”); prv(testvarl)

prv(testvari,testvar2,testvar3, testvar4)

prv(matrix(rnorm(100),nrow=25)) # expression sent to preview() with no label
prv(193) # fails as there are no object names involved

prv.large Tidy display function for matrix objects

Description

This function prints the first and last columns and rows of a matrix, and more, if desired. Allows
previewing of a matrix without overloading the console. Most useful when data has row and column
names.

42

Usage

prv.large(
largeMat,
rows = 3,
cols = 2,
digits = 4,
rL = "Row#",

rlab = "rownames”,
clab = "colnames”,

rownums = T,
ret = FALSE,

replace.missing.df

warn = TRUE

Arguments

largeMat
rows
cols
digits
rL

rlab
clab
rownums
ret

warn

Examples

a matrix

number of rows to display

number of columns to display

number of digits to display for numeric data

row label to describe the row names/numbers, e.g, row number, ID, etc

label to describe the data rows

label to describe the data columns

logical, whether to display rownumbers or ignore them

logical, whether to return the result as a formatted object, or just print to console

logical, whether to warn if the object type is not supported

mat <- matrix(rnorm(1000),nrow=50)
rownames (mat) <- paste("ID",1:50,sep="")
colnames(mat) <- paste(”Var",1:20,sep="")

prv.large(mat)

prv.large(mat,rows=9,cols=4,digits=1,rlab="samples"”,clab="variables"”, rownums=FALSE)

replace.missing.df Iterate through numeric columns of a dataframe and replace missing

with the mean

Description

To simple replace missing data without changing column means. This will also use criteria to decide
whether each column is numeric, so that illegal operations aren’t performed on strings, etc. Also
adjusting the ’error’ parameter allows adding variance to the missing observations to help to reduce
bias associated with inserting many of the same replacement value.

replace.missing.df

Usage

43

replace.missing.df(

X,

repl.fun = mean,

error = 0,

thresh = 0.9,
digits = 99,
force = FALSE

Arguments

X
repl.fun

error

thresh
digits

force

Value

a data.frame to replace missing values in

the function to perform the replacement. Default is 'mean’. A replacement
should take a vector ’x’ and produce a single scalar as a result.

default value is O, meaning replacements will be all the same value for each
column of the data.frame X. If you give a positive value, this amount of gaussian
noise (in StDev units of the original variable) will be added to the replacement
values.

passed to function ’is.vec.numeric’, see explanation there.
Trim replacement values to this many digits

TRUE means replace missing for all columns with testing for numeric

returns a data.frame with the same dimensions with missing values for numeric values imputed
using the repl.fun function, optionally with noise added.

Author(s)

Nicholas Cooper

Examples

df <- data.frame(first=c(1,2,NA,4,5),
second=paste(c(6,7,8,NA,10)),
third=c("jake"”, "fred”, "cathy”, "sandra”, "mike"))

df

replace.missing.df (df)

replace.missing.df (df, force=TRUE)

df2 <- data.frame(first=c(1:5, NA, NA, NA,9, 10),
second=paste(c(NA, NA, 6:10, "5|6", "7|8", 1)),
third=rep(c("jake", "fred”, "cathy”, "sandra”, "mike"),2))

df2

replace.missing.df (df2)
replace.missing.df (df2, thresh=0.7)
replace.missing.df(df2, error = 1, thresh=0.7, digits=4)

44 Rfile.index

Rfile.index Create an index file for an R function file

Description

Create a html index for an R function file by looking for functions, add descriptions using comments
directly next to the function() command. Note that if too much code other than well-formatted
functions is in the file then the result is likely not to be a nicely formatted index.

Usage

Rfile.index(fn, below = TRUE, fn.out = "out.htm", skip.indent = TRUE)

Arguments
fn an R file containing functions in standard R script
below whether to search for comment text below or above the function() calls
fn.out optional name for the output file, else will be based on the name of the input file
skip.indent whether to skip functions that are indented, the assumption being they are func-
tions within functions
Value

creates an html file with name and description of each function

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

See Also

list.functions.in.file

Examples

not run: rfile <- file.choose() # choose an R script file with functions
not run: out <- Rfile.index(rfile,fn.out="temp.htm")
unlink("temp.htm”) # run once you've inspected this file in a browser

rmv.names 45

rmv.names Remove names from a named vector or list

Description
Convenience function, it’s very easy to set names to NULL, but this requires a dedicated line of
code. Using this function can make your code simpler.

