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Abstract

The asymptotic distribution of the Markowitz portfolio, Σ̂−1µ̂, is de-
rived, for the general case (assuming fourth moments of returns exist),
and for the case of multivariate normal returns. The derivation allows for
inference which is robust to heteroskedasticity and autocorrelation of mo-
ments up to order four. As a side effect, one can estimate the proportion
of error in the Markowitz portfolio due to mis-estimation of the covari-
ance matrix. A likelihood ratio test is given which generalizes Dempster’s
Covariance Selection test to allow inference on linear combinations of the
precision matrix and the Markowitz portfolio. [12] Extensions of the main
method to deal with hedged portfolios, conditional heteroskedasticity, and
conditional expectation are given.

1 Introduction

Given p assets with expected return µ and covariance of return Σ, the portfolio
defined as

ν∗ =df λΣ−1µ (1)

plays a special role in modern portfolio theory. [26, 4, 7] It is known as the
‘efficient portfolio’, the ‘tangency portfolio’, and, somewhat informally, the
‘Markowitz portfolio’. It appears, for various λ, in the solution to numerous
portfolio optimization problems. Besides the classic mean-variance formulation,
it solves the (population) Sharpe ratio maximization problem:

max
ν:ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (2)

where r0 ≥ 0 is the risk-free, or ‘disastrous’, rate of return, and R > 0 is some
given ‘risk budget’. The solution to this optimization problem is λΣ−1µ, where
λ = R/

√
µ>Σ−1µ.

In practice, the Markowitz portfolio has a somewhat checkered history. The
population parameters µ and Σ are not known and must be estimated from
samples. Estimation error results in a feasible portfolio, ν̂∗, of dubious value.
Michaud went so far as to call mean-variance optimization, “error maximiza-
tion.” [30] It has been suggested that simple portfolio heuristics outperform the
Markowitz portfolio in practice. [10]
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This paper focuses on the asymptotic distribution of the sample Markowitz
portfolio. By formulating the problem as a linear regression, Britten-Jones
very cleverly devised hypothesis tests on elements of ν∗, assuming multivariate
Gaussian returns. [5] In a remarkable series of papers, Okhrin and Schmid, and
Bodnar and Okhrin give the (univariate) density of the dot product of ν∗ and a
deterministic vector, again for the case of Gaussian returns. [35, 2] Okhrin and
Schmid also show that all moments of ν̂∗/1

>ν̂∗ of order greater than or equal
to one do not exist. [35]

Here I derive asymptotic normality of ν̂∗, the sample analogue of ν∗, assum-
ing only that the first four moments exist. Feasible estimation of the variance of
ν̂∗ is amenable to heteroskedasticity and autocorrelation robust inference. [47]
The asymptotic distribution under Gaussian returns is also derived.

After estimating the covariance of ν̂∗, one can compute Wald test statistics
for the elements of ν̂∗, possibly leading one to drop some assets from consid-
eration (‘sparsification’). Having an estimate of the covariance can also allow
portfolio shrinkage. [11, 20]

The derivations in this paper actually solve a more general problem than the
distribution of the sample Markowitz portfolio. The covariance of ν̂∗ and the
‘precision matrix,’ Σ̂−1 are derived. This allows one, for example, to estimate the
proportion of error in the Markowitz portfolio attributable to mis-estimation of
the covariance matrix. According to lore, the error in portfolio weights is mostly
attributable to mis-estimation of µ, not of Σ. [6, 29]

Finally, assuming Gaussian returns, a likelihood ratio test for performing
inference on linear combinations of elements of the Markowitz portfolio and the
precision matrix is derived. This test generalizes a procedure by Dempster for
inference on the precision matrix alone. [12]

2 The augmented second moment

Let x be an array of returns of p assets, with mean µ, and covariance Σ. Let x̃

be x prepended with a 1: x̃ =
[
1,x>

]>
. Consider the second moment of x̃:

Θ =df E
[
x̃x̃>

]
=

[
1 µ>

µ Σ + µµ>

]
. (3)

By inspection one can confirm that the inverse of Θ is

Θ−1 =

[
1 + µ>Σ−1µ −µ>Σ−1

−Σ−1µ Σ−1

]
=

[
1 + ζ2∗ −ν∗>
−ν∗ Σ−1

]
, (4)

where ν∗ = Σ−1µ̂ is the Markowitz portfolio, and ζ∗ =
√
µ>Σ−1µ is the Sharpe

ratio of that portfolio. The matrix Θ contains the first and second moment of x,
but is also the uncentered second moment of x̃, a fact which makes it amenable
to analysis via the central limit theorem.

The relationships above are merely facts of linear algebra, and so hold for
sample estimates as well:[

1 µ̂>

µ̂ Σ̂ + µ̂µ̂>

]−1
=

[
1 + ζ̂2∗ −ν̂∗>

−ν̂∗ Σ̂−1

]
,
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where µ̂, Σ̂ are some sample estimates of µ and Σ, and ν̂∗ = Σ̂−1µ̂, ζ̂2∗ =
µ̂>Σ̂−1µ̂.

Given n i.i.d. observations xi, let X̃ be the matrix whose rows are the vectors
x̃i
>. The näıve sample estimator

Θ̂ =df
1

n
X̃>X̃ (5)

is an unbiased estimator since Θ = E
[
x̃>x̃

]
.

2.1 Matrix derivatives

Some notation and technical results concerning matrices are required.

Definition 2.1 (Matrix operations). For matrix A, let vec (A), and vech (A) be
the vector and half-space vector operators. The former turns an p×p matrix into
an p2 vector of its columns stacked on top of each other; the latter vectorizes
a symmetric (or lower triangular) matrix into a vector of the non-redundant
elements. Let L be the ‘Elimination Matrix,’ a matrix of zeros and ones with
the property that vech (A) = L vec (A) . The ‘Duplication Matrix,’ D, is the
matrix of zeros and ones that reverses this operation: D vech (A) = vec (A) . [24]
Note that this implies that

LD = I (6= DL) .

Let U−1 be the ‘remove first’ matrix, whose size should be inferred in context.
It is a matrix of all rows but the first of the identity matrix. It exists to remove
the first element of a vector.

Definition 2.2 (Derivatives). For m-vector x, and n-vector y, let the derivative
dy
dx be the n ×m matrix whose first column is the partial derivative of y with
respect to x1. This follows the so-called ‘numerator layout’ convention. For
matrices Y and X, define

dY

dX
=df

dvec (Y)

d vec (X)
.

Lemma 2.3 (Miscellaneous Derivatives). For symmetric matrices Y and X,

dvech (Y)

d vec (X)
= L

dY

dX
,

dvec (Y)

d vech (X)
=

dY

dX
D,

dvech (Y)

d vech (X)
= L

dY

dX
D. (6)

Proof. For the first equation, note that vech (Y) = L vec (Y), thus by the chain
rule:

dvech (Y)

d vec (X)
=

dL vec (Y)

d vec (Y)
= L

dY

dX
,

by linearity of the derivative. The other identities follow similarly.

