
Package ‘MFPCA’
January 20, 2025

Type Package

Title Multivariate Functional Principal Component Analysis for Data
Observed on Different Dimensional Domains

Version 1.3-10

Date 2022-09-15

Maintainer Clara Happ-Kurz <chk_R@gmx.de>

Description Calculate a multivariate functional principal component analysis
for data observed on different dimensional domains. The estimation algorithm
relies on univariate basis expansions for each element of the multivariate
functional data (Happ & Greven, 2018) <doi:10.1080/01621459.2016.1273115>.
Multivariate and univariate functional data objects are
represented by S4 classes for this type of data implemented in the package
'funData'. For more details on the general concepts of both packages and a case
study, see Happ-Kurz (2020) <doi:10.18637/jss.v093.i05>.

URL https://github.com/ClaraHapp/MFPCA

License GPL-2

Imports abind, foreach, irlba, Matrix(>= 1.5-0), methods, mgcv (>=
1.8-33), plyr, stats

Depends R (>= 3.2.0), funData (>= 1.3-4)

Suggests covr, fda, testthat (>= 2.0.0)

NeedsCompilation yes

SystemRequirements libfftw3 (>= 3.3.4)

RoxygenNote 7.2.1

Author Clara Happ-Kurz [aut, cre] (<https://orcid.org/0000-0003-4737-3835>)

Repository CRAN

Date/Publication 2022-09-15 08:30:02 UTC

1

https://doi.org/10.1080/01621459.2016.1273115
https://doi.org/10.18637/jss.v093.i05
https://github.com/ClaraHapp/MFPCA
https://orcid.org/0000-0003-4737-3835

2 FCP_TPA

Contents
FCP_TPA . 2
MFPCA . 4
multivExpansion . 10
PACE . 11
plot.MFPCAfit . 13
predict.MFPCAfit . 14
print.MFPCAfit . 15
print.summary.MFPCAfit . 16
scoreplot . 16
scoreplot.MFPCAfit . 17
screeplot.MFPCAfit . 18
summary.MFPCAfit . 19
ttv . 19
UMPCA . 21
univDecomp . 22
univExpansion . 23

Index 26

FCP_TPA The functional CP-TPA algorithm

Description

This function implements the functional CP-TPA (FCP-TPA) algorithm, that calculates a smooth
PCA for 3D tensor data (i.e. N observations of 2D images with dimension S1 x S2). The results are
given in a CANDECOMP/PARAFRAC (CP) model format

X =

K∑
k=1

dk · uk ◦ vk ◦ wk

where ◦ stands for the outer product, dk is a scalar and uk, vk, wk are eigenvectors for each direction
of the tensor. In this representation, the outer product vk◦wk can be regarded as the k-th eigenimage,
while dk · uk represents the vector of individual scores for this eigenimage and each observation.

Usage

FCP_TPA(
X,
K,
penMat,
alphaRange,
verbose = FALSE,
tol = 1e-04,
maxIter = 15,
adaptTol = TRUE

)

FCP_TPA 3

Arguments

X The data tensor of dimensions N x S1 x S2.

K The number of eigentensors to be calculated.

penMat A list with entries v and w, containing a roughness penalty matrix for each direc-
tion of the image. The algorithm does not induce smoothness along observations
(see Details).

alphaRange A list of length 2 with entries v and w , containing the range of smoothness
parameters to test for each direction.

verbose Logical. If TRUE, computational details are given on the standard output during
calculation of the FCP_TPA.

tol A numeric value, giving the tolerance for relative error values in the algorithm.
Defaults to 1e-4. It is automatically multiplied by 10 after maxIter steps, if
adaptTol = TRUE.

maxIter A numeric value, the maximal iteration steps. Can be doubled, if adaptTol =
TRUE.

adaptTol Logical. If TRUE, the tolerance is adapted (multiplied by 10), if the algorithm
has not converged after maxIter steps and another maxIter steps are allowed
with the increased tolerance, see Details. Use with caution. Defaults to TRUE.

Details

The smoothness of the eigenvectors vk, wk is induced by penalty matrices for both image directions,
that are weighted by smoothing parameters αvk, αwk. The eigenvectors uk are not smoothed, hence
the algorithm does not induce smoothness along observations.

