
Package ‘MaxMC’
January 20, 2025

Type Package

Title Maximized Monte Carlo

Date 2024-09-29

Version 0.1.2

Maintainer Gabriel Rodriguez-Rondon <gabriel.rodriguezrondon@mail.mcgill.ca>

Description An implementation of the Monte Carlo techniques described in details by Du-
four (2006) <doi:10.1016/j.jeconom.2005.06.007> and Dufour and Kha-
laf (2007) <doi:10.1002/9780470996249.ch24>. The two main features avail-
able are the Monte Carlo method with tie-breaker, mc(), for discrete statistics, and the Maxi-
mized Monte Carlo, mmc(), for statistics with nuisance parameters.

License GPL (>= 3)

RoxygenNote 7.3.1

Encoding UTF-8

URL https://github.com/julienneves/MaxMC

Suggests fUnitRoots, microbenchmark, boot, MASS, knitr, rmarkdown

Imports GenSA, pso, GA, NMOF, scales, stats, graphics, utils,

NeedsCompilation no

Author Julien Neves [aut],
Jean-Marie Dufour [aut, ths],
Gabriel Rodriguez-Rondon [cre]

Repository CRAN

Date/Publication 2024-10-02 16:40:06 UTC

Contents
MaxMC-package . 2
mc . 2
mmc . 4
plot.mmc . 11
print.mc . 12
print.mmc . 13
pvalue . 14

1

https://doi.org/10.1016/j.jeconom.2005.06.007
https://doi.org/10.1002/9780470996249.ch24
https://github.com/julienneves/MaxMC

2 mc

Index 16

MaxMC-package Maximized Monte Carlo

Description

Functions that implement the Maximized Monte Carlo technique based on Dufour, J.-M. (2006),
Monte Carlo Tests with nuisance parameters: A general approach to finite sample inference and
nonstandard asymptotics in econometrics. Journal of Econometrics, 133(2), 443-447.

The main functions of MaxMC are mmc and mc.

Author(s)

Julien Neves, jmn252@cornell.edu (Maintainer)

Jean-Marie Dufour, jean-marie.dufour@mcgill.ca

References

Dufour, J.-M. (2006), Monte Carlo Tests with nuisance parameters: A general approach to finite
sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics, 133(2),
443-447.

Dufour, J.-M. and Khalaf L. (2003), Monte Carlo Test Methods in Econometrics. in Badi H. Baltagi,
ed., A Companion to Theoretical Econometrics, Blackwell Publishing Ltd, 494-519.

mc Monte Carlo with Tie-Breaker

Description

Find the Monte Carlo (MC) p-value by generating N replications of a statistic.

Usage

mc(
y,
statistic,
...,
dgp = function(y) sample(y, replace = TRUE),
N = 99,
type = c("geq", "leq", "absolute", "two-tailed")

)

mc 3

Arguments

y A vector or data frame.

statistic A function or a character string that specifies how the statistic is computed. The
function needs to input the y and output a scalar.

... Other named arguments for statistic which are passed unchanged each time it is
called

dgp A function. The function inputs the first argument y and outputs a simulated y.
It should represent the data generating process under the null. Default value is
the function sample(y, replace = TRUE), i.e. the bootstrap resampling of y.

N An atomic vector. Number of replications of the test statistic.

type A character string. It specifies the type of test the p-value function produces.
The possible values are geq, leq, absolute and two-tailed. Default is geq.

Details

The dgp function defined by the user is used to generate new observations in order to compute the
simulated statistics.

Then pvalue is applied to the statistic and its simulated values. pvalue computes the p-value by
ranking the statistic compared to its simulated values. Ties in the ranking are broken according to a
uniform distribution.

We allow for four types of p-value: leq, geq, absolute and two-tailed. For one-tailed test, leq
returns the proportion of simulated values smaller than the statistic while geq returns the proportion
of simulated values greater than the statistic. For two-tailed test with a symmetric statistic, one can
use the absolute value of the statistic and its simulated values to retrieve a two-tailed test (i.e. type =
absolute). If the statistic is not symmetric, one can specify the p-value type as two-tailed which
is equivalent to twice the minimum of leq and geq.

Ties in the ranking are broken according to a uniform distribution.