Usage

rmv.names (X)

Arguments

X object for which you want to remove name

Value

the original object but without names

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

x <= c(boo=1, hiss=2)

rmv.names (x)

X <- list(testing=c(1,2,3), thankyou=TRUE)
rmv . names (X)

rmv.spc Remove leading and trailing spaces (or other character).

Description

Remove leading and trailing spaces (or other character).

Usage
rmv.spc(str, before = TRUE, after = TRUE, char = " ")
Arguments
str character vector, may containing leading or trailing chars
before logical, whether to remove leading spaces
after logical, whether to remove trailing spaces

char an alternative character to be removed instead of spaces

46 search.cran

Value

returns vectors without the leading/trailing characters

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

See Also

spc

Examples

rmv.spc(” mid sentence ")
rmv.spc("0012300",after=FALSE,char="0")
rmv.spc(” change nothing ",after=FALSE,before=FALSE)

search.cran Search all CRAN packages for those containing keyword(s).

Description

Can be useful for trying to find new packages for a particular purpose. No need for these packages
to be installed or loaded. Further searching can be done using utils::RSiteSearch()

Usage
search.cran(txt, repos = "", all.repos = FALSE)
Arguments
txt text to search for, a character vector, not case-sensitive
repos repository(s) (CRAN mirror) to use, "" defaults to getOption("repos")
all.repos logical, if TRUE, then use all available repositories from getRepositories()
Value

list of hits for each keyword (txt)

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

not run # repos <- "http://cran.ma.imperial.ac.uk/" # OR: repos <- getOption("repos")
not run # search.cran("draw")
not run # search.cran(c(”"hmm”, "markov"”, "hidden"))

sim.cor

47

sim.cor

Simulate a dataset with correlated measures

Description

Simulate a dataset with correlated measures (normal simulation with e.g, rnorm() usually only gives
small randomly distributed correlations between variables). This is a quick and unsophisticated
method, but should be able to provide a dataset with slightly more realistic structure than simple
rnorm() type functions. Varying the last three parameters gives some control on the way the data is
generated. It starts with a seed random variable, then creates "k’ random variables with an expected
correlation of r=genr() with that seed variable. Then after this, one of the variables in the set
(including the seed) is randomly selected to run through the same process of generating 'k’ new
variables; this is repeated until columns are full up. *mix.order’ then randomizes the column order
destroying the relationship between column number and correlation structure, although in some
cases, such relationships might be desired as representative of some real life datasets.

Usage

sim.cor(

nrow
ncol
genx
genr

k =3,
mix.order = TRUE

Arguments

nrow
ncol
genx
genr

k

mix.order

Author(s)

100,
100,
rnorm,
runif,

Nicholas Cooper

See Also

cor.with

integer, number of rows to simulate

integer, number of columns to simulate

the generating function for data, e.g rnorm(), runif(), etc

the generating function for desired correlation, e.g, runif()

number of steps generating from the same seed before choosing a new seed

whether to randomize the column order after simulating

48 simple.date

Examples

corDat <- sim.cor(200,5)

prv(corDat) # preview of simulated normal data with r uniformly varying
cor(corDat) # correlation matrix

corDat <- sim.cor(500,4,genx=runif,genr=function(x) { 0.5 },mix.order=FALSE)
prv(corDat) # preview of simulated uniform data with r fixed at 0.5
cor(corDat) # correlation matrix

simple.date Simple representation and retrieval of Date/Time

Description

Retrieve a simple representation of date_time or just date, for generating day/time specific file

names, etc.
Usage
simple.date(sep = "_", long = FALSE, time = TRUE)
Arguments
sep character, separator to use for the date/time, eg, underscore or <space>"".
long logical, whether to display a longer version of the date and time, or just a simple
version
time logical, whether to include the time, or just the date
Value

A string containing the date: MMMDD and optionally time HRam/pm. Or if long=TRUE, a longer
representation: DAY MM DD HHMM.SS YYYY.