Optimal smoothing parameters are found via a nested generalized cross validation. In each iteration
of the TPA (tensor power algorithm), the GCV criterion is optimized via optimize on the interval
specified via alphaRange$v (or alphaRange$w, respectively).

The FCP_TPA algorithm is an iterative algorithm. Convergence is assumed if the relative difference
between the actual and the previous values are all below the tolerance level tol. The tolerance level
is increased automatically, if the algorithm has not converged after maxIter steps and if adaptTol
= TRUE. If the algorithm did not converge after maxIter steps (or 2 * maxIter) steps, the function
throws a warning.

Value

d A vector of length K, containing the numeric weights dk in the CP model.

U A matrix of dimensions N x K, containing the eigenvectors uk in the first dimen-
sion.

V A matrix of dimensions S1 x K, containing the eigenvectors vk in the second
dimension.

W A matrix of dimensions S2 x K, containing the eigenvectors wk in the third di-
mension.

4 MFPCA

References

G. I. Allen, "Multi-way Functional Principal Components Analysis", IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing, 2013.

See Also

fcptpaBasis

Examples

set.seed(1234)

N <- 100
S1 <- 75
S2 <- 75

define "true" components
v <- sin(seq(-pi, pi, length.out = S1))
w <- exp(seq(-0.5, 1, length.out = S2))

simulate tensor data with dimensions N x S1 x S2
X <- rnorm(N, sd = 0.5) %o% v %o% w

create penalty matrices (penalize first differences for each dimension)
Pv <- crossprod(diff(diag(S1)))
Pw <- crossprod(diff(diag(S2)))

estimate one eigentensor
res <- FCP_TPA(X, K = 1, penMat = list(v = Pv, w = Pw),

alphaRange = list(v = c(1e-4, 1e4), w = c(1e-4, 1e4)),
verbose = TRUE)

plot the results and compare to true values
plot(res$V)
points(v/sqrt(sum(v^2)), pch = 20)
legend("topleft", legend = c("True", "Estimated"), pch = c(20, 1))

plot(res$W)
points(w/sqrt(sum(w^2)), pch = 20)
legend("topleft", legend = c("True", "Estimated"), pch = c(20, 1))

MFPCA Multivariate functional principal component analysis for functions on
different (dimensional) domains

Description

This function calculates a multivariate functional principal component analysis (MFPCA) based on
i.i.d. observations x1, . . . , xN of a multivariate functional data-generating processX = (X(1), . . . X(p))

MFPCA 5

with elements X(j) ∈ L2(Tj) defined on a domain Tj ⊂ IRdj . In particular, the elements can be
defined on different (dimensional) domains. The results contain the mean function, the estimated
multivariate functional principal components ψ̂1, . . . , ψ̂M (having the same structure as xi), the as-
sociated eigenvalues ν̂1 ≥ . . . ≥ ν̂M > 0 and the individual scores ρ̂im = ̂< xi, ψm >. Moreover,
estimated trajectories for each observation based on the truncated Karhunen-Loeve representation

x̂i =

M∑
m=1

ρ̂imψ̂m

are given if desired (fit = TRUE). The implementation of the observations xi = (x
(1)
i , . . . , x

(p)
i), i =

1, . . . , N , the mean function and multivariate functional principal components ψ̂1, . . . , ψ̂M uses the
multiFunData class, which is defined in the package funData.

Usage

MFPCA(
mFData,
M,
uniExpansions,
weights = rep(1, length(mFData)),
fit = FALSE,
approx.eigen = FALSE,
bootstrap = FALSE,
nBootstrap = NULL,
bootstrapAlpha = 0.05,
bootstrapStrat = NULL,
verbose = options()$verbose

)

Arguments

mFData A multiFunData object containing the N observations.