Value

The returned value is an object of class mc containing the following components:

S0 Observed value of statistic.

pval Monte Carlo p-value of statistic.

y Data specified in call.

statistic statistic function specified in call.

dgp dgp function specified in call.

N Number of replications specified in call.

type type of p-value specified in call.

call Original call to mmc.

seed Value of .Random.seed at the start of mc call.

4 mmc

References

Dufour, J.-M. (2006), Monte Carlo Tests with nuisance parameters: A general approach to finite
sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics, 133(2),
443-447.

Dufour, J.-M. and Khalaf L. (2003), Monte Carlo Test Methods in Econometrics. in Badi H. Baltagi,
ed., A Companion to Theoretical Econometrics, Blackwell Publishing Ltd, 494-519.

See Also

mmc, pvalue

Examples

Example 1
Kolmogorov-Smirnov Test using Monte Carlo

Set seed
set.seed(999)

Generate sample data
y <- rgamma(8, shape = 2, rate = 1)

Set data generating process function
dgp <- function(y) rgamma(length(y), shape = 2, rate = 1)

Set the statistic function to the Kolomogorov-Smirnov test for gamma distribution
statistic <- function(y){

out <- ks.test(y, "pgamma", shape = 2, rate = 1)
return(out$statistic)

}

Apply the Monte Carlo test with tie-breaker
mc(y, statistic = statistic, dgp = dgp, N = 999, type = "two-tailed")

mmc Find the Maximized Monte Carlo (MMC) p-value on a set of nuisance
parameters.

Description

The dgp function defined by the user is used to generate new observations in order to compute the
simulated statistics.

mmc 5

Usage

mmc(
y,
statistic,
...,
dgp = function(y, v) sample(y, replace = TRUE),
est = NULL,
lower,
upper,
N = 99,
type = c("geq", "leq", "absolute", "two-tailed"),
method = c("GenSA", "pso", "GA", "gridSearch"),
control = list(),
alpha = NULL,
monitor = FALSE

)

Arguments

y A vector or data frame.

statistic A function or a character string that specifies how the statistic is computed. The
function needs to input the y and output a scalar.

... Other named arguments for statistic which are passed unchanged each time it is
called

dgp A function. The function inputs the first argument y and a vector of nuisance
parameters v and outputs a simulated y. It should represent the data generat-
ing process under the null. Default value is the function sample(y, replace =
TRUE), i.e. the bootstrap resampling of y.

est A vector with length of v. It is the starting point of the algorithm. If est is a
consistent estimate of v then mmc will return both the MMC and Local Monte
Carlo (LMC). Default is NULL, in which case, default values will be generated
automatically.

lower A vector with length of v. Lower bounds for nuisance parameters under the null.
See Details.

upper A vector with length of v. Upper bounds for nuisance parameters under the null.
See Details.

N An atomic vector. Number of replications of the test statistic.

type A character string. It specifies the type of test the p-value function produces.
The possible values are geq, leq, absolute and two-tailed. Default is geq.

method A character string. Type of algorithm to be used for global optimization. The
four available methods are simulated annealing (GenSA), particle swarm (psoptim),
genetic algorithm (GA), and grid search (gridSearch) Default is GenSA,

control A list. Arguments to be used to control the behavior of the algorithm chosen in
method. See controls section for more details.

6 mmc

alpha An atomic vector. If mmc finds a p-value over alpha, then the algorithm will
stop. This is particularly useful if we are only looking at testing a hypothesis at
a particular level. Default is NULL.

monitor A logical. If set to TRUE, then the p-values at every iteration and the cumulative
maximum p-value are plotted on a graphical device. Default is FALSE.

Details

Then pvalue is applied to the statistic and its simulated values.pvalue computes the p-value by
ranking the statistic compared to its simulated values. Ties in the ranking are broken according to a
uniform distribution.

We allow for four types of p-value: leq, geq, absolute and two-tailed. For one-tailed test, leq
returns the proportion of simulated values smaller than the statistic while geq returns the proportion
of simulated values greater than the statistic. For two-tailed test with a symmetric statistic, one can
use the absolute value of the statistic and its simulated values to retrieve a two-tailed test (i.e. type =
absolute). If the statistic is not symmetric, one can specify the p-value type as two-tailed which
is equivalent to twice the minimum of leq and geq.

