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1 Introduction

High-profile studies such as those conducted by The Cancer Genome Atlas
(TCGA) have provided biomedical researchers unprecedented access to high-
quality genomic datasets. Unfortunately, even basic analyses can be difficult for
researchers without specialized bioinformatics skills. MVisAGe was designed
with this audience in mind, and the package allows users to easily perform bi-
variate analyses involving mRNA expression and another quantitative genomic
variable (e.g. DNA copy number data). Although numerous approaches have
been developed for bivariate analyses of specific types of genomic data (Huang
et al. (2012) and Lahti et al. (2013)), Pearson and Spearman correlation coeffi-
cients continue to be widely used, particularly for exploratory analyses. MVis-
AGe uses these correlation coefficients because they can be computed efficiently
with matrix-based approaches. As currently implemented, hypothesis testing is
not the primary function of MVisAGe, although the package does include some
basic functionality for assessing the statistical significance of the Pearson and
Spearman correlation coefficients it computes. Instead, MVisAGe allows users
to compute and visualize the correlation coefficients on a regional or genomewide
basis with the goal of assessing the effect of an underlying genomic alteration
(e.g. DNA copy number change) on gene expression.

A typical MVisAGe analysis starts with two matrices of quantitative genomic
data, one of which contains gene expression data (exp.mat). The second matrix
(called cn.mat here) contains data from another genomic variable that may
be associated with gene expression, say DNA copy number data. Although
MVisAGe may be applied if cn.mat is a matrix of gene-level DNA methylation
data, in this vignette we will focus exclusively on DNA copy number data. The
rows of both exp.mat and cn.mat are indexed by genes, and the columns are
indexed by samples. It is important to note that MVisAGe does not perform any
type of preprocessing or normalization. Thus expression measurements should
be quantified using RPKM, RSEM, etc., and DNA copy number measurments
should be log2 ratios.

Users can apply MVisAGe to their own data or data that has been down-
loaded from public repositories. In this vignette we use two TCGA head and
neck squamous cell carcinoma (HNSC) datasets that were downloaded from
the Broad Institute’s Firehose GDAC (https://gdac.broadinstitute.org/). The
R data object MVisAGe.RData that is included in the package contains gene
expression and DNA copy number data that was produced as follows:

� The gene expression file

HNSC.rnaseqv2 illuminahiseq rnaseqv2 unc edu Level 3 RSEM genes normalized data.data.txt

and the copy number file all data by genes.txt were downloaded,
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� We restricted both datasets to rows corresponding to genes in chr11 and
chr12,

� We restricted both datasets to the samples in the first 100 columns.

Now we install the package and load the data.

> library(MVisAGe)

> data(MVisAGe)

> ls()

[1] "cn.mat" "exp.mat" "gene.annot" "sample.annot"

> exp.mat[1:5, 1:5]

TCGA.4P.AA8J.01A.11R.A39I.07 TCGA.BA.4074.01A.01R.1436.07

gene_id "normalized_count" "normalized_count"

A2ML1|144568 "2258.5118" "237.0097"

A2M|2 "8160.1109" "1567.7058"

AAAS|8086 "1064.8590" "574.6041"

AACS|65985 "1416.7309" "580.7702"

TCGA.BA.4075.01A.01R.1436.07 TCGA.BA.4076.01A.01R.1436.07

gene_id "normalized_count" "normalized_count"

A2ML1|144568 "44.4861" "6187.5902"

A2M|2 "993.1288" "1194.8052"

AAAS|8086 "580.9996" "575.6264"

AACS|65985 "1157.7114" "2010.7569"

TCGA.BA.4077.01B.01R.1436.07

gene_id "normalized_count"

A2ML1|144568 "2346.0058"

A2M|2 "1963.4216"

AAAS|8086 "860.9240"

AACS|65985 "1442.2522"

> cn.mat[1:5, 1:5]

Locus.ID Cytoband TCGA.4P.AA8J.01A.11D.A390.01

A2M " 2" "12p13.31" " 0.184"

A2ML1 " 144568" "12p13.31" " 0.184"

A2MP1 " -3926" "12p13.31" " 0.184"

AAAS " 8086" "12q13.13" " 0.022"

AACS " 65985" "12q24.31" " 0.022"

TCGA.BA.4074.01A.01D.1432.01 TCGA.BA.4075.01A.01D.1432.01

A2M " 0.001" "-0.063"

A2ML1 " 0.001" "-0.063"

A2MP1 " 0.001" "-0.063"

AAAS " 0.013" "-0.140"

AACS " 0.002" "-0.234"
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The above output shows that exp.mat and cn.mat are matrices of character
values that contain extraneous rows and columns. Moreover, the gene names
are not the same in the two matrices, and neither are the sample identifiers. The
section below introduces two ’helper functions’ that are specifically designed to
reformat TCGA data downloaded from The Broad Institute’s Furehose GDAC.
Users with comparable gene names and sample identifiers may choose to skip
ahead to the following section.