M The number of multivariate functional principal components to calculate.

uniExpansions A list characterizing the (univariate) expansion that is calculated for each ele-
ment. See Details.

weights An optional vector of weights, defaults to 1 for each element. See Details.

fit Logical. If TRUE, a truncated multivariate Karhunen-Loeve representation for
the data is calculated based on the estimated scores and eigenfunctions.

approx.eigen Logical. If TRUE, the eigenanalysis problem for the estimated covariance matrix
is solved approximately using the irlba package, which is much faster. If the
number M of eigenvalues to calculate is high with respect to the number of ob-
servations in mFData or the number of estimated univariate eigenfunctions, the
approximation may be inappropriate. In this case, approx.eigen is set to FALSE
and the function throws a warning. Defaults to FALSE.

bootstrap Logical. If TRUE, pointwise bootstrap confidence bands are calculated for the
multivariate functional principal components. Defaults to FALSE. See Details.

6 MFPCA

nBootstrap The number of bootstrap iterations to use. Defaults to NULL, which leads to an
error, if bootstrap = TRUE.

bootstrapAlpha A vector of numerics (or a single number) giving the significance level for boot-
strap intervals. Defaults to 0.05.

bootstrapStrat A stratification variable for bootstrap. Must be a factor of length nObs(mFData)
or NULL (default). If NULL, no stratification is made in the bootstrap resam-
pling, i.e. the curves are sampled with replacement. If bootstrapStrat is not
NULL, the curves are resampled with replacement within the groups defined by
bootstrapStrat, hence keeping the group proportions fixed.

verbose Logical. If TRUE, the function reports extra-information about the progress (incl.
timestamps). Defaults to options()$verbose.

Details

Weighted MFPCA: If the elements vary considerably in domain, range or variation, a weight
vector w1, . . . , wp can be supplied and the MFPCA is based on the weighted scalar product

<< f, g >>w=

p∑
j=1

wj

∫
Tj

f (j)(t)g(j)(t)dt

and the corresponding weighted covariance operator Γw.

Bootstrap: If bootstrap = TRUE, pointwise bootstrap confidence bands are generated for the
multivariate eigenvalues ν̂1, . . . , ν̂M as well as for multivariate functional principal components
ψ̂1, . . . , ψ̂M . The parameter nBootstrap gives the number of bootstrap iterations. In each itera-
tion, the observations are resampled on the level of (multivariate) functions and the whole MFPCA
is recalculated. In particular, if the univariate basis depends on the data (FPCA approaches), ba-
sis functions and scores are both re-estimated. If the basis functions are fixed (e.g. splines), the
scores from the original estimate are used to speed up the calculations. The confidence bands for
the eigenfunctions are calculated separately for each element as pointwise percentile bootstrap
confidence intervals. Analogously, the confidence bands for the eigenvalues are also percentile
bootstrap confidence bands. The significance level(s) can be defined by the bootstrapAlpha
parameter, which defaults to 5%. As a result, the MFPCA function returns a list CI of the same
length as bootstrapAlpha, containing the lower and upper bounds of the confidence bands for
the principal components as multiFunData objects of the same structure as mFData. The confi-
dence bands for the eigenvalues are returned in a list CIvalues, containing the upper and lower
bounds for each significance level.

Univariate Expansions: The multivariate functional principal component analysis relies on
a univariate basis expansion for each element X(j). The univariate basis representation is cal-
culated using the univDecomp function, that passes the univariate functional observations and
optional parameters to the specific function. The univariate decompositions are specified via the
uniExpansions argument in the MFPCA function. It is a list of the same length as the mFData ob-
ject, i.e. having one entry for each element of the multivariate functional data. For each element,
uniExpansion must specify at least the type of basis functions to use. Additionally, one may add
further parameters. The following basis representations are supported:

• Given basis functions. Then uniExpansions[[j]] = list(type = "given", functions,scores,
ortho), where functions is a funData object on the same domain as mFData, containing

MFPCA 7

the given basis functions. The parameters scores and ortho are optional. scores is an N x
K matrix containing the scores (or coefficients) of the observed functions for the given basis
functions, where N is the number of observed functions and K is the number of basis func-
tions. Note that the scores need to be demeaned to give meaningful results. If scores are not
supplied, they are calculated using the given basis functions. The parameter ortho specifies
whether the given basis functions are orthonormal orhto = TRUE or not ortho = FALSE. If
ortho is not supplied, the functions are treated as non-orthogonal. scores and ortho are not
checked for plausibility, use them at your own risk!