Lemma 2.4 (Derivative of matrix inverse). For invertible matrix A,

dA−1

dA
= −

(
A−> ⊗ A−1

)
= −

(
A> ⊗ A

)−1
. (7)

For symmetric A, the derivative with respect to the non-redundant part is

dvech
(
A−1

)
d vech (A)

= −L
(
A−1 ⊗ A−1

)
D. (8)
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Note how this result generalizes the scalar derivative: dx−1

dx = −
(
x−1x−1

)
.

Proof. Equation 7 is a known result. [14, 25] Equation 8 then follows using
Lemma 2.3.

2.2 Asymptotic distribution of the Markowitz portfolio

Collecting the mean and covariance into the second moment matrix gives the
asymptotic distribution of the sample Markowitz portfolio without much work.
In some sense, this computation generalizes the ‘standard’ asymptotic analysis
of Sharpe ratio of multiple assets. [18, 23, 21, 22]

Theorem 2.5. Let Θ̂ be the unbiased sample estimate of Θ, based on n i.i.d.

samples of x. Let Ω be the variance of vech
(
x̃x̃>

)
. Then, asymptotically in n,

√
n
(

vech
(

Θ̂−1
)
− vech

(
Θ−1

))
 N

(
0,HΩH>

)
, (9)

where
H = −L

(
Θ−1 ⊗Θ−1

)
D. (10)

Furthermore, we may replace Ω in this equation with an asymptotically consis-
tent estimator, Ω̂.

Proof. Under the multivariate central limit theorem [45]

√
n
(

vech
(

Θ̂
)
− vech (Θ)

)
 N (0,Ω) , (11)

where Ω is the variance of vech
(
x̃x̃>

)
, which, in general, is unknown. By the

delta method [45],

√
n
(

vech
(

Θ̂−1
)
− vech

(
Θ−1

))
 N

0,

[
dvech

(
Θ−1

)
d vech (Θ)

]
Ω

[
dvech

(
Θ−1

)
d vech (Θ)

]> .

The derivative is given by Lemma 2.4, and the result follows.

To estimate the covariance of vech
(

Θ̂−1
)

, plug in Θ̂ for Θ in the covariance

computation, and use some consistent estimator for Ω, call it Ω̂. One way

to compute Ω̂ is to via the sample covariance of the vectors vech
(
x̃ix̃i

>
)

=[
1,xi

>, vech
(
xixi

>)>]>. More elaborate covariance estimators can be used,

for example, to deal with violations of the i.i.d. assumptions. [47] Note that

because the first element of vech
(
x̃ix̃i

>
)

is a deterministic 1, the first row and

column of Ω is all zeros, and we need not estimate it.
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2.3 The Sharpe ratio optimal portfolio

Lemma 2.6 (Sharpe ratio optimal portfolio). Assuming µ 6= 0, and Σ is in-
vertible, the portfolio optimization problem

argmax
ν: ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (12)

for r0 ≥ 0, R > 0 is solved by

νR,∗ =df
R√

µ>Σ−1µ
Σ−1µ. (13)

Moreover, this is the unique solution whenever r0 > 0. The maximal objective
achieved by this portfolio is

√
µ>Σ−1µ− r0/R = ζ∗ − r0/R.

Proof. By the Lagrange multiplier technique, the optimal portfolio solves the
following equations:

0 = c1µ− c2Σν − γΣν,

ν>Σν ≤ R2,

where γ is the Lagrange multiplier, and c1, c2 are scalar constants. Solving the
first equation gives us

ν = cΣ−1µ.

This reduces the problem to the univariate optimization

max
c: c2≤R2/ζ2∗

sign (c) ζ∗ −
r0
|c| ζ∗

, (14)

where ζ2∗ = µ>Σ−1µ. The optimum occurs for c = R/ζ∗, moreover the optimum
is unique when r0 > 0.

Note that the first element of vech
(
Θ−1

)
is 1 + µ>Σ−1µ, and elements 2

through p + 1 are −ν∗. Thus, νR,∗, the portfolio that maximizes the Sharpe
ratio, is some transformation of vech

(
Θ−1

)
, and another application of the

delta method gives its asymptotic distribution, as in the following corollary to
Theorem 2.5.

Corollary 2.7. Let

νR,∗ =
R√

µ>Σ−1µ
Σ−1µ, (15)

and similarly, let ν̂R,∗ be the sample analogue, where R is some risk budget.
Then √

n (ν̂R,∗ − νR,∗) N
(
0,HΩH>

)
, (16)

where

H =

(
−
[

1

2ζ2∗
νR,∗,

R

ζ∗
Ip, 0

]) (
−L
(
Θ−1 ⊗Θ−1

)
D
)
,

ζ2∗ =df µ
>Σ−1µ.

(17)
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Proof. By the delta method, and Theorem 2.5, it suffices to show that

dνR,∗
d vech (Θ−1)

= −
[

1

2ζ2∗
νR,∗,

R

ζ∗
Ip, 0

]
.

To show this, note that νR,∗ is −R times elements 2 through p+1 of vech
(
Θ−1

)
divided by ζ∗ =

√
e1> vech (Θ−1)− 1, where ei is the ith column of the identity

matrix. The result follows from basic calculus.

The sample statistic ζ̂2∗ is, up to scaling involving n, just Hotelling’s T 2 statis-
tic. [1] One can perform inference on ζ2∗ via this statistic, at least under Gaussian
returns, where the distribution of T 2 takes a (noncentral) F -distribution. Note,
however, that ζ∗ is the maximal population Sharpe ratio of any portfolio, so it
is an upper bound of the Sharpe ratio of the sample portfolio ν̂R,∗. It is of little
comfort to have an estimate of ζ∗ when the sample portfolio may have a small,
or even negative, Sharpe ratio.

Because ζ∗ is an upper bound on the Sharpe ratio of a portfolio, it seems odd
to claim that the Sharpe ratio of the sample portfolio might be asymptotically
normal with mean ζ∗. In fact, the delta method will fail because the gradient
of ζ∗ with respect to the portfolio is zero at νR,∗. One solution to this puzzle is
to estimate the ‘signal-noise ratio,’ incorporating a strictly positive r0. In this
case a portfolio may achieve a higher value than ζ∗ − r0/R, which is achieved
by νR,∗, by violating the risk budget. This leads to the following corollary.

Corollary 2.8. Suppose r0 > 0, R > 0. Define the signal-noise ratio as

SNR (ν̂) =df
ν̂>µ− r0√
ν̂>Σν̂

. (18)

Let νR,∗ and ν̂R,∗ be defined as in Corollary 2.7. As per Lemma 2.6,

SNR (νR,∗) = ζ∗ − r0/R. Let Ω be the variance of vech
(
x̃x̃>

)
.