Examples

simple.date()
simple.date(” ",long=TRUE)
simple.date(time=FALSE)

spc 49

spc Print a character a specified number of times.

Description

Returns ’char’ X_i number of times for each element i of X. Useful for padding for alignment
purposes.

Usage

spc(X, char = " ")
Arguments

X numeric vector of number of repeats

char The character to repeat (longer will be shortened)
Value

returns vectors of strings of char, lengths X

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

See Also

rmv.spc

Examples

cat(paste(spc(9),"123\n"))
cat(paste(spc(8),"1234\n"))
spc(c(1:5),".")

standardize Convert a numeric vector to Z-scores.

Description

Transform a vector to z scores by subtracting its mean and dividing by its standard deviation

Usage

standardize(X)

50 Substitute

Arguments

X numeric vector to standardize

Value

vector of the same length in standardised form

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

x1 <= rnorm(10,100,15); x2 <- sample(10)
print(x1) ; standardize(x1)
print(x2) ; standardize(x2)

Substitute Convert objects as arguments to object names

Description

Equivalent to the base function substitute() but can do any length of arguments instead of just one.
Converts the objects in parentheses into text arguments as if they had been entered with double
quote strings. The objects must exist and be accessible in the environment the function is called
from for the function to work (same as for substitute()). One application for this is to be able to
create functions where object arguments can be entered without quotation marks (simpler), or where
you want to use the name of the object as well as the data in the object.

Usage
Substitute(x = NULL, ...)
Arguments
X compulsory, simply the first object in the list, no difference to any further objects
any further objects to return string names for.
Value

character list of x,... object names

Author(s)

Nicholas Cooper

summarise.r.datasets 51

See Also

prv, preview

Examples

myvar <- list(test=c(1,2,3)); var2 <- "testme"”; var3 <- 10:14
print(myvar)

single variable case, equivalent to base::substitute()
print(substitute(myvar))

print(Substitute(myvar))

multi variable case, substitute won't work
Substitute(myvar,var2,var3)

prv() is a wrapper for preview() allowing arguments without parentheses
which is achieved internally by passing the arguments to Substitute()
preview(c("myvar”,"var2","var3"))

prv(myvar,var2,var3)

summarise.r.datasets Summarise the dimensions and type of available R example datasets

Description

This function will parse the current workspace to see what R datasets are available. Using the
toHTML function from the "tools’ package to interpret the data() call, each dataset is examined in
turn for type and dimensionality. Can also use a filter for dataset types, to only show, for instance,
matrix datasets. Also you can specify whether to only look for base datasets, or to search for
datasets in all available packages. Result is a printout to the console of the available datasets and
their characteristics.

Usage

summarise.r.datasets(
filter = FALSE,

types = c("data.frame”, "matrix"),
all = FALSE,
)
Arguments
filter logical, whether to filter datasets by types’
types if filter=TRUE, which data types to include in the result
all logical, if all=TRUE, look for datasets in all available packages, else just base
if all is false, further arguments to the data() function to search datasets
Author(s)

Nicholas Cooper

52 summary?2

Examples

summarise.r.datasets()
summarise.r.datasets(filter=TRUE, "matrix")

summary?2 Descriptive summary with SD/SE + improved formatting

Description

Wrapper for the base function summary() but adds standard deviation, standard error, and an "N’
and missing 'NA’ count that are consistent.

Usage

summary2(x, digits = NULL, neaten.names = TRUE)

Arguments
X vector of numeric data
digits number of digits to round resulting values to

neaten.names logical, TRUE removes period and space from names of the results returned by
summary() to make the names better for use in a data.frame.

