Package 'MetaHD'

January 20, 2025

- JF
Title A Multivariate Meta-Analysis Model for High-Dimensional Metabolomics Data
Version 0.1.3
Maintainer Jayamini Liyanage <j.liyanage@latrobe.edu.au></j.liyanage@latrobe.edu.au>
Author Jayamini Liyanage [aut, cre], Alysha De Livera [aut]
Description Performs multivariate meta-analysis for high-dimensional metabolomics data for integrat- ing and collectively analysing individual-level data generated from multiple stud- ies as well as for combining summary estimates. This approach accounts for correlation be- tween outcomes, considers variability within and between studies, handles missing val- ues and uses shrinkage estimation to allow for high dimensionality. A detailed vignette with ex- ample datasets and code to prepare data and analyses are avail- able on <https: a2delivera="" bookdown.org="" metahd=""></https:> .
License GPL-3
Encoding UTF-8
Depends R (>= 3.5.0)
LazyData true
RoxygenNote 7.3.2
Imports dplyr, tidyr, metafor, corpcor, nloptr, Matrix, matrixcalc, Rcpp (>= 1.0.0)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN

Date/Publication 2024-09-24 04:20:03 UTC

Contents

Type Package

MetaHD																		 										2
MetaHDInput			•				•		•					•				 					•				•	3
realdata	•	•	•	•	•		•	•	•	•	 •	•	•	•	•	•	•	 •	•		•	•	•	•	•	•	•	4

MetaHD

	simdata.1		•	•	 •	•	•	 •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	 	•	•	•			•		•	•	•	•	•		5
	simdata.2	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	6
Index																																						7

MetaHD

A Multivariate Meta-Analysis Model for High-Dimensional Metabolomics Data

Description

The MetaHD function performs a multivariate meta-analysis for combining summary estimates obtained from multiple metabolomic studies by using restricted maximum likelihood estimation. Assuming a meta-analysis is based on N outcomes and K studies:

Usage

```
MetaHD(
  Y, Slist,
  Psi = NULL,
  method = c("reml", "fixed"),
  bscov = c("unstructured", "diag"),
  optim.algorithm = c("BOBYQA","hybrid","L-BFGS-B"),
  initPsi = NULL,
  optim.maxiter = 2000,
  rigls.iter = 1,
  est.wscor = FALSE,
  shrinkCor = TRUE,
  impute.na = FALSE,
  impute.var = 10^4
)
```

Arguments

Y	: treatment effect sizes of the outcomes. This should be in the form of a K x N matrix
Slist	: K-dimensional list of N x N matrices representing within-study variances and covariances of the treatment effects. If within-study correlations are not available, input associated variances of treatment effects in the form of a K x N matrix and set est.wscor = TRUE.
Psi	: N x N matrix representing between-study variances and covariances of the treatment effects. (optional, if not specified this will be estimated internally by "MetaHD" using "estimateBSvar" and "estimateCorMat" functions in "MetaHD" package).
method	: estimation method: "fixed" for fixed-effects models,"reml" for random-effects models fitted through restricted maximum likelihood

bscov	: a character vector defining the structure of the random-effects covariance ma- trix. Among available covariance structures, the user can select "unstructured" to obtain between-study covariance matrix with diagonal elements (variances) estimated using restricted maximul likelihood and off-diagonal elements (co- variances) reflecting the correlations estimated via shrinkage and "diag" (diago- nal) for between-study variances as diagonal elements and zero co-variances
optim.algorith	m
	: specifies the algorithm used to maximize the restricted log-likelihood function for estimating between-study variances. The default algorithm is "BOBYQA", which offers derivative-free, bound-constrained optimization by iteratively con- structing a quadratic approximation of the objective function. The "hybrid" op- tion performs up to rigls.iter iterations of the RIGLS algorithm, followed by quasi-Newton (BFGS algorithm) iterations until convergence. If rigls.iter is set to zero, only the quasi-Newton method (BFGS algorithm) is used for estima- tion. The "L-BFGS-B" algorithm is a limited-memory version of the BFGS quasi-Newton method, which supports box constraints, allowing each variable to have specified lower and/or upper bounds.
initPsi	: N x N diagonal matrix representing the starting values of the between-study variances to be used in the optimization procedures. If not specified, the starting values in Psi default to a diagonal matrix with variances set to 1.
optim.maxiter	: maximum number of iterations in methods involving optimization procedures.
rigls.iter	: number of iterations of the restricted iterative generalized least square algo- rithm (RIGLS) when used in the initial phase of hybrid optimization procedure. Default is set to 1
est.wscor	: a logical value indicating whether the within-study correlation matrix needs to be estimated or not. Default is FALSE
shrinkCor	: a logical value indicating whether a shrinkage estimator should be used to estimate within- or between-study correlation matrix. Default is TRUE
impute.na	: a logical value indicating whether missing values need to be imputed or not. Default is FALSE
impute.var	: multiplier for replacing the missing variances in Slist.(a large value, default is 10^{4})