Then, asymptotically in n,

SNR (ν̂R,∗) N
(

SNR (νR,∗) ,
1

n
h>Ωh

)
, (19)

where

h> = − r0
Rζ2∗

[
1

2
,µ>,0

] (
−L
(
Θ−1 ⊗Θ−1

)
D
)
. (20)

Proof. By the delta method,

SNR (ν̂R,∗) N
(

SNR (νR,∗) ,
1

n
h>Ωh

)
, withh> =

dSNR (νR,∗)

dνR,∗

>
dνR,∗

d vech (Θ)
.

Then, via Corollary 2.7,

h> =
dSNR (νR,∗)

dνR,∗

>[
− 1

2ζ2∗
νR,∗,−

R

ζ∗
Ip, 0

] (
−L
(
Θ−1 ⊗Θ−1

)
D
)
.

By simple calculus,

dSNR (ν)

dν
=

√
ν>Σνµ− ν>µ−r0√

ν>Σν
Σν

ν>Σν
=

√
ν>Σνµ− SNR (ν) Σν

ν>Σν
(21)
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Since, by definition, νR,∗ = R
ζ∗

Σ−1µ, and SNR (νR,∗) = ζ∗ − r0/R, plugging in
gives

dSNR (ν)

dν

∣∣∣∣
ν=νR,∗

=
Rµ− (ζ∗ − r0/R) R

ζ∗
µ

R2
=

r0
R2ζ∗

µ. (22)

Then we have

dSNR (νR,∗)

dνR,∗

>[
− 1

2ζ2∗
νR,∗,−

R

ζ∗
Ip, 0

]
= − r0

R2ζ∗
µ>
[

1

2ζ2∗
νR,∗,

R

ζ∗
Ip, 0

]
,

= − r0
Rζ2∗

µ>
[

1

2ζ2∗
Σ−1µ, Ip, 0

]
,

= − r0
Rζ2∗

[
1

2
,µ>,0

]
,

(23)

completing the proof.

Caution. Since µ and Σ are population parameters, SNR (ν̂R,∗) is an unobserved
quantity. Nevertheless, we can estimate the variance of SNR (ν̂R,∗), and possibly
construct confidence intervals on it using sample statistics.

3 Distribution under Gaussian returns

The goal of this section is to derive a variant of Theorem 2.5 for the case where
x follows a multivariate Gaussian distribution. First, assuming x ∼ N (µ,Σ),
we can express the density of x, and of Θ̂, in terms of p, n, and Θ.

Lemma 3.1 (Gaussian sample density). Suppose x ∼ N (µ,Σ). Letting x̃ =[
1,x>

]>
, and Θ = E

[
x̃x̃>

]
, then the negative log likelihood of x is

− log fN (x;µ,Σ) = cp +
1

2
log |Θ|+ 1

2
tr
(

Θ−1x̃x̃>
)
, (24)

for the constant cp = − 1
2 + p

2 log (2π) .

Proof. By the block determinant formula,

|Θ| = |1|
∣∣(Σ + µµ>

)
− µ1−1µ>

∣∣ = |Σ| .

Note also that
(x− µ)

>Σ−1 (x− µ) = x̃>Θ−1x̃− 1.

These relationships hold without assuming a particular distribution for x.
The density of x is then

fN (x;µ,Σ) =
1√

(2π)
p |Σ|

exp

(
−1

2
(x− µ)

>Σ−1 (x− µ)

)
,

=
|Σ|−

1
2

(2π)
p/2

exp

(
−1

2

(
x̃>Θ−1x̃− 1

))
,

= (2π)
−p/2 |Θ|−

1
2 exp

(
−1

2

(
x̃>Θ−1x̃− 1

))
,

= (2π)
−p/2

exp

(
1

2
− 1

2
log |Θ| − 1

2
tr
(

Θ−1x̃x̃>
))

,
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and the result follows.

Lemma 3.2 (Gaussian second moment matrix density). Let x ∼ N (µ,Σ),

x̃ =
[
1,x>

]>
, and Θ = E

[
x̃x̃>

]
. Given n i.i.d. samples xi, let Let Θ̂ =

1
n

∑
i x̃ix̃i

>. Then the density of Θ̂ is

f
(

Θ̂; Θ
)

= exp
(
c′n,p

) ∣∣∣Θ̂∣∣∣n−p−2
2

|Θ|
n
2

exp
(
−n

2
tr
(

Θ−1Θ̂
))

, (25)

for some c′n,p.

Proof. Let X̃ be the matrix whose rows are the vectors xi
>. From Lemma 3.1,

and using linearity of the trace, the negative log density of X̃ is

− log fN

(
X̃; Θ

)
= ncp +

n

2
log |Θ|+ 1

2
tr
(

Θ−1X̃>X̃
)
,

∴
−2 log fN

(
X̃; Θ

)
n

= 2cp + log |Θ|+ tr
(

Θ−1Θ̂
)
.

By Lemma (5.1.1) of Press [40], this can be expressed as a density on Θ̂:

−2 log f
(

Θ̂; Θ
)

n
=
−2 log fN

(
X̃; Θ

)
n

− 2

n

(
n− p− 2

2
log
∣∣∣Θ̂∣∣∣)

− 2

n

p+ 1

2

(
n− p

2

)
log π −

p+1∑
j=1

log Γ

(
n+ 1− j

2

) ,

=

2cp −
p+ 1

n

(
n− p

2

)
log π − 2

n

p+1∑
j=1

log Γ

(
n+ 1− j

2

)
+ log |Θ| − n− p− 2

n
log
∣∣∣Θ̂∣∣∣+ tr

(
Θ−1Θ̂

)
,

= c′n,p − log

∣∣∣Θ̂∣∣∣n−p−2
n

|Θ|
+ tr

(
Θ−1Θ̂

)
,

where c′n,p is the term in brackets on the third line. Factoring out −2/n and
taking an exponent gives the result.

Corollary 3.3. The random variable nΘ̂ has the same density, up to a constant
in p and n, as a p + 1-dimensional Wishart random variable with n degrees of
freedom and scale matrix Θ. Thus nΘ̂ is a conditional Wishart, conditional on
Θ̂1,1 = 1. [40, 1]

Corollary 3.4. The derivatives of log likelihood are given by

dlog f
(

Θ̂; Θ
)

d vec (Θ)
= −n

2

[
vec
(

Θ−1 −Θ−1Θ̂Θ−1
)]>

,

dlog f
(

Θ̂; Θ
)

d vec (Θ−1)
= −n

2

[
vec
(

Θ− Θ̂
)]>

.

(26)
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Proof. Plugging in the log likelihood gives

dlog f
(

Θ̂; Θ
)

d vec (Θ)
= −n

2

 dlog |Θ|
d vec (Θ)

+
dtr
(

Θ−1Θ̂
)

d vec (Θ)

 ,
and then standard matrix calculus gives the first result. [25, 39] Proceeding
similarly gives the second.