Value

array of descriptive statistics for x

Author(s)

Nicholas Cooper <njcooper@gmx. co.uk>

Examples

X <= 1:100
summary2(x, digits=2)
summary2(c(x, NA, NA), digits=2)

table2d 53

table2d Wrapper for the base table() function that includes zero counts - use-
ful to get consistent dimensions across multiple runs with different re-
sponding patterns Forces a 2d table with every possible cell (allow
zero counts) Only for tables where there are two vectors entered, while
the base function allows for more, or also allows just 1. If the wrong
arguments are entered, attempts to pass the input to the base version
of ’table’ instead.

Description

Wrapper for the base table() function that includes zero counts - useful to get consistent dimensions
across multiple runs with different responding patterns Forces a 2d table with every possible cell
(allow zero counts) Only for tables where there are two vectors entered, while the base function
allows for more, or also allows just 1. If the wrong arguments are entered, attempts to pass the input
to the base version of ’table’ instead.

Usage
table2d(
col,
row,
rn = NULL,
cn = NULL,
use.order = TRUE,
remove.na = FALSE
)
Arguments
vector arguments, see input for base:table() function
col categories to include as columns of the table
row categories to include as rows of the table
rn optionally replace the raw value names with desired row names. Must be same
length as ‘row’.
cn optionally replace the raw value names with desired column names. Must be
same length as col’.
use.order TRUE to use the order in ’col’ and 'row’ for table, otherwise use the default
order of table() - which is usually alphabetical
remove.na remove NA values from row/col if present
Value

returns a table, just like the base:table() function but the row and column names are fixed regardless
of count

54 textogram

Author(s)

Nicholas Cooper

Examples

nm <- c("Mike"”, "Anna”, "John", "Tony")

vec_r <- sample(tolower(nm)[c(1,3,4)], 50, replace=TRUE)

vec_c <- sample(c(1,2,4,5), 50, replace=TRUE)

table(vec_r, vec_c)

table2d(vec_r, vec_c, row=tolower(nm), col=paste(1:5))

table2d(vec_r, vec_c, row=tolower(nm), col=paste(1:5), use.order = FALSE)

table2d(vec_r, vec_c, row=tolower(nm), col=paste(1:5), rn=nm, cn=c("I1", "II", "III", "IV", "V"))

textogram Make an ascii histogram in the console.

Description

Uses a call to base::hist(...) and uses the densities to make a a text histogram in the console Partic-
ularly useful when working in the terminal without graphics.

Usage
textogram(X, range = NA, ...)
Arguments
X numeric vector of data
range optional sub-range of X to test; c(low,high)
additional arguments passed to base::hist()
Value

outputs an ascii histogram to the console

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

textogram(runif(100000))
textogram(rnorm(10000),range=c(-3,3))

timeit 55

timeit Times an expression, with breakdown of time spent in each function
IDEPRECATED October 14, 2022!

Description

A wrapper for the proftools package Rprof() function. It is to Rprof() as system.time() is to
proc.time() (base) Useful for identifying which functions are taking the most time. This proce-
dure will return an error unless expr takes more than ~0.1 seconds to evaluate. I could not see any
simple way to avoid this limitation. Occassionally other errors are produced for no apparent reason
which are due to issues within the proftools package that are out of my control.

Usage

timeit(expr, suppressResult = F, total.time = TRUE)

Arguments

expr an expression, must take at least 1 second (roughly)
suppressResult logical, if true, will return timing information rather than the result of expr

total.time to sort by total.time, else by self.time

Value

returns matrix where rows are function names, and columns are self.time and total.time. total.time
is total time spent in that function, including function calls made by that function. self.time doesn’t
count other functions within a function

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

this function writes and removes a temporary file

run only if ok to do this in your temporary directory
#not run# timeit(wait(@.1,"s") ,total.time=TRUE)

#not run# timeit(wait(0.1,"s") ,total.time=FALSE)

56

top

toheader Return a string with each first letter of each word in upper case.

Description

Return a string with each first letter of each word in upper case.