• Univariate functional principal component analysis. Then uniExpansions[[j]] = list(type
= "uFPCA", nbasis, pve, npc, makePD), where nbasis,pve,npc,makePD are parameters
passed to the PACE function for calculating the univariate functional principal component
analysis.

• Basis functions expansions from the package fda. Then uniExpansions[[j]] = list(type
= "fda", ...), where ... are passed to funData2fd, which heavily builds on eval.fd. If
fda is not available, a warning is thrown.

• Spline basis functions (not penalized). Then uniExpansions[[j]] = list(type = "splines1D",
bs, m, k), where bs,m,k are passed to the functions univDecomp and univExpansion. For
two-dimensional tensor product splines, use type = "splines2D".

• Spline basis functions (with smoothness penalty). Then uniExpansions[[j]] = list(type
= "splines1Dpen", bs, m,k), where bs,m,k are passed to the functions univDecomp and
univExpansion. Analogously to the unpenalized case, use type = "splines2Dpen" for 2D
penalized tensor product splines.

• Cosine basis functions. Use uniExpansions[[j]] = list(type = "DCT2D",qThresh, parallel)
for functions one two-dimensional domains (images) and type = "DCT3D" for 3D images.
The calculation is based on the discrete cosine transform (DCT) implemented in the C-
library fftw3. If this library is not available, the function will throw a warning. qThresh
gives the quantile for hard thresholding the basis coefficients based on their absolute value.
If parallel = TRUE, the coefficients for different images are calculated in parallel.

See univDecomp and univExpansion for details.

Value

An object of class MFPCAfit containing the following components:

values A vector of estimated eigenvalues ν̂1, . . . , ν̂M .

functions A multiFunData object containing the estimated multivariate functional princi-
pal components ψ̂1, . . . , ψ̂M .

scores A matrix of dimension N x M containing the estimated scores ρ̂im.

vectors A matrix representing the eigenvectors associated with the combined univariate
score vectors. This might be helpful for calculating predictions.

normFactors The normalizing factors used for calculating the multivariate eigenfunctions and
scores. This might be helpful when calculation predictions.

meanFunction A multivariate functional data object, corresponding to the mean function. The
MFPCA is applied to the de-meaned functions in mFData.

fit A multiFunData object containing estimated trajectories for each observation
based on the truncated Karhunen-Loeve representation and the estimated scores
and eigenfunctions.

8 MFPCA

CI A list of the same length as bootstrapAlpha, containing the pointwise lower
and upper bootstrap confidence bands for each eigenfunction and each signifi-
cance level in form of multiFunData objects (only if bootstrap = TRUE).

CIvalues A list of the same length as bootstrapAlpha, containing the lower and upper
bootstrap confidence bands for each eigenvalue and each significance level (only
if bootstrap = TRUE).

References

C. Happ, S. Greven (2018): Multivariate Functional Principal Component Analysis for Data Ob-
served on Different (Dimensional) Domains. Journal of the American Statistical Association,
113(522): 649-659. DOI: doi:10.1080/01621459.2016.1273115

C. Happ-Kurz (2020): Object-Oriented Software for Functional Data. Journal of Statistical Soft-
ware, 93(5): 1-38. DOI: doi:10.18637/jss.v093.i05

See Also

See Happ-Kurz (2020. doi:10.18637/jss.v093.i05) for a general introduction to the funData pack-
age and it’s interplay with MFPCA. This file also includes a case study on how to use MFPCA. Useful
functions: multiFunData, PACE, univDecomp, univExpansion, summary, plot, scoreplot

Examples

oldPar <- par(no.readonly = TRUE)

set.seed(1)

simulate data (one-dimensional domains)
sim <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),

M = 5, eFunType = "Poly", eValType = "linear", N = 100)

MFPCA based on univariate FPCA
uFPCA <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "uFPCA"),

list(type = "uFPCA")))
summary(uFPCA)
plot(uFPCA) # plot the eigenfunctions as perturbations of the mean
scoreplot(uFPCA) # plot the scores