This immediately gives us the Maximum Likelihood Estimator.

Corollary 3.5 (MLE). Θ̂ is the maximum likelihood estimator of Θ.

To compute the covariance of vech (Θ), Ω, in the Gaussian case, one can
compute the Fisher Information, then appeal to the fact that Θ is the MLE.
However, because the first element of vech (Θ) is a deterministic 1, the first row
and column of Ω are all zeros. This is an unfortunate wrinkle. The solution is
to compute the Fisher Information with respect to the nonredundant variables,
U−1 vech (Θ), as follows.

Lemma 3.6 (Fisher Information). The Fisher Information of U−1 vech (Θ) is

In (U−1 vech (Θ)) =
n

2
U−1

[
L
(
Θ−1 ⊗Θ−1

)
D
]>

D> (Θ⊗Θ) D
[
L
(
Θ−1 ⊗Θ−1

)
D
]

U−1
>. (27)

Proof. First compute the Hessian of log f
(

Θ̂; Θ
)

with respect to vec
(
Θ−1

)
.

The Hessian is defined as

d2log f
(

Θ̂; Θ
)

d (vec (Θ−1))
2 =df

d

[
dlog f(Θ̂;Θ)
d vec(Θ−1)

]>
d vec (Θ−1)

.

Then, from Equation 26,

d2log f
(

Θ̂; Θ
)

d (vec (Θ−1))
2 = −n

2

d
[
Θ− Θ̂

]
d vec (Θ−1)

,

= −n
2

(Θ⊗Θ) ,

via Lemma 2.4. Perform a change of variables. Via Lemma 2.3,

d2log f
(

Θ̂; Θ
)

d (vech (Θ−1))
2 = −n

2
D> (Θ⊗Θ) D.

Using Lemma 2.4, perform another change of variables to find

d2log f
(

Θ̂; Θ
)

d (vech (Θ))
2 = −n

2

[
L
(
Θ−1 ⊗Θ−1

)
D
]>

D> (Θ⊗Θ) D
[
L
(
Θ−1 ⊗Θ−1

)
D
]
.

Finally, perform the change of variables to get the Hessian with respect to
U−1 vech (Θ). Since the Fisher Information is negative the expected value of
this Hessian, the result follows. [37]
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Thus the analogue of Theorem 2.5 for Gaussian returns is given by the
following theorem.

Theorem 3.7. Let Θ̂ be the unbiased sample estimate of Θ, based on n i.i.d.
samples of x, assumed multivariate Gaussian. Then, asymptotically in n,

√
n
(

vech
(

Θ̂
)
− vech (Θ)

)
 N (0,Ω) , (28)

where the first row and column of Ω are all zero, and the lower right block part
is

2
[
U−1

[
L
(
Θ−1 ⊗Θ−1

)
D
]>

D> (Θ⊗Θ) D
[
L
(
Θ−1 ⊗Θ−1

)
D
]

U−1
>
]−1

.

Proof. Under ‘the appropriate regularity conditions,’ [45, 37](
U−1 vech

(
Θ̂
)
− U−1 vech (Θ)

)
 N

(
0, [In (U−1 vech (Θ))]

−1
)
, (29)

and the result follows from Lemma 3.6, and the fact that the first elements of

both vech
(

Θ̂
)

and vech (Θ) are a deterministic 1.

The ‘plug-in’ estimator of the covariance substitutes in Θ̂ for Θ in the right
hand side of Equation 28. The following conjecture is true in the p = 1 case.
Use of the Sherman-Morrison-Woodbury formula might aid in a proof.

Conjecture 3.8. For the Gaussian case, asymptotically in n,

√
n
(

vech
(

Θ̂−1
)
− vech

(
Θ−1

))
 N

(
0, 2
[
D> (Θ⊗Θ) D

]−1 − 2e1e1
>
)
.

(30)

A check of Theorem 3.7 and an illustration of Conjecture 3.8 are given in
the appendix.

3.1 Likelihood ratio test on Markowitz portfolio

Consider the null hypothesis

H0 : tr
(
AiΘ

−1) = ai, i = 1, . . . ,m. (31)

The constraints have to be sensible. For example, they cannot violate the pos-
itive definiteness of Θ−1, symmetry, etc. Without loss of generality, we can
assume that the Ai are symmetric, since Θ is symmetric, and for symmetric G
and square H, tr (GH) = tr

(
G 1

2

(
H + H>

))
, and so we could replace any non-

symmetric Ai with 1
2

(
Ai + Ai

>
)

.

Employing the Lagrange multiplier technique, the maximum likelihood esti-
mator under the null hypothesis, call it Θ0, solves the following equation

0 =
dlog f

(
Θ̂; Θ

)
dΘ−1

−
∑
i

λi
dtr
(
AiΘ

−1)
dΘ−1

,

= −Θ0 + Θ̂−
∑
i

λiAi, .

10



Thus the MLE under the null is

Θ0 = Θ̂−
∑
i

λiAi. (32)

The maximum likelihood estimator under the constraints has to be found nu-
merically by solving for the λi, subject to the constraints in Equation 31.

This framework slightly generalizes Dempster’s “Covariance Selection,” [12]
which reduces to the case where each ai is zero, and each Ai is a matrix of
all zeros except two (symmetric) ones somewhere in the lower right p × p sub
matrix. In all other respects, however, the solution here follows Dempster.

An iterative technique for finding the MLE based on a Newton step would
proceed as follow. [34] Let λ(0) be some initial estimate of the vector of λi.
(A good initial estimate can likely be had by abusing the asymptotic normality

result from Section 2.2.) The residual of the kth estimate, λ(k) is

ε
(k)
i =df tr

Ai

Θ̂−
∑
j

λ
(k)
j Aj

−1
− ai. (33)

The Jacobian of this residual with respect to the lth element of λ
(k)
i s

dε
(k)
i

dλ
(k)
l

= tr

Ai

Θ̂−
∑
j

λ
(k)
j Aj

−1Al

Θ̂−
∑
j

λ
(k)
j Aj

−1
 ,

= vec (Ai)
>


Θ̂−

∑
j

λ
(k)
j Aj

−1 ⊗
Θ̂−

∑
j

λ
(k)
j Aj

−1
 vec (Al) .