Usage

toheader (txt, strict = FALSE)

Arguments

txt a character string

strict whether to force non-leading letters to lowercase
Value

Vector minus NA’s, or the matrix/data.frame minus NA rows

Author(s)

via R Core

Examples

toheader(c("using AIC for model selection”))
toheader(c("using AIC"”, "for MODEL selection”), strict=TRUE)

top Monitor CPU, RAM and Processes

Description

This function runs the unix ’top’ command and returns the overall CPU and RAM usage, and
optionally the table of processes and resource use for each. Works only with unix-based systems
such as Mac OS X and Linux, where ’top’ is installed. Default is to return CPU and RAM overall

stats, to get detailed stats instead, set Table=TRUE.

top

Usage

top(
CPU

RAM

!Table,
!Table,

57

Table = FALSE,

procs = 20,

mem.key = NULL,
cpu.key = NULL

Arguments

CPU
RAM

Table

procs

mem. key

cpu.key

Value

logical, whether to return overall CPU usage information
logical, whether to return overall RAM usage information

logical, whether to return system information for separate processes. This is
returned as table with all of the same columns as a command line ’top’ com-
mand. If "Table=TRUE’ is set, then the default becomes not to return the overall
CPU/RAM usage stats. The dataframe returned will have been sorted by de-
scending memory usage.

integer, if Table=TRUE, then the maximum number of processes to return (de-
fault 20)

character, default for Linux is 'mem’ and for Mac OS X, ’physmem’, but if the
"top’ command on your system displays memory usage using a different label,
then enter it here (case insensitive) to override defaults.

character, default for Linux and Mac OS X is "cpu’, but if the top command on
your system displays CPU usage using a different label, then enter it here.

a list containing CPU and RAM usage, or with alternate parameters can return stats for each process

Author(s)

Nicholas Cooper

Examples

not run # top()
not run # top(Table=TRUE,proc=5)

58 wait

Unlist Unlist a list, starting only from a set depth.

Description
Allows unlisting preserving the top levels of a list. Can specify the number of list depth levels to
skip before running unlist()

Usage
Unlist(obj, depth = 1)

Arguments
obj the list to unlist
depth skip to what layer of the list before unlisting; eg. the base unlist() function would
correspond to depth=0
Value

returns vectors of strings of char, lengths X

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

complex.list <- list(1,1:3,1ist(2,2:4,1ist(3,3:4,1ist(10))),1list(4,5:7,1ist(3)))
Unlist(complex.list,®) # equivalent to unlist()

Unlist(complex.list,1) # unlist within the top level lists
Unlist(complex.list,2) # unlist within the second level lists
Unlist(complex.list,10) # once depth >= list-depth, no difference
unlist(complex.list,recursive=FALSE) # not the same as any of the above

wait Wait for a period of time.

Description

Waits a number of hours minutes or seconds (doing nothing). Note that this *waiting’ will use 100

Usage

wait(dur, unit = "s", silent = TRUE)

which.outlier 59

Arguments
dur waiting time
unit time units h/m/s, seconds are the default
silent print text showing that waiting is in progress
Value

no return value

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Examples

wait(.25,silent=FALSE) # wait 0.25 seconds
wait(0.005, "m")
wait(0.0001, "Hours", silent=FALSE)

which.outlier Return vector indexes of statistical univariate outliers

Description

Performs simplistic outlier detection and returns indexes for outliers. Acts like the which() func-
tion, return indices of elements of a vector satisfying the condition, which by default are outliers
exceeding 2 SD above or below the mean. However, the threshold can be specified, only high or
low values can be considered outliers, and percentile and interquartile range thresholds can also be
used.

Usage

which.outlier(
X,
thr = 2,
method = c("sd", "iq
high = TRUE,
low = TRUE

n

, "pC"),

Arguments

X numeric, or coercible, the vector to test for outliers

thr numeric, threshold for cutoff, e.g, when method="sd", standard deviations, when
’iq’, interquartile ranges (thr=1.5 is most typical here), or when ’pc’, you might
select the extreme 1%, 5%, etc.

60 Z.to.p

method character, one of "sd","iq" or "pc", selecting whether to test for outliers by stan-
dard deviation, interquartile range, or percentile.
high logical, whether to test for outliers greater than the mean
low logical, whether to test for outliers less than the mean
Value

indexes of the vector x that are outliers according to either a SD cutoff, interquartile range, or
percentile threshold, above (high) and/or below (low) the mean/median.