2 Reformatting TCGA Data

The tcga.exp.convert() and tcga.cn.convert() functions can be applied to refor-
mat exp.mat and cn.mat, respectively. exp.mat = tcga.exp.convert(exp.mat)
removes the extraneous top row, shortens the TCGA barcodes in the column
names to the form TCGA.XX.XXXX.XXX, rewrites the row names of the form
GENE SYMBOL|GENE ID number as GENE SYMBOL, removes any rows
corresponding to duplicate gene symbols, and creates a numeric matrix.

> exp.mat = tcga.exp.convert(exp.mat)

> exp.mat[1:5, 1:5]

TCGA.4P.AA8J.01A TCGA.BA.4074.01A TCGA.BA.4075.01A TCGA.BA.4076.01A

A2ML1 2258.5118 237.0097 44.4861 6187.5902

A2M 8160.1109 1567.7058 993.1288 1194.8052

AAAS 1064.8590 574.6041 580.9996 575.6264

AACS 1416.7309 580.7702 1157.7114 2010.7569

AASDHPPT 518.8723 1070.5634 1872.1694 584.5468

TCGA.BA.4077.01B

A2ML1 2346.0058

A2M 1963.4216

AAAS 860.9240

AACS 1442.2522

AASDHPPT 452.8393

cn.mat = tcga.cn.convert(cn.mat) removes extraneous columns, shortens TCGA
barcodes in the column names to the form TCGA.XX.XXXX.XXX, and creates
a numeric matrix.

> cn.mat = tcga.cn.convert(cn.mat)

> cn.mat[1:5, 1:5]

TCGA.4P.AA8J.01A TCGA.BA.4074.01A TCGA.BA.4075.01A TCGA.BA.4076.01A

A2M 0.184 0.001 -0.063 0.000

A2ML1 0.184 0.001 -0.063 0.000

A2MP1 0.184 0.001 -0.063 0.000

AAAS 0.022 0.013 -0.140 0.000

AACS 0.022 0.002 -0.234 -0.032
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TCGA.BA.4077.01B

A2M -0.708

A2ML1 -0.262

A2MP1 -0.708

AAAS -0.011

AACS -0.016

At this point both exp.mat and cn.mat are numeric matrices whose row names
are gene symbols and whose column names are TCGA barcodes.

3 Preparing Data for Analysis

A gene annotation file (gene.annot) containing the chromosome number, ge-
nomic position, and cytoband information is needed in order to plot gene-level
correlation coefficients. One such file is included here based on HGNC gene sym-
bols and hg38 gene positions, but users can easily create their own gene.annot
files if they have different gene identifiers or different genome builds. Gene anno-
tation files should contain the following three columns: column 1 = chromosome
number written as ”chr1”, column 2 = genomic position, column 3 = cytoband.
The row names of gene.annot should be the same type of gene names that are
used in exp.mat and cn.mat. An example is shown below:

> head(gene.annot)

chr pos cytoband

A1BG "chr19" " 58350152" "q13.43"

A1BG-AS1 "chr19" " 58353576" "q13.43"

A1CF "chr10" " 50842541" "q11.23"

A2M "chr12" " 9091834" "p13.31"

A2M-AS1 "chr12" " 9066615" "p13.31"

A2ML1 "chr12" " 8855259" "p13.31"

Optional sample annotation files (sample.annot) are two column files that
contain categorical sample annotation data about the samples, e.g. disease sta-
tus (tumor/normal) or vital status (alive/dead). The first column contains
sample ids that must have the same form as the column names of exp.mat and
cn.mat, while the second column contains the categorical sample annotation
data. The example below shows human papillomavirus (HPV) infection status
(HPV+/HPV-) and tumor site information (Oral Cavity, Hypopharynx, Lar-
ynx, Oropharynx) from the TCGA HNSC manuscript (Nature, 2015). In this
vignette we will restrict attention to HPV status.