(34)

Newton’s method is then the iterative scheme

λ(k+1) ← λ(k) −
(

dε(k)

dλ(k)

)−1
ε(k). (35)

When (if?) the iterative scheme converges on the optimum, plugging in

λ(k) into Equation 32 gives the MLE under the null. The likelihood ratio test
statistic is

−2 log Λ =df −2 log

 f
(

Θ0

∣∣∣Θ̂)
f
(

Θunrestricted MLE

∣∣∣Θ̂)
 ,

= n
(

log
∣∣∣Θ0Θ̂−1

∣∣∣+ tr
([

Θ0
−1 − Θ̂−1

]
Θ̂
))

,

= n
(

log
∣∣∣Θ0Θ̂−1

∣∣∣+ tr
(

Θ0
−1Θ̂

)
− [p+ 1]

)
,

(36)

using the fact that Θ̂ is the unrestricted MLE, per Corollary 3.5. By Wilks’
Theorem, under the null hypothesis, −2 log Λ is, asymptotically in n, distributed
as a chi-square with m degrees of freedom. [46]
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4 Extensions

For large samples, Wald statistics of the elements of the Markowitz portfolio
computed using the procedure outlined above tend to be very similar to the
t-statistics produced by the procedure of Britten-Jones. [5] However, the tech-
nique proposed here admits a number of interesting extensions.

The script for each of these extensions is the same: define, then solve, some
portfolio optimization problem; show that the solution can be defined in terms
of some transformation of Θ−1, giving an implicit recipe for constructing the
sample portfolio based on the same transformation of Θ̂−1; find the asymptotic
distribution of the sample portfolio in terms of Ω.

To simplify notation, we need the following definitions and a lemma.

Definition 4.1 (Risk Projection). Define the covariance-projection operator as

PA (Σ) =df A>
(
AΣA>

)−1
A, (37)

for conformable matrix A. The derivative of this operator will be shown to be
the following operator:

BA (Σ) =df

(
A> ⊗ A>

) ((
AΣA>

)−1 ⊗ (AΣA>
)−1)

(A⊗ A) . (38)

Lemma 4.2 (Derivative of covariance-projection). For comformable Σ and A,

dPA (Σ)

dΣ
= BA (Σ) . (39)

Proof. A well-known fact regarding matrix manipulation [25] is

vec (ABC) =
(
A⊗ C>

)
vec (B) , therefore,

dABC

dB
= A⊗ C>.

Using this twice after the chain rule, we have:

dPA (Σ)

dΣ
=

dPA (Σ)

d(AΣA>)
−1

d
(
AΣA>

)−1
dAΣA>

dAΣA>

dΣ
,

=
(
A> ⊗ A>

) d
(
AΣA>

)−1
dAΣA>

(A⊗ A) .

Lemma 2.4 gives the middle term, completing the proof.

4.1 Subspace constraint

Consider the constrained portfolio optimization problem

max
ν:J⊥ν=0,

ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (40)

where J⊥ is a (p− pj)× p matrix of rank p− pj , r0 is the disastrous rate, and
R > 0 is the risk budget. Let the rows of J span the null space of the rows of J⊥;
that is, J⊥J> = 0, and JJ> = I. We can interpret the orthogonality constraint

12



J⊥ν = 0 as stating that ν must be a linear combination of the columns of J>,
thus ν = J>ξ. The columns of J> may be considered ‘baskets’ of assets to which
our investments are restricted.

We can rewrite the portfolio optimization problem in terms of solving for
ξ, but then find the asymptotic distribution of the resultant ν. Note that the
expected return and covariance of the portfolio ξ are, respectively, ξ>Jµ and
ξ>JΣJ>ξ. Thus we can plug in Jµ and JΣJ> into Lemma 2.6 to get the following
analogous lemma.

Lemma 4.3 (subspace constrained Sharpe ratio optimal portfolio). Assuming
the rows of J span the null space of the rows of J⊥, Jµ 6= 0, and Σ is invertible,
the portfolio optimization problem

max
ν:J⊥ν=0,

ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (41)

for r0 ≥ 0, R > 0 is solved by

νR,J,∗ =df cPJ (Σ)µ,

c =
R√

µ>PJ (Σ)µ
.

When r0 > 0 the solution is unique.

We can easily find the asymptotic distribution of ν̂R,J,∗, the sample analogue
of the optimal portfolio in Lemma 4.3. First define the subspace second moment.

Definition 4.4. Let J̃ be the (1 + pj)× (p+ 1) matrix,

J̃ =df

[
1 0
0 J

]
.

Simple algebra proves the following lemma.

Lemma 4.5. The elements of PJ̃ (Θ) are

PJ̃ (Θ) =

[
1 + µ>PJ (Σ)µ −µ>PJ (Σ)
−PJ (Σ)µ PJ (Σ)

]
.

In particular, elements 2 through p+1 of − vech
(
PJ̃ (Θ)

)
are the portfolio ν̂R,J,∗

defined in Lemma 4.3, up to the scaling constant c which is the ratio of R to the
square root of the first element of vech

(
PJ̃ (Θ)

)
minus one.

The asymptotic distribution of vech
(
PJ̃ (Θ)

)
is given by the following theo-

rem, which is the analogue of Theorem 2.5.

Theorem 4.6. Let Θ̂ be the unbiased sample estimate of Θ, based on n i.i.d.
samples of x. Let J̃ be defined as in Definition 4.4. Let Ω be the variance of

vech
(
x̃x̃>

)
. Then, asymptotically in n,

√
n
(

vech
(
PJ̃

(
Θ̂
))
− vech

(
PJ̃ (Θ)

))
 N

(
0,HΩH>

)
, (42)

where
H = −LBJ̃ (Θ)D.

13



Proof. By the multivariate delta method, it suffices to prove that

H =
dvech

(
PJ̃

(
Θ̂
))

d vech (Θ)
.

This follows from Lemma 4.2 and Lemma 2.3.

An analogue of Corollary 2.7 gives the asymptotic distribution of νR,J,∗
defined in Lemma 4.3.

4.2 Hedging constraint

Consider, now, the constrained portfolio optimization problem,

max
ν:GΣν=0,

ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (43)

where G is now a pg×p matrix of rank pg. We can interpret the G constraint as
stating that the covariance of the returns of a feasible portfolio with the returns
of a portfolio whose weights are in a given row of G shall equal zero. In the
garden variety application of this problem, G consists of pg rows of the identity
matrix; in this case, feasible portfolios are ‘hedged’ with respect to the pg assets
selected by G (although they may hold some position in the hedged assets).

Lemma 4.7 (constrained Sharpe ratio optimal portfolio). Assuming µ 6= 0,
and Σ is invertible, the portfolio optimization problem

max
ν:GΣν=0,

ν>Σν≤R2

ν>µ− r0√
ν>Σν

, (44)

for r0 ≥ 0, R > 0 is solved by

νR,G,∗ =df c
(
Σ−1µ− PG (Σ)µ

)
,

c =
R√

µ>Σ−1µ− µ>PG (Σ)µ
.

When r0 > 0 the solution is unique.

Proof. By the Lagrange multiplier technique, the optimal portfolio solves the
following equations:

0 = c1µ− c2Σν − γ1Σν − ΣG>γ2,

ν>Σν ≤ R2,

GΣν = 0,

where γi are Lagrange multipliers, and c1, c2 are scalar constants.
Solving the first equation gives

ν = c3
[
Σ−1µ− G>γ2

]
.