Ties in the ranking are broken according to a uniform distribution.

Usually, to ensure that the MMC procedure is exact, lower and upper must be set such that any
theoretically possible values for the nuisance parameters under the null are covered. This can be
computationally expansive.

Alternatively, the consistent set estimate MMC method (CSEMMC) which is applicable when a
consistent set estimator of the nuisance parameters is available can be used. If such set is available,
by setting lower and upper accordingly, mmc will yield an asymptotically justified version of the
MMC procedure.

One version of this procedure is the Two-stage constrained maximized Monte Carlo test, where first
a confidence set of level 1 − α1 for the nuisance parameters is obtained and then the MMC with
confidence level α2 is taken over this particular set. This procedure yields a conservative test with
level α = α1 + α2. Note that we generally advise against using asymptotic Wald-type confidence
intervals based on their poor performance. Instead, it is simply best to build confidence set using
problem-specific tools.

Value

The returned value is an object of class mmc containing the following components:

S0 Observed value of statistic.

pval Maximized Monte Carlo p-value of statistic under null.

y Data specified in call.

statistic statistic function specified in call.

dgp dgp function specified in call.

est est vector if specified in call.

lower lower vector if specified in call.

upper upper vector if specified in call.

N Number of replications specified in call.

mmc 7

type type of p-value specified in call.

method method specified in call.

call Original call to mmc.

seed Value of .Random.seed at the start of mmc call.

lmc If par is specified, it returns an object of class mc corresponding to the Local
Monte Carlo test.

opt_result An object returning the optimization results.

rejection If alpha is specified, it returns a vector specifying whether the hypothesis was
rejected at level alpha.

Controls

Controls - GenSA:
maxit Integer. Maximum number of iterations of the algorithm. Defaults to 1000.
nb.stop.improvement Integer. The program will stop when there is no any improvement in

nb.stop.improvement steps. Defaults to 25
smooth Logical.TRUE when the objective function is smooth, or differentiable almost every-

where in the region of par, FALSE otherwise. Default value is TRUE.
max.call Integer. Maximum number of call of the objective function. Default is set to 1e7.
max.time Numeric. Maximum running time in seconds.
temperature Numeric. Initial value for temperature.
visiting.param Numeric. Parameter for visiting distribution.
acceptance.param Numeric. Parameter for acceptance distribution.
simple.function Logical. FALSE means that the objective function has only a few local minima.

Default is FALSE which means that the objective function is complicated with many local
minima.

Controls - psoptim:
maxit The maximum number of iterations. Defaults to 1000.
maxf The maximum number of function evaluations (not considering any performed during nu-

merical gradient computation). Defaults to Inf.
reltol The tolerance for restarting. Once the maximal distance between the best particle and all

other particles is less than reltol*d the algorithm restarts. Defaults to 0 which disables the
check for restarting.

s The swarm size. Defaults to floor(10+2*sqrt(length(par))) unless type is "SPSO2011" in which
case the default is 40.

k The exponent for calculating number of informants. Defaults to 3.
p The average percentage of informants for each particle. A value of 1 implies that all particles

are fully informed. Defaults to 1-(1-1/s)^k.
w The exploitation constant. A vector of length 1 or 2. If the length is two, the actual con-

stant used is gradially changed from w[1] to w[2] as the number of iterations or function
evaluations approach the limit provided. Defaults to 1/(2*log(2)).

c.p The local exploration constant. Defaults to .5+log(2).
c.g The global exploration constant. Defaults to .5+log(2).

8 mmc

d The diameter of the search space. Defaults to the euclidean distance between upper and lower.
v.max The maximal (euclidean) length of the velocity vector. Defaults to NA which disables

clamping of the velocity. However, if specified the actual clamping of the length is v.max*d.
rand.order Logical; if TRUE the particles are processed in random order. If vectorize is TRUE

then the value of rand.order does not matter. Defaults to TRUE.
max.restart The maximum number of restarts. Defaults to Inf.
maxit.stagnate The maximum number of iterations without improvement. Defaults to 25
vectorize Logical; if TRUE the particles are processed in a vectorized manner. This reduces

the overhead associated with iterating over each particle and may be more time efficient for
cheap function evaluations. Defaults to TRUE.

type Character vector which describes which reference implementation of SPSO is followed.
Can take the value of "SPSO2007" or "SPSO2011". Defaults to "SPSO2007".