> head(sample.annot)

Barcode New.HPV.Status Site

[1,] "TCGA.BA.4074.01A" "HPV-" "Oral Cavity"
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[2,] "TCGA.BA.4076.01A" "HPV-" "Larynx"

[3,] "TCGA.BA.4077.01A" "HPV+" "Oropharynx"

[4,] "TCGA.BA.4078.01A" "HPV-" "Larynx"

[5,] "TCGA.BA.5149.01A" "HPV-" "Oral Cavity"

[6,] "TCGA.BA.5151.01A" "HPV-" "Oral Cavity"

> sample.annot = sample.annot[,c(1, 2)]

> head(sample.annot)

Barcode New.HPV.Status

[1,] "TCGA.BA.4074.01A" "HPV-"

[2,] "TCGA.BA.4076.01A" "HPV-"

[3,] "TCGA.BA.4077.01A" "HPV+"

[4,] "TCGA.BA.4078.01A" "HPV-"

[5,] "TCGA.BA.5149.01A" "HPV-"

[6,] "TCGA.BA.5151.01A" "HPV-"

It is often the case that different genes appear in gene.annot, exp.mat, and
cn.mat. Moreover, the same sample identifiers may not be present in exp.mat
and cn.mat. For this reason MVisAGe includes an additional helper function
that is useful when preparing data for analysis. prepped.data = data.prep(exp.mat,
cn.mat, gene.annot, sample.annot, log.exp = F) produces a list containing four
elements, and the names are ”exp”, ”cn”, ”gene.annot”, and ”sample.annot”.
Gene names and sample ids now appear in the same order across the appro-
priate matrices. The default option sample.annot = NULL should be used if
no sample annotation data is available. The next argument, log.exp, specifies
whether the expression data has been log transformed. The default is FALSE,
and in this case a log2(x + 1) transformation is applied to exp.mat. The argu-
ment gene.list is used to restrict to a set of genes of interest, e.g. genes identified
by GISTIC (Beroukim et al. (2007), Mermel et al. (2011)) as having recurrent
DNA copy number gains or losses. All genes are used if gene.list = NULL, the
default value.

> prepped.data = data.prep(

+ exp.mat,

+ cn.mat,

+ gene.annot,

+ sample.annot,

+ log.exp = F,

+ gene.list = NULL)

[1] "Checking gene names"

[1] "Gene names in expression vs. CN"

[1] TRUE

[1] "Gene names in expression vs. gene annotation"

[1] TRUE

[1] "Checking sample names"
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[1] "Sample names in expression vs. CN"

[1] TRUE

[1] "Sample names in expression sample annotation"

[1] TRUE

> prepped.data[["exp"]][1:5, 1:5]

TCGA.BA.4074.01A TCGA.BA.4076.01A TCGA.BA.4078.01A TCGA.BA.5149.01A

A2M 10.615359 10.223767 12.156678 11.497423

A2ML1 7.894877 12.595395 9.854848 7.521612

AAAS 9.168933 9.171493 10.005123 10.033737

AACS 9.184306 10.974240 10.504708 9.861332

AASDHPPT 10.065501 9.193641 9.012680 8.307791

TCGA.BA.5151.01A

A2M 12.837524

A2ML1 13.287780

AAAS 8.865353

AACS 10.649798

AASDHPPT 10.203820

> prepped.data[["cn"]][1:5, 1:5]

TCGA.BA.4074.01A TCGA.BA.4076.01A TCGA.BA.4078.01A TCGA.BA.5149.01A

A2M 0.001 0.000 0.063 -0.351

A2ML1 0.001 0.000 0.063 -0.351

AAAS 0.013 0.000 0.070 0.014

AACS 0.002 -0.032 0.043 0.014

AASDHPPT -0.481 -0.806 -0.758 -0.752

TCGA.BA.5151.01A

A2M -0.002

A2ML1 -0.002

AAAS -0.002

AACS -0.003

AASDHPPT 0.000

> head(prepped.data[["gene.annot"]])

chr pos cytoband

A2M "12" " 9091834" "p13.31"

A2ML1 "12" " 8855259" "p13.31"

AAAS "12" " 53314541" "q13.13"

AACS "12" "125104351" "q24.31"

AASDHPPT "11" "106088128" "q22.3"

ABCB9 "12" "122946499" "q24.31"

> head(prepped.data[["sample.annot"]])
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Barcode New.HPV.Status

[1,] "TCGA.BA.4074.01A" "HPV-"

[2,] "TCGA.BA.4076.01A" "HPV-"

[3,] "TCGA.BA.4078.01A" "HPV-"

[4,] "TCGA.BA.5149.01A" "HPV-"

[5,] "TCGA.BA.5151.01A" "HPV-"

[6,] "TCGA.BA.5152.01A" "HPV-"