14



Reconciling this with the hedging equation we have

0 = GΣν = c3GΣ
[
Σ−1µ− G>γ2

]
,

and therefore γ2 =
(
GΣG>

)−1
Gµ. Thus

ν = c3
[
Σ−1µ− PG (Σ)µ

]
.

Plugging this into the objective reduces the problem to the univariate optimiza-
tion

max
c3: c23≤R2/ζ2∗,G

sign (c3) ζ∗,G −
r0

|c3| ζ∗,G
,

where ζ2∗,G = µ>Σ−1µ − µ>PG (Σ)µ. The optimum occurs for c = R/ζ∗,G,
moreover the optimum is unique when r0 > 0.

The optimal hedged portfolio in Lemma 4.7 is, up to scaling, the difference
of the unconstrained optimal portfolio from Lemma 2.6 and the subspace con-
strained portfolio in Lemma 4.3. This ‘delta’ analogy continues for the rest of
this section.

Definition 4.8 (Delta Inverse Second Moment). Let G̃ be the (1 + pg)×(p+ 1)
matrix,

G̃ =df

[
1 0
0 G

]
.

Define the ‘delta inverse second moment’ as

∆GΘ−1 =df Θ−1 − PG̃ (Θ) .

Simple algebra proves the following lemma.

Lemma 4.9. The elements of ∆GΘ−1 are

∆GΘ−1 =

[
µ>Σ−1µ− µ>PG (Σ)µ −µ>Σ−1 + µ>PG (Σ)
−Σ−1µ+ PG (Σ)µ Σ−1 − PG (Σ)

]
.

In particular, elements 2 through p + 1 of − vech
(
∆GΘ−1

)
are the portfolio

νR,G,∗ defined in Lemma 4.7, up to the scaling constant c which is the ratio of
R to the square root of the first element of vech

(
∆GΘ−1

)
.

The statistic µ̂>Σ̂−1µ̂− µ̂>PG

(
Σ̂
)
µ̂, for the case where G is some rows of

the p× p identity matrix, was first proposed by Rao, and its distribution under
Gaussian returns was later found by Giri. [41, 15] This test statistic may be
used for tests of portfolio spanning for the case where a risk-free instrument is
traded. [17, 19]

The asymptotic distribution of ∆GΘ̂−1 is given by the following theorem,
which is the analogue of Theorem 2.5.

Theorem 4.10. Let Θ̂ be the unbiased sample estimate of Θ, based on n i.i.d.
samples of x. Let ∆GΘ−1 be defined as in Definition 4.8, and similarly define

∆GΘ̂−1. Let Ω be the variance of vech
(
x̃x̃>

)
. Then, asymptotically in n,

√
n
(

vech
(

∆GΘ̂−1
)
− vech

(
∆GΘ−1

))
 N

(
0,HΩH>

)
, (45)

15



where
H = −L

[
Θ−1 ⊗Θ−1 − BG̃ (Θ)

]
D.

Proof. Minor modification of proof of Theorem 4.6.

Caution. In the hedged portfolio optimization problem considered here, the op-
timal portfolio will, in general, hold money in the row space of G. For example,
in the garden variety application, where one is hedging out exposure to ‘the
market’ by including a broad market ETF, and taking G to be the correspond-
ing row of the identity matrix, the final portfolio may hold some position in
that broad market ETF. This is fine for an ETF, but one may wish to hedge
out exposure to an untradeable returns stream–the returns of an index, say.
Combining the hedging constraint of this section with the subspace constraint
of Section 4.1 is simple in the case where the rows of G are spanned by the rows
of J. The more general case, however, is rather more complicated.

4.3 Conditional heteroskedasticity

The methods described above ignore ‘volatility clustering’, and assume ho-
moskedasticity. [9, 33, 3] To deal with this, consider a strictly positive scalar
random variable, qi, observable at the time the investment decision is required
to capture xi+1. For reasons to be obvious later, it is more convenient to think
of qi as a ‘quietude’ indicator.

Two simple competing models for conditional heteroskedasticity are

(constant): E [xi+1 | qi ] = qi
−1µ Var (xi+1 | qi ) = qi

−2Σ, (46)

(floating): E [xi+1 | qi ] = µ Var (xi+1 | qi ) = qi
−2Σ. (47)

Under the model in Equation 46, the maximal Sharpe ratio is
√
µ>Σ−1µ, in-

dependent of qi; under Equation 47, it is is qi
√
µ>Σ−1µ. The model names

reflect whether or not the maximal Sharpe ratio varies conditional on qi.
The optimal portfolio under both models is the same, as stated in the fol-

lowing lemma, the proof of which follows by simply using Lemma 2.6.

Lemma 4.11 (Conditional Sharpe ratio optimal portfolio). Under either the
model in Equation 46 or Equation 47, conditional on observing qi, the portfolio
optimization problem

argmax
ν: Var(ν>xi+1| qi )≤R2

E
[
ν>xi+1 | qi

]
− r0√

Var (ν>xi+1 | qi )
, (48)

for r0 ≥ 0, R > 0 is solved by

ν∗ =
qiR√
µ>Σ−1µ

Σ−1µ. (49)

Moreover, this is the unique solution whenever r0 > 0.
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To perform inference on the portfolio ν∗ from Lemma 4.11, under the ‘con-
stant’ model of Equation 46, apply the unconditional techniques to the sample
second moment of qix̃i+1.

For the ‘floating’ model of Equation 47, however, some adjustment to the

technique is required. Define ˜̃xi+1 =df qix̃i+1; that is, ˜̃xi+1 =
[
qi, qixi+1

>]>.

Consider the second moment of ˜̃x:

Θq =df E
[
˜̃x˜̃x
>]

=

[
γ2 γ2µ>

γ2µ Σ + µγ2µ>

]
, where γ2 =df E

[
q2
]
. (50)

The inverse of Θq is

Θq
−1 =

[
γ−2 + µ>Σ−1µ −µ>Σ−1

−Σ−1µ Σ−1

]
(51)

Once again, the optimal portfolio (up to scaling and sign), appears in
vech

(
Θq
−1). Similarly, define the sample analogue:

Θ̂q =df
1

n

∑
i

˜̃xi+1
˜̃xi+1

>
. (52)

We can find the asymptotic distribution of vech
(

Θ̂q

)
using the same techniques

as in the unconditional case, as in the following analogue of Theorem 2.5:

Theorem 4.12. Let Θ̂q =df
1
n

∑
i
˜̃xi+1

˜̃xi+1
>

, based on n i.i.d. samples of[
q,x>

]>
. Let Ω be the variance of vech

(
˜̃x˜̃x
>)

. Then, asymptotically in n,

√
n
(

vech
(

Θ̂−1q

)
− vech

(
Θq
−1)) N (0,HΩH>

)
, (53)

where
H = −L

(
Θq
−1 ⊗Θq

−1)D. (54)

Furthermore, we may replace Ω in this equation with an asymptotically consis-
tent estimator, Ω̂.