Controls - GA:

popSize the population size.
pcrossover the probability of crossover between pairs of chromosomes. Typically this is a large

value and by default is set to 0.8.
pmutation the probability of mutation in a parent chromosome. Usually mutation occurs with a

small probability, and by default is set to 0.1.
updatePop a logical defaulting to FALSE. If set at TRUE the first attribute attached to the value

returned by the user-defined fitness function is used to update the population. Be careful
though, this is an experimental feature!

postFitness a user-defined function which, if provided, receives the current ga-class object as
input, performs post fitness-evaluation steps, then returns an updated version of the object
which is used to update the GA search. Be careful though, this is an experimental feature!

maxiter the maximum number of iterations to run before the GA search is halted.
run the number of consecutive generations without any improvement in the best fitness value

before the GA is stopped.
optim a logical defaulting to FALSE determining whether or not a local search using general-

purpose optimisation algorithms should be used. See argument optimArgs for further details
and finer control.

optimArgs a list controlling the local search algorithm with the following components:
method a string specifying the general-purpose optimisation method to be used, by default

is set to "L-BFGS-B". Other possible methods are those reported in optim.
poptim a value in the range [0,1] specifying the probability of performing a local search at

each iteration of GA (default 0.1).
pressel a value in the range [0,1] specifying the pressure selection (default 0.5). The local

search is started from a random solution selected with probability proportional to fitness.
High values of pressel tend to select the solutions with the largest fitness, whereas low
values of pressel assign quasi-uniform probabilities to any solution.

control a list of control parameters. See ’Details’ section in optim.
keepBest a logical argument specifying if best solutions at each iteration should be saved in a

slot called bestSol. See ga-class.
parallel a logical argument specifying if parallel computing should be used (TRUE) or not

(FALSE, default) for evaluating the fitness function. This argument could also be used to

mmc 9

specify the number of cores to employ; by default, this is taken from detectCores. Finally,
the functionality of parallelization depends on system OS: on Windows only ’snow’ type
functionality is available, while on Unix/Linux/Mac OSX both ’snow’ and ’multicore’ (de-
fault) functionalities are available.

Controls - gridSearch:
n the number of levels. Default is 10.
printDetail print information on the number of objective function evaluations
method can be loop (the default), multicore or snow. See Details.
mc.control a list containing settings that will be passed to mclapply if method is multicore. Must

be a list of named elements; see the documentation of mclapply in parallel.
cl default is NULL. If method snow is used, this must be a cluster object or an integer (the number

of cores).
keepNames logical: should the names of levels be kept?
asList does fun expect a list? Default is FALSE

References

Dufour, J.-M. (2006), Monte Carlo Tests with nuisance parameters: A general approach to finite
sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics, 133(2),
443-447.

Dufour, J.-M. and Khalaf L. (2003), Monte Carlo Test Methods in Econometrics. in Badi H. Baltagi,
ed., A Companion to Theoretical Econometrics, Blackwell Publishing Ltd, 494-519.

Y. Xiang, S. Gubian. B. Suomela, J. Hoeng (2013). Generalized Simulated Annealing for Efficient
Global Optimization: the GenSA Package for R. The R Journal, Volume 5/1, June 2013. URL
https://journal.r-project.org/.

Claus Bendtsen. (2012). pso: Particle Swarm Optimization. R package version 1.0.3. https:
//CRAN.R-project.org/package=pso

Luca Scrucca (2013). GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37. URL https://www.jstatsoft.org/article/view/v053i04.

Luca Scrucca (2016). On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution. Submitted to R Journal. Pre-print available at arXiv URL http://arxiv.org/
abs/1605.01931.

Manfred Gilli (2011), Dietmar Maringer and Enrico Schumann. Numerical Methods and Optimiza-
tion in Finance. Academic Press.