4 Computing correlation coefficients

The corr.compute() function computes gene-level correlation coefficients based
on input matrices of gene expression and DNA copy number data with matched
genes and sample ids. The output of corr.compute() is an eight-column matrix
whose rows are indexed by genes: column 1 = chromosome number; column 2
= genomic position (in base pairs); column 3 = cytoband; column 4 = the gene-
level correlation coefficient ρ computed from the expression and copy number
data; column 5 = the squared correlation coefficient; column 6 = the t statis-
tic ρ

√
(n− 2)/(1− ρ2), where n is the sample size and n − 2 is the degrees of

freedom; column 7 = the one-sided p-value corresponding to the t statistic in col-
umn 6 (the default ”greater” corresponds to ρ > 0, which is appropriate for gene
expression and DNA copy number data, whereas ”less”is appropriate for gene ex-
pression and DNA methylation data); and column 8 = the Bonferroni-Hochberg
FDR q-value based on the p-value in column 7. The corr.list.compute() function
allows users to apply corr.compute() separately to groups of samples defined
using sample annotation. The output of corr.list.compute(exp.mat, cn.mat,
gene.annot, sample.annot) is a list, and its length is the number of distinct
groups defined by the categorical sample annotation data (the length is 1 if
sample.annot = NULL). Each list member is a eight-column matrix produced
by corr.compute(). In the example below the correlation coefficients are shown
for the samples in the HPV- samples in the TCGA HNSC cohort.

> output.list = corr.list.compute(

+ prepped.data[["exp"]],

+ prepped.data[["cn"]],

+ prepped.data[["gene.annot"]],

+ prepped.data[["sample.annot"]],

+ method = "pearson",

+ digits = 5,

+ alternative = "greater")

> names(output.list)

[1] "HPV-" "HPV+"

> head(output.list[["HPV-"]])

chr pos cytoband R R^2 tStat

A2M "12" " 9091834" "p13.31" "0.087135" "0.0075924" "0.62464"
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A2ML1 "12" " 8855259" "p13.31" "-0.010413" "0.00010842" "-0.074365"

AAAS "12" " 53314541" "q13.13" "0.54434" "0.29631" "4.6341"

AACS "12" "125104351" "q24.31" "0.57309" "0.32843" "4.9941"

AASDHPPT "11" "106088128" "q22.3" "0.90148" "0.81267" "14.874"

ABCB9 "12" "122946499" "q24.31" "0.52961" "0.28049" "4.4589"

pValue qValue

A2M "0.2675" "0.38339"

A2ML1 "0.52949" "0.63071"

AAAS "1.2579e-05" "7.2015e-05"

AACS "3.6489e-06" "2.395e-05"

AASDHPPT "0" "0"

ABCB9 "2.2725e-05" "0.00011979"

5 Permutation-based statistical significance

As noted above, the output of corr.compute() and corr.list.compute() contains
p- and q-values derived from the test statistics t = ρ

√
((n− 2)/(1− ρ2)). The

perm.significance() function uses a permutation-based approach to assess sig-
nificance that is similar to the method introduced by Salari et al. (2010). The
significance of an observed correlation ρg for gene g is assessed using an empiri-
cal null distribution obtained by randomly permuting the samples for g. This is
done by randomly permuting the columns of cn.mat, so the same permutation
is used for each gene. The output of perm.significance() is a seven-column ma-
trix. The first five columns are identical to the corresponding columns produced
by corr.compute(), while column 6 contains the one-side permutation-based p-
value for the observed value of ρ and column 7 contains the Benjamini-Hochberg
q-value associated with the p-value in column 6. Like corr.list.compute(), the
function perm.significance.list.compute() can be applied when multiple groups
are defined by sample annotation data.

6 Plotting correlation coefficients

As noted in the introduction, MVisAGe can produce graphical output to vi-
sualize the correlation coefficients produced by corr.list.compute() in a given
genomic region. Three different functions are available depending on the size
of the genomic region of interest. In each case the input is a list produced by
corr.list.compute(), and there are a variety of graphical parameters that can be
defined by the user.

As name implies, unsmooth.region.plot() plots raw correlation coefficients in
a region defined by the user. Because of the inherent noise, this function is best
suited to regions containing a relatively small number of genes.

> unsmooth.region.plot(

+ plot.list = output.list,

+ plot.chr = 11,
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+ plot.start = 69e6,

+ plot.stop = 70.5e6,

+ plot.column = "R",

+ plot.points = T,

+ plot.lines = T,

+ gene.names = T,

+ annot.colors = c("black", "red", "green", "blue", "cyan"),

+ vert.pad = .05,

+ num.ticks = 5,

+ ylim.low = NULL,

+ ylim.high = NULL,

+ pch.vec = c(19, 19),

+ lty.vec = NULL,

+ lwd.vec = c(2, 2),

+ plot.legend = T,

+ legend.loc = "bottomright"

+ )
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The above figure shows that HPV- samples have markedly higher Pearson cor-
relation coefficients in chr11q13.3, a region that is frequently amplified in HNSC
and contains the known driver genes CCND1, FADD , and CTTN .