The only real difference from the unconditional case is that we cannot auto-
matically assume that the first row and column of Ω is zero (unless q is actually
constant, which misses the point). Moreover, the shortcut for estimating Ω un-
der Gaussian returns is not valid without some patching, an exercise left for the
reader.

Dependence or independence of maximal Sharpe ratio from volatility is an
assumption which, ideally, one could test with data. A mixed model containing
both characteristics can be written as follows:

(mixed): E [xi+1 | qi ] = qi
−1µ0 + µ1 Var (xi+1 | qi ) = qi

−2Σ. (55)

One could then test whether elements of µ0 or of µ1 are zero. Analyzing this
model is somewhat complicated without moving to a more general framework,
as in the sequel.
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4.4 Conditional expectation and heteroskedasticity

Suppose you observe random variables qi > 0, and f -vector f i at some time
prior to when the investment decision is required to capture xi+1. It need not
be the case that q and f are independent. The general model is now

(bi-conditional): E [xi+1 | qi,f i ] = Bf i Var (xi+1 | qi,f i ) = qi
−2Σ, (56)

where B is some p × f matrix. Without the qi term, these are the ‘predictive
regression’ equations commonly used in Tactical Asset Allocation. [8, 16, 4]

By letting f i =
[
qi
−1, 1

]>
we recover the mixed model in Equation 55; the

bi-conditional model is considerably more general, however. The conditionally-
optimal portfolio is given by the following lemma. Once again, the proof pro-
ceeds simply by plugging in the conditional expected return and volatility into
Lemma 2.6.

Lemma 4.13 (Conditional Sharpe ratio optimal portfolio). Under the model
in Equation 56, conditional on observing qi and f i, the portfolio optimization
problem

argmax
ν: Var(ν>xi+1| qi,f i )≤R2

E
[
ν>xi+1 | qi,f i

]
− r0√

Var (ν>xi+1 | qi,f i )
, (57)

for r0 ≥ 0, R > 0 is solved by

ν∗ =
qiR√

f i
>B>Σ−1Bf i

Σ−1Bf i. (58)

Moreover, this is the unique solution whenever r0 > 0.

Caution. It is emphatically not the case that investing in the portfolio ν∗ from
Lemma 4.13 at every time step is long-term Sharpe ratio optimal. One may
possibly achieve a higher long-term Sharpe ratio by down-levering at times
when the conditional Sharpe ratio is low. The optimal long term investment
strategy falls under the rubric of ‘multiperiod portfolio choice’, and is an area
of active research. [32, 13, 4]

The matrix Σ−1B is the generalization of the Markowitz portfolio: it is the
multiplier for a model under which the optimal portfolio is linear in the features
f i (up to scaling to satisfy the risk budget). We can think of this matrix as the
‘Markowitz coefficient’. If an entire column of Σ−1B is zero, it suggests that the
corresponding element of f can be ignored in investment decisions; if an entire
row of Σ−1B is zero, it suggests the corresponding instrument delivers no return
or hedging benefit.

Tests on Σ−1B should be contrasted with the so-called Multivariate General
Linear Hypothesis (MGLH), which tests the matrix equation ABC = T, for
conformable A,C,T. [42, 31]

To perform inference on the Markowitz coefficient, we can proceed exactly
as above. Let

˜̃xi+1 =df

[
qif i

>, qixi+1
>
]>
. (59)

Consider the second moment of ˜̃x:

Θf =df E
[
˜̃x˜̃x
>]

=

[
Γf ΓfB>

BΓf Σ + BΓfB>

]
, where Γf =df E

[
q2ff>

]
.

(60)
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The inverse of Θf is

Θf
−1 =

[
Γf
−1 + B>Σ−1B −B>Σ−1

−Σ−1B Σ−1

]
(61)

Once again, the Markowitz coefficient (up to scaling and sign), appears in
vech

(
Θf
−1).

The following theorem is an analogue of, and shares a proof with, Theo-
rem 2.5.

Theorem 4.14. Let Θ̂f =df
1
n

∑
i
˜̃xi+1

˜̃xi+1
>

, based on n i.i.d. samples of[
q,f>,x>

]>
, where

˜̃xi+1 =df

[
qif i

>, qixi+1
>
]>
.

Let Ω be the variance of vech
(

˜̃x˜̃x
>)

. Then, asymptotically in n,

√
n
(

vech
(

Θ̂−1f

)
− vech

(
Θf
−1)) N (0,HΩH>

)
, (62)

where
H = −L

(
Θf
−1 ⊗Θf

−1)D. (63)

Furthermore, we may replace Ω in this equation with an asymptotically consis-
tent estimator, Ω̂.

4.5 Conditional expectation and heteroskedasticity with
subspace and hedging constraint

A little work allows us to combine the conditional model of Section 4.4 with
the subspace constraint of Section 4.1 and the hedging constraint of Section 4.2.
This extension is trivial only in the case where the rows of G are spanned by
the rows of J. So, for the remainder of this section, we will assume this is the
case. The problem considered here is the most general case solved in this note;
the previous sections are all specializations of it in one way or another.

Lemma 4.15 (Hedged Conditional Sharpe ratio optimal portfolio). Let J be a
given pj × p matrix, the rows of which span the rows of G, a given pg× p matrix
of rank pg. Under the model in Equation 56, conditional on observing qi and
f i, the portfolio optimization problem

argmax
ν: J⊥ν=0,

GΣν=0,

Var(ν>xi+1| qi,f i )≤R2

E
[
ν>xi+1 | qi,f i

]
− r0√

Var (ν>xi+1 | qi,f i )
, (64)

for r0 ≥ 0, R > 0 is solved by

νR,J,G,∗ =df c (PJ (Σ) B− PG (Σ) B)f i,

c =
qiR√

(Bf i)
>PJ (Σ) (Bf i)− (Bf i)

>PG (Σ) (Bf i)
.

Moreover, this is the unique solution whenever r0 > 0.
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The same cautions regarding multiperiod portfolio choice apply to the above
lemma. The asymptotic distribution results that follow are minor modifications
of those from previous sections. The ‘delta inverse second moment’ now explic-
itly becomes the difference of two projections:

Definition 4.16 (Delta Inverse Second Moment). Given J and G, define

J̃ =df

[
If 0
0 J

]
, and G̃ =df

[
If 0
0 G

]
, (65)

where If is the f × f identity matrix. Define the ‘delta inverse second moment’
as

∆J,GΘf
−1 =df PJ̃ (Θf )− PG̃ (Θf ) , (66)

where Θf is defined in Equation 60.