Value

A list of objects containing estimate : a N-dimensional vector of the combined estimates, std.err : a N-dimensional vector of the associated standard errors, pVal : a N-dimensional vector of the p-values, I2.stat : I2 statistic

MetaHDInput

Creating Input Data for MetaHD When Individual-Level Data are Available

Description

The MetaHDInput function creates input data Y (treatment effects) and Slist (within-study covariance matrices) for MetaHD when individual-level data are available. Assuming that the individuallevel data are in the following format, with 'study' in column 1, 'group' in column 2 and outcomes in rest of the columns, with samples in rows.

Usage

```
MetaHDInput(data)
```

Arguments

data	a dataframe consisting of individual-level data in the format, where 'study' in
	column 1, 'group' in column 2 and outcomes in rest of the columns and samples
	in rows.

Value

A list of objects containing :

Y	treatment effect sizes of the outcomes in the form of a K x N matrix, where K is the number of studies and N is the number of outcomes.
Slist	K-dimensional list of N x N matrices representing within-study variances and covariances of the treatment effects

Examples

input_data <- MetaHDInput(realdata)</pre>

```
Y <- input_data$Y
Slist <- input_data$Slist
## MULTIVARIATE RANDOM-EFFECTS META-ANALYSIS, ESTIMATED WITH REML
model <- MetaHD(Y, Slist, method = "reml", bscov = "unstructured")
model$estimate
model$pVal</pre>
```

An Individual-Level Metabolomics Dataset

Description

This is a subset of data, publicly available on MetaboAnalyst example datasets.

Usage

realdata

simdata.1

Format

A data frame with 172 observations on 14 metabolites.

Examples

head(realdata)

simdata.1

Simulated Dataset 1 : With Complete Data

Description

This dataset consists of a list of two data frames containing treatment effect-sizes and within-study covariance matrices

Usage

simdata.1

Format

A list of data frames as follows:

- Y treatment effect sizes of the metabolites in the form of a 12 x 30 matrix, where 12 is the number of studies and 30 is the number of metabolites.
- Slist 12-dimensional list of 30 x 30 matrices representing within-study variances and covariances of the treatment effects

Examples

```
Y <- simdata.1$Y
Slist <- simdata.1$Slist
head(Y)
head(Slist[[1]])
head(Slist[[12]])</pre>
```

simdata.2

Description

This dataset consists of a list of two data frames containing treatment effect-sizes and within-study covariance matrices with missing values

Usage

simdata.2

Format

A list of data frames as follows:

- Y treatment effect sizes of the metabolites in the form of a 12 x 30 matrix, where 12 is the number of studies and 30 is the number of metabolites.
- Slist 12-dimensional list of 30 x 30 matrices representing within-study variances and covariances of the treatment effects

Examples

Y <- simdata.2\$Y Slist <- simdata.2\$Slist

head(Y)
head(Slist[[1]])
head(Slist[[12]])

Index

* datasets
 realdata, 4
 simdata.1, 5
 simdata.2, 6

MetaHD, 2
MetaHDInput, 3
realdata, 4
simdata.1, 5
simdata.2, 6