The smooth.region.plot() function applies loess smoothing to the correlation
coefficients so users can visualize regional trends in the correlation coefficients
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over larger chromosomal regions. This is done because the noise present in the
gene-level correlation coefficients can make it difficult to observe regional trends
that may be of interest. The level of smoothing is controlled by the loess.span
parameter, which is measured in number of genes. In particular, loess.span is
used to define the span parameter in the loess function using the formula span =

loess.span
n+(2∗expand.size) , where n is the number of genes in the region and expand.size

is another parameter (also measured in number of genes) used to lessen the
effects of smoothing at the end of the region. Additional information about the
span parameter can be found in help menu for the loess() function, while details
about expand.size are available in the forthcoming manuscript with Walter et
al.

> smooth.region.plot(

+ plot.list = output.list,

+ plot.chr = 11,

+ plot.start = 0e6,

+ plot.stop = 135e6,

+ plot.column = "R^2",

+ annot.colors = c("black", "red", "green", "blue", "cyan"),

+ vert.pad = 0,

+ ylim.low = NULL,

+ ylim.high = NULL,

+ lty.vec = c(1, 2),

+ lwd.vec = c(3, 3),

+ plot.legend = T,

+ legend.loc = "topleft",

+ loess.span = 50,

+ expand.size = 3,

+ xaxis.label = "Position (Mb)",

+ yaxis.label = expression(rho^2),

+ main.label = NULL,

+ axis.cex = 1,

+ label.cex = 1,

+ xaxis.line = 2.5,

+ yaxis.line = 2.5,

+ main.line = 0

+ )
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The above figure shows that HPV- samples exhibit a pronounced peak near
70Mb that is effectively absent in the HPV+ samples, which agrees with the
output from unsmooth.region.plot() shown above.

Although the smooth.region.plot() function is useful for plotting smoothed
correlation coefficients in a region of a given chromosome, smooth.genome.plot()
should be used to make similar figures for multiple chromosomes or across the
genome. The figure produced in the following example is similar to the one
produced above by smooth.region.plot(), only now we show both chr11 and
chr12.

> smooth.genome.plot(plot.list = output.list,

+ plot.column = "R",

+ annot.colors = c("black", "red", "green", "blue", "cyan"),

+ vert.pad = 0.05,

+ ylim.low = NULL,

+ ylim.high = NULL,

+ plot.legend = T,

+ legend.loc = "bottomright",

+ lwd.vec = c(3, 3),

+ lty.vec = c(1, 2),

+ loess.span = 100,

+ expand.size = 100,

+ rect.colors = c("light gray", "gray"),
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+ chr.label = T,

+ xaxis.label = "Chromosome",

+ yaxis.label = expression(rho),

+ main.label = NULL,

+ axis.cex = 1,

+ label.cex = 1,

+ xaxis.line = 1.5,

+ yaxis.line = 2.5,

+ main.line = 0)
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7 Copy number heatmaps

Recurrent DNA copy number changes are of interest because they may be as-
sociated with changes in expression of regional genes. Although plots of the
correlation coefficients can be used to visualize the magnitude of the associa-
tion in a given region, copy number heatmaps are useful because they can be
used to visualize the DNA copy number changes. Therefore the copy number
heatmaps produced by cn.region.heatmap() can be used in conjunction with
plots produced by smooth.region.plot() to explore copy number changes and
the resulting effect on gene expression in a given chromosomal region.
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> cn.region.heatmap(cn.mat = prepped.data[["cn"]],

+ gene.annot = prepped.data[["gene.annot"]],

+ plot.chr = 11,

+ plot.start = 0e6,

+ plot.stop = 135e6,

+ sample.annot = prepped.data[["sample.annot"]],

+ sample.cluster = T,

+ low.thresh = -2,

+ high.thresh = 2,

+ num.cols = 50,

+ collist = c("blue", "white", "red"),

+ annot.colors = c("black", "red"),

+ plot.list = output.list,

+ plot.sample.annot = T,

+ cytoband.colors = c("gray90", "gray60")

+ )

The above heatmap illustrates the presence of recurrent copy number gains
at chr11q13.3 in the HPV- samples (black annotation bars) that are largely
absent in the HPV+ samples (red annotation bars). The output from un-
smooth.region.plot() and smooth.region.plot() shown above suggests that these
amplifications lead to increased expression of regional genes, thereby illustrating
their importance.
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