Once again, the delta inverse second moment contains the Markowitz coef-
ficient, as in the following lemma.

Lemma 4.17. Under Definition 4.16,

∆J,GΘf
−1 =

[
B>PJ (Σ) B− B>PG (Σ) B −B>PJ (Σ) + B>PG (Σ)
−PJ (Σ) B + PG (Σ) B PJ (Σ)− PG (Σ)

]
.

In particular, the Markowitz coefficient from Lemma 4.15 appears in the
lower left corner of −∆J,GΘf

−1, and the denominator of the constant c from
Lemma 4.15 depends on a quadratic form of f i with the upper left corner of
∆J,GΘf

−1.

Theorem 4.18. Let Θ̂f =df
1
n

∑
i
˜̃xi+1

˜̃xi+1
>

, based on n i.i.d. samples of[
q,f>,x>

]>
, where

˜̃xi+1 =df

[
qif i

>, qixi+1
>
]>
.

Let Ω be the variance of vech
(

˜̃x˜̃x
>)

. Define ∆J,GΘf
−1 as in Equation 66 for

the given J̃ and G̃.
Then, asymptotically in n,

√
n
(

vech
(

∆J,GΘ̂−1f

)
− vech

(
∆J,GΘf

−1)) N (0,HΩH>
)
, (67)

where
H = −L

(
BJ̃ (Θf )− BG̃ (Θf )

)
D.

Furthermore, we may replace Ω in this equation with an asymptotically consis-
tent estimator, Ω̂.
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A Confirming the scalar Gaussian case

Example A.1. To sanity check Theorem 3.7, consider the p = 1 Gaussian case.
In this case,

vech (Θ) =
[
1, µ, σ2 + µ2

]>
, and vech

(
Θ−1

)
=

[
1 +

µ2

σ2
,− µ

σ2
,

1

σ2

]>
.

Let µ̂, σ̂2 be the unbiased sample estimates. By well known results [43], µ̂ and σ̂2

are independent, and have asymptotic variances of σ2/n and 2σ4/n respectively.
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By the delta method, the asymptotic variance of U−1 vech
(

Θ̂
)

and vech
(

Θ̂−1
)

can be computed as

Var
(

U−1 vech
(

Θ̂
))
 

1

n

[
1 2µ
0 1

]> [
σ2 0
0 2σ4

] [
1 2µ
0 1

]
,

=
1

n

[
σ2 2µσ2

2µσ2 4µ2σ2 + 2σ4

]
.

(68)

Var
(

vech
(

Θ̂−1
))
 

1

n

[
2µ
σ2 − 1

σ2 0

−µ
2

σ4
µ
σ4 − 1

σ4

]> [
σ2 0
0 2σ4

] [ 2µ
σ2 − 1

σ2 0

−µ
2

σ4
µ
σ4 − 1

σ4

]
,

=
1

n

[
2ζ − 1

σ 0

−
√

2ζ2
√

2 ζσ −
√
2

σ2

]> [
2ζ − 1

σ 0

−
√

2ζ2
√

2 ζσ −
√
2

σ2

]
,

=
1

n

 2ζ2
(
2 + ζ2

)
− 2ζ
σ

(
1 + ζ2

)
2 ζ

2

σ2

− 2ζ
σ

(
1 + ζ2

)
1+2ζ2

σ2 − 2ζ
σ3

2 ζ
2

σ2 − 2ζ
σ3

2
σ4

 .
(69)

Now it remains to compute Var
(

U−1 vech
(

Θ̂
))

via Theorem 3.7, and then

Var
(

vech
(

Θ̂−1
))

via Theorem 2.5, and confirm they match the values above.

This is a rather tedious computation best left to a computer. Below is an excerpt
of an iPython notebook using Sympy [38, 44] which performs this computation.
This notebook is available online. [36]

In [1]: # confirm the asymptotic distribution of Theta

# for scalar Gaussian case.

from __future__ import division

from sympy import *

from sympy.physics.quantum import TensorProduct

init_printing(use_unicode=False, wrap_line=False, \

no_global=True)

mu = symbols(’\mu’)

sg = symbols(’\sigma’)

# the elimination, duplication and U_{-1} matrices:

Elim = Matrix(3,4,[1,0,0,0, 0,1,0,0, 0,0,0,1])

Dupp = Matrix(4,3,[1,0,0, 0,1,0, 0,1,0, 0,0,1])

Unun = Matrix(2,3,[0,1,0, 0,0,1])

def Qform(A,x):

"""compute the quadratic form x’Ax"""

return x.transpose() * A * x

In [2]: Theta = Matrix(2,2,[1,mu,mu,mu**2 + sg**2])

Theta

Out[2]: [
1 µ
µ µ2 + σ2

]
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In [3]: # compute tensor products and

# the derivative d vech(Theta^-1) / d vech(Theta)

# see also Theorem 2.5

Theta_Theta = TensorProduct(Theta,Theta)

iTheta_iTheta = TensorProduct(Theta.inv(),Theta.inv())

theta_i_deriv = Elim * (iTheta_iTheta) * Dupp

In [4]: # towards Theorem 3.7

DTTD = Qform(Theta_Theta,Dupp)

D_DTTD_D = Qform(DTTD,theta_i_deriv)

iOmega = Qform(D_DTTD_D,Unun.transpose())

Omega = 2 * iOmega.inv()

simplify(Omega)

Out[4]: [
σ2 2µσ2

2µσ2 2σ2
(
2µ2 + σ2

)]
In [5]: # this matches the computation in Equation 68

# on to the inverse:

# actually use Theorem 2.5

theta_i_deriv_t = theta_i_deriv.transpose()

theta_inv_var = Qform(Qform(Omega,Unun),theta_i_deriv_t)

simplify(theta_inv_var)

Out[5]:  2µ2

σ4

(
µ2 + 2σ2

)
− 2µ
σ4

(
µ2 + σ2

)
2µ2

σ4

− 2µ
σ4

(
µ2 + σ2

)
1
σ4

(
2µ2 + σ2

)
− 2µ
σ4

2µ2

σ4 − 2µ
σ4

2
σ4


In [6]: # this matches the computation in Equation 69

# now check Conjecture 3.8

conjec = Qform(Theta_Theta,Dupp)

e1 = Matrix(3,1,[1,0,0])

convar = 2 * (conjec.inv() - e1 * e1.transpose())

simplify(convar)

Out[6]:  2µ2

σ4

(
µ2 + 2σ2

)
− 2µ
σ4

(
µ2 + σ2

)
2µ2

σ4

− 2µ
σ4

(
µ2 + σ2

)
1
σ4

(
2µ2 + σ2

)
− 2µ
σ4

2µ2

σ4 − 2µ
σ4

2
σ4


In [7]: # are they the same?

simplify(theta_inv_var - convar)

Out[7]: 0 0 0
0 0 0
0 0 0


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