MFPCA based on univariate spline expansions
splines <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "splines1D", k = 10),

list(type = "splines1D", k = 10)),
fit = TRUE) # calculate reconstruction, too

summary(splines)
plot(splines) # plot the eigenfunctions as perturbations of the mean
scoreplot(splines) # plot the scores

Compare estimates to true eigenfunctions
flip to make results more clear
uFPCA$functions <- flipFuns(sim$trueFuns, uFPCA$functions)
splines$functions <- flipFuns(sim$trueFuns, splines$functions)

https://doi.org/10.1080/01621459.2016.1273115
https://doi.org/10.18637/jss.v093.i05
https://doi.org/10.18637/jss.v093.i05

MFPCA 9

par(mfrow = c(1,2))
plot(sim$trueFuns[[1]], main = "Eigenfunctions\n1st Element", lwd = 2)
plot(uFPCA$functions[[1]], lty = 2, add = TRUE)
plot(splines$functions[[1]], lty = 3, add = TRUE)

plot(sim$trueFuns[[2]], main = "Eigenfunctions\n2nd Element", lwd = 2)
plot(uFPCA$functions[[2]], lty = 2, add = TRUE)
plot(splines$functions[[2]], lty = 3, add = TRUE)
legend("bottomleft", c("True", "uFPCA", "splines"), lty = 1:3, lwd = c(2,1,1))

Test reconstruction for the first 10 observations
plot(sim$simData[[1]], obs = 1:10, main = "Reconstruction\n1st Element", lwd = 2)
plot(splines$fit[[1]], obs = 1:10, lty = 2, col = 1, add = TRUE)

plot(sim$simData[[2]], obs = 1:10, main = "Reconstruction\n2nd Element", lwd = 2)
plot(splines$fit[[2]], obs = 1:10, lty = 2, col = 1, add = TRUE)
legend("bottomleft", c("True", "Reconstruction"), lty = c(1,2), lwd = c(2,1))

MFPCA with Bootstrap-CI for the first 2 eigenfunctions
ATTENTION: Takes long

splinesBoot <- MFPCA(sim$simData, M = 2, uniExpansions = list(list(type = "splines1D", k = 10),
list(type = "splines1D", k = 10)),

bootstrap = TRUE, nBootstrap = 100, bootstrapAlpha = c(0.05, 0.1), verbose = TRUE)
summary(splinesBoot)

plot(splinesBoot$functions[[1]], ylim = c(-2,1.5))
plot(splinesBootCIalpha_0.05$lower[[1]], lty = 2, add = TRUE)
plot(splinesBootCIalpha_0.05$upper[[1]], lty = 2, add = TRUE)
plot(splinesBootCIalpha_0.1$lower[[1]], lty = 3, add = TRUE)
plot(splinesBootCIalpha_0.1$upper[[1]], lty = 3, add = TRUE)
abline(h = 0, col = "gray")

plot(splinesBoot$functions[[2]], ylim = c(-1,2.5))
plot(splinesBootCIalpha_0.05$lower[[2]], lty = 2, add = TRUE)
plot(splinesBootCIalpha_0.05$upper[[2]], lty = 2, add = TRUE)
plot(splinesBootCIalpha_0.1$lower[[2]], lty = 3, add = TRUE)
plot(splinesBootCIalpha_0.1$upper[[2]], lty = 3, add = TRUE)
abline(h = 0, col = "gray")
legend("topleft", c("Estimate", "95% CI", "90% CI"), lty = 1:3, lwd = c(2,1,1))

Plot 95% confidence bands for eigenvalues
plot(1:2, splinesBoot$values, pch = 20, ylim = c(0, 1.5),

main = "Estimated eigenvalues with 95% CI",
xlab = "Eigenvalue no.", ylab = "")

arrows(1:2, splinesBoot$CIvalues$alpha_0.05$lower,
1:2, splinesBoot$CIvalues$alpha_0.05$upper,
length = 0.05, angle = 90, code = 3)

points(1:2, sim$trueVals[1:2], pch = 20, col = 4)
legend("topright", c("Estimate", "True value"), pch = 20, col = c(1,4))

simulate data (two- and one-dimensional domains)