Examples

test.vec <- rnorm(200)

summary (test.vec)

ii <- which.outlier(test.vec) # 2 SD outliers

prv(ii); vals <- test.vec[ii]; prv(vals)

ii <- which.outlier(test.vec,1.5,"iq") # e.g, 'stars' on a box-plot

prv(ii)
ii <- which.outlier(test.vec,5,"pc"”,low=FALSE) # only outliers >mean
prv(ii)
Z.to.p Convert Z-scores to p-values
Description

Simple conversion of Z-scores to two-tailed p-values. Written in a way that allows maximum pre-
cision for small p-values.

Usage

Z.to.p(Z, warn = FALSE)

Arguments
A Z score, numeric, scalar, vector or matrix, or other types coercible using as.numeric()
warn logical, whether to give a warning for very low p-values when precision limits
are exceeded.
Value

p-valuues with the same dimension as the input

Author(s)

Nicholas Cooper <njcooper@gmx.co.uk>

Z.to.p

See Also
p.to.Z
Examples
Z.to.p("1.96")
Z.to.p(p.t0.Z2(0.0001))
Z.to.p(37, TRUE)
Z.to.p(39, TRUE) # maximum precision exceeded, warnings on

Z.to

.p(39) # maximum precision exceeded, warnings off

61

Index

* color Mode, 29
NCmisc-package, 3 must.use.package, 30
* iteration
NCmisc-package, 3 narm, 31
+ package NCmisc (NCmisc-package), 3
NCmisc-package, 3 NCmisc-package, 3
x utilities nearest.to, 32
NCmisc-package, 3 Numerify, 33
check.linux.install, 6 out.of, 34
comify, 7
comma.list, 7 p.to.Z, 35,61
cor.with, 8,47 packages.loaded, 35
) pad.left, 36
D1m,9,{0,41 pctile, 37
dup.pairs, 10 ppa, 38
estimate.memory, 10 preview, 9,39, 51
prv, 9,40, 51

exists.not.function, 12

extend.pc, 13 prv.large, 41

fakelLines, 14 reader, 5

file.split, 15 replace.missing.df, 42
force.percentage, 16, 17 Rfile.index, 24, 44
force.scalar, 16, 17 rmv.names, 45

rmv.spc, 45, 49
get.distinct.cols, 18
getRepositories, 18 search.cran, 46

sim.cor, 9,47
has.method, 19 simple.date, 48
Header, 20 spc, 46, 49
headl, 21 standardize, 49
Substitute, 50
summarise.r.datasets, 51
summary?2, 52

is.vec.logical, 22
is.vec.numeric, 23

list.functions.in.file, 24, 44

list.to.env, 25 table2d, 53
loess.scatter, 26 textogram, 54
loop.tracker, 27 timeit, 55
toheader, 56
memory . summary, 29 top, 56

62

INDEX

Unlist, 58

wait, 58
which.outlier, 59

Z.to.p, 35,60

63

	NCmisc-package
	check.linux.install
	comify
	comma.list
	cor.with
	Dim
	dup.pairs
	estimate.memory
	exists.not.function
	extend.pc
	fakeLines
	file.split
	force.percentage
	force.scalar
	get.distinct.cols
	getRepositories
	has.method
	Header
	headl
	is.vec.logical
	is.vec.numeric
	list.functions.in.file
	list.to.env
	loess.scatter
	loop.tracker
	memory.summary
	Mode
	must.use.package
	narm
	nearest.to
	Numerify
	out.of
	p.to.Z
	packages.loaded
	pad.left
	pctile
	ppa
	preview
	prv
	prv.large
	replace.missing.df
	Rfile.index
	rmv.names
	rmv.spc
	search.cran
	sim.cor
	simple.date
	spc
	standardize
	Substitute
	summarise.r.datasets
	summary2
	table2d
	textogram
	timeit
	toheader
	top
	Unlist
	wait
	which.outlier
	Z.to.p
	Index