See Also

mc, pvalue

Examples

Example 1
Exact Unit Root Test
library(fUnitRoots)

Set seed

https://journal.r-project.org/
https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=pso
https://www.jstatsoft.org/article/view/v053i04
http://arxiv.org/abs/1605.01931
http://arxiv.org/abs/1605.01931

10 mmc

set.seed(123)

Generate an AR(2) process with phi = (-1.5,0.5), and n = 25
y <- filter(rnorm(25), c(-1.5, 0.5), method = "recursive")

Set bounds for the nuisance parameter v
lower <- -1
upper <- 1

Set the function to generate an AR(2) integrated process
dgp <- function(y, v) {

ran.y <- filter(rnorm(length(y)), c(1-v,v), method = "recursive")
}

Set the Augmented-Dicky Fuller statistic
statistic <- function(y){

out <- suppressWarnings(adfTest(y, lags = 2, type = "nc"))
return(out@test$statistic)

}

Apply the mmc procedure
mmc(y, statistic = statistic , dgp = dgp, lower = lower,

upper = upper, N = 99, type = "leq", method = "GenSA",
control = list(max.time = 2))

Example 2
Behrens-Fisher Problem
library(MASS)

Set seed
set.seed(123)

Generate sample x1 ~ N(0,1) and x2 ~ N(0,4)
x1 <- rnorm(15, mean = 0, sd = 1)
x2 <- rnorm(25, mean = 0, sd = 2)
data <- list(x1 = x1, x2 = x2)

Fit a normal distribution on x1 and x2 using maximum likelihood
fit1 <- fitdistr(x1, "normal")
fit2 <- fitdistr(x2, "normal")

Extract the estimate for the nuisance parameters v = (sd_1, sd_2)
est <- c(fit1$estimate["sd"], fit2$estimate["sd"])

Set the bounds of the nuisance parameters equal to the 99% CI
lower <- est - 2.577 * c(fit2$sd["sd"], fit1$sd["sd"])
upper <- est + 2.577 * c(fit2$sd["sd"], fit1$sd["sd"])

Set the function for the DGP under the null (i.e. two population means are equal)
dgp <- function(data, v) {

x1 <- rnorm(length(data$x1), mean = 0, sd = v[1])
x2 <- rnorm(length(data$x2), mean = 0, sd = v[2])

plot.mmc 11

return(list(x1 = x1, x2 = x2))
}

Set the statistic function to Welch's t-test
welch <- function(data) {

test <- t.test(data$x2, data$x1)
return(test$statistic)

}

Apply Welch's t-test
t.test(data$x2, data$x1)

Apply the mmc procedure
mmc(y = data, statistic = welch, dgp = dgp, est = est,

lower = lower, upper = upper, N = 99,type = "absolute",
method = "pso")

plot.mmc Plot a mmc Object

Description

The plot() method for objects of the class mmc gives a plot of the best and current p-value found
during the iterations of mmc.

Usage

S3 method for class 'mmc'
plot(x, ...)

Arguments

x An object of class mmc.

... Arguments to be passed to methods, such as graphical parameters (see par).

Value

The mmc object is returned invisibly.

Examples

Example
library(fUnitRoots)
Set seed
set.seed(123)

Generate an AR(2) process with phi = (-1.5,0.5), and n = 25
y <- filter(rnorm(25), c(-1.5, 0.5), method = "recursive")

12 print.mc

Set bounds for the nuisance parameter v
lower <- -1
upper <- 1

Set the function to generate an AR(2) integrated process
dgp <- function(y, v) {

ran.y <- filter(rnorm(length(y)), c(1-v,v), method = "recursive")
}

Set the Augmented-Dicky Fuller statistic
statistic <- function(y){

out <- suppressWarnings(adfTest(y, lags = 2, type = "nc"))
return(out@test$statistic)

}

Apply the mmc procedure
est <- mmc(y, statistic = statistic , dgp = dgp, lower = lower,

upper = upper, N = 99, type = "leq", method = "GenSA",
control = list(max.time = 2))

Plot result of object of class 'mmc'
plot(est)

print.mc Print a Summary of a mc Object

Description

This is a method for the function print() for objects of the class mc.

Usage

S3 method for class 'mc'
print(x, digits = getOption("digits"), ...)

Arguments

x an object used to select a method.

digits minimal number of significant digits, see print.default.