10 multivExpansion

ATTENTION: Takes long

set.seed(2)
sim <- simMultiFunData(type = "weighted",

argvals = list(list(seq(0,1,0.01), seq(-1,1,0.02)), list(seq(-0.5,0.5,0.01))),
M = list(c(4,5), 20), eFunType = list(c("Fourier", "Fourier"), "Poly"),
eValType = "exponential", N = 150)

MFPCA based on univariate spline expansions (for images) and univariate FPCA (for functions)
pca <- MFPCA(sim$simData, M = 10,

uniExpansions = list(list(type = "splines2D", k = c(10,12)),
list(type = "uFPCA")))

summary(pca)
plot(pca) # plot the eigenfunctions as perturbations of the mean
scoreplot(pca) # plot the scores

Compare to true eigenfunctions
flip to make results more clear
pca$functions <- flipFuns(sim$trueFuns[1:10], pca$functions)

par(mfrow = c(5,2), mar = rep(2,4))
for(m in 2:6) # for m = 1, image.plot (used in plot(funData)) produces an error...
{

plot(sim$trueFuns[[1]], main = paste("True, m = ", m), obs = m)
plot(pca$functions[[1]], main = paste("Estimate, m = ", m), obs = m)

}

par(mfrow = c(1,1))
plot(sim$trueFuns[[2]], main = "Eigenfunctions (2nd element)", lwd = 2, obs= 1:5)
plot(pca$functions[[2]], lty = 2, add = TRUE, obs= 1:5)
legend("bottomleft", c("True", "MFPCA"), lty = 1:2, lwd = c(2,1))

par(oldPar)

multivExpansion Calculate multivariate basis expansion

Description

Calculate multivariate basis expansion

Usage

multivExpansion(multiFuns, scores)

Arguments

multiFuns A multivariate functional data object, containing the multivariate basis functions

scores A matrix containing the scores for each observation in each row. The number of
columns must match the number of basis functions.

PACE 11

Value

A multiFunData object containing the expanded functions for each observation.

PACE Univariate functional principal component analysis by smoothed co-
variance

Description

This function calculates a univariate functional principal components analysis by smoothed covari-
ance based on code from fpca.sc in package refund.

Usage

PACE(
funDataObject,
predData = NULL,
nbasis = 10,
pve = 0.99,
npc = NULL,
makePD = FALSE,
cov.weight.type = "none"

)

Arguments

funDataObject An object of class funData or irregFunData containing the functional data
observed, for which the functional principal component analysis is calculated.
If the data is sampled irregularly (i.e. of class irregFunData), funDataObject
is transformed to a funData object first.

predData An object of class funData, for which estimated trajectories based on a trun-
cated Karhunen-Loeve representation should be estimated. Defaults to NULL,
which implies prediction for the given data.

nbasis An integer, representing the number of B-spline basis functions used for esti-
mation of the mean function and bivariate smoothing of the covariance surface.
Defaults to 10 (cf. fpca.sc in refund).

pve A numeric value between 0 and 1, the proportion of variance explained: used to
choose the number of principal components. Defaults to 0.99 (cf. fpca.sc in
refund).

npc An integer, giving a prespecified value for the number of principal components.
Defaults to NULL. If given, this overrides pve (cf. fpca.sc in refund).

makePD Logical: should positive definiteness be enforced for the covariance surface es-
timate? Defaults to FALSE (cf. fpca.sc in refund).

12 PACE

cov.weight.type

The type of weighting used for the smooth covariance estimate. Defaults to
"none", i.e. no weighting. Alternatively, "counts" (corresponds to fpca.sc
in refund) weights the pointwise estimates of the covariance function by the
number of observation points.

Value

mu A funData object with one observation, corresponding to the mean function.

values A vector containing the estimated eigenvalues.

functions A funData object containing the estimated functional principal components.

scores An matrix of estimated scores for the observations in funDataObject. Each
row corresponds to the scores of one observation.

fit A funData object containing the estimated trajectories based on the truncated
Karhunen-Loeve representation and the estimated scores and functional princi-
pal components for predData (if this is not NULL) or funDataObject (if predData
is NULL).

npc The number of functional principal components: either the supplied npc, or the
minimum number of basis functions needed to explain proportion pve of the
variance in the observed curves (cf. fpca.sc in refund).

sigma2 The estimated measurement error variance (cf. fpca.sc in refund).

estVar The estimated smooth variance function of the data.