... further arguments passed to or from other methods.

Value

The mc object is returned invisibly.

print.mmc 13

Examples

Example
Set seed
set.seed(999)

Generate sample data
y <- rgamma(8, shape = 2, rate = 1)

Set data generating process function
dgp <- function(y) rgamma(length(y), shape = 2, rate = 1)

Set the statistic function to the Kolomogorov-Smirnov test for gamma distribution
statistic <- function(y){

out <- ks.test(y, "pgamma", shape = 2, rate = 1)
return(out$statistic)

}

Apply the Monte Carlo test with tie-breaker
est <- mc(y, statistic = statistic, dgp = dgp, N = 999, type = "two-tailed")

Print result of object of class 'mc'
print(est)

print.mmc Print a Summary of a mmc Object

Description

This is a method for the function print() for objects of the class mmc.

Usage

S3 method for class 'mmc'
print(x, digits = getOption("digits"), ...)

Arguments

x an object used to select a method.

digits minimal number of significant digits, see print.default.

... further arguments passed to or from other methods.

Value

The mmc object is returned invisibly.

14 pvalue

Examples

Example
library(fUnitRoots)
Set seed
set.seed(123)

Generate an AR(2) process with phi = (-1.5,0.5), and n = 25
y <- filter(rnorm(25), c(-1.5, 0.5), method = "recursive")

Set bounds for the nuisance parameter v
lower <- -1
upper <- 1

Set the function to generate an AR(2) integrated process
dgp <- function(y, v) {

ran.y <- filter(rnorm(length(y)), c(1-v,v), method = "recursive")
}

Set the Augmented-Dicky Fuller statistic
statistic <- function(y){

out <- suppressWarnings(adfTest(y, lags = 2, type = "nc"))
return(out@test$statistic)

}

Apply the mmc procedure
est <- mmc(y, statistic = statistic , dgp = dgp, lower = lower,

upper = upper, N = 99, type = "leq", method = "GenSA",
control = list(max.time = 2))

Print result of object of class 'mmc'
print(est)

pvalue p-value Function

Description

Computes the p-value of the statistic by computing its rank compared to its simulated values.

Usage

pvalue(S0, S, type = c("geq", "leq", "absolute", "two-tailed"))

Arguments

S0 An atomic vector. Value of the test statistic applied to the data.
S A vector. It consists of replications of the test statistic. S must have length

greater than one.
type A character string. It specifies the type of test the p-value function produces.

The possible values are geq, leq, absolute and two-tailed. Default is geq.

pvalue 15

Details

We allow for four types of p-value: leq, geq, absolute and two-tailed. For one-tailed test, leq
returns the proportion of simulated values smaller than the statistic while geq returns the proportion
of simulated values greater than the statistic. For two-tailed test with a symmetric satistic, one can
use the absolute value of the statistic and its simulated values to retrieve a two-tailed test (i.e. type =
absolute). If the statistic is not symmetric, one can specify the p-value type as two-tailed which
is equivalent to twice the minimum of leq and geq.

Ties in the ranking are broken according to a uniform distribution.

Value

The p-value of the statistic S0 given a vector of replications S.

References

Dufour, J.-M. (2006), Monte Carlo Tests with nuisance parameters: A general approach to finite
sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics, 133(2),
443-447.

Dufour, J.-M. and Khalaf L. (2003), Monte Carlo Test Methods in Econometrics. in Badi H. Baltagi,
ed., A Companion to Theoretical Econometrics, Blackwell Publishing Ltd, 494-519.

Examples

Generate sample S0 and simulate statistics
S0 = 0
S = rnorm(99)

Compute p-value
pvalue(S0, S, type = "geq")

Index

GA, 5, 8
GenSA, 5, 7
graphical parameters, 11
gridSearch, 5, 9

MaxMC-package, 2
mc, 2, 2, 9
mmc, 2, 4, 4

optim, 8

par, 11
plot.mmc, 11
print.default, 12, 13
print.mc, 12
print.mmc, 13
psoptim, 5, 7
pvalue, 3, 4, 6, 9, 14

16

	MaxMC-package
	mc
	mmc
	plot.mmc
	print.mc
	print.mmc
	pvalue
	Index