Warning

This function works only for univariate functional data observed on one-dimensional domains.

See Also

funData, fpcaBasis, univDecomp

Examples

oldPar <- par(no.readonly = TRUE)

simulate data
sim <- simFunData(argvals = seq(-1,1,0.01), M = 5, eFunType = "Poly",

eValType = "exponential", N = 100)

calculate univariate FPCA
pca <- PACE(sim$simData, npc = 5)

Plot the results
par(mfrow = c(1,2))
plot(sim$trueFuns, lwd = 2, main = "Eigenfunctions")
flip estimated functions for correct signs
plot(flipFuns(sim$trueFuns,pca$functions), lty = 2, add = TRUE)
legend("bottomright", c("True", "Estimate"), lwd = c(2,1), lty = c(1,2))

plot.MFPCAfit 13

plot(sim$simData, lwd = 2, main = "Some Observations", obs = 1:7)
plot(pca$fit, lty = 2, obs = 1:7, add = TRUE) # estimates are almost equal to true values
legend("bottomright", c("True", "Estimate"), lwd = c(2,1), lty = c(1,2))

par(oldPar)

plot.MFPCAfit Plot MFPCA results

Description

Plots the eigenfunctions as perturbations of the mean (i.e. the mean function plus/minus a constant
factor times each eigenfunction separately). If all elements have a one-dimensional domain, the
plots can be combined, otherwise the effects of adding and subtracting are shown in two separate
rows for each eigenfunction.

Usage

S3 method for class 'MFPCAfit'
plot(
x,
plotPCs = seq_len(nObs(x$functions)),
stretchFactor = NULL,
combined = FALSE,
...

)

Arguments

x An object of class MFPCAfit, typically returned by the MFPCA function.

plotPCs The principal components to be plotted. Defaults to all components in the
MFPCAfit object.

stretchFactor The factor by which the principal components are multiplied before adding /
subtracting them from the mean function. If NULL (the default), the median
absolute value of the scores of each eigenfunction is used.

combined Logical: Should the plots be combined? (Works only if all dimensions are one-
dimensional). Defaults to FALSE.

... Further graphical parameters passed to the plot.funData functions for functional
data.

Value

A plot of the principal components as perturbations of the mean.

See Also

MFPCA, plot.funData

14 predict.MFPCAfit

Examples

Simulate multivariate functional data on one-dimensonal domains
and calculate MFPCA (cf. MFPCA help)
set.seed(1)
simulate data (one-dimensional domains)
sim <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),

M = 5, eFunType = "Poly", eValType = "linear", N = 100)
MFPCA based on univariate FPCA
PCA <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "uFPCA"),

list(type = "uFPCA")))

Plot the results
plot(PCA, combined = TRUE) # combine addition and subtraction in one plot

predict.MFPCAfit Function prediction based on MFPCA results

Description

Predict functions based on a truncated multivariate Karhunen-Loeve representation:

x̂ = m̂u+

M∑
m=1

ρmψ̂m

with estimated mean function µ̂ and principal components ψm. The scores ρm can be either esti-
mated (reconstruction of observed functions) or user-defined (construction of new functions).

Usage

S3 method for class 'MFPCAfit'
predict(object, scores = object$scores, ...)

Arguments

object An object of class MFPCAfit, typically resulting from a MFPCA function call.

scores A matrix containing the score values. The number of columns in scores must
equal the number of principal components in object. Each row represents one
curve. Defaults to the estimated scores in object, which yields reconstructions
of the original data used for the MFPCA calculation.

... Arguments passed to or from other methods.

Value

A multiFunData object containing the predicted functions.

See Also

MFPCA

print.MFPCAfit 15

Examples

#' # Simulate multivariate functional data on one-dimensonal domains
and calculate MFPCA (cf. MFPCA help)
set.seed(1)
simulate data (one-dimensional domains)
sim <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),

M = 5, eFunType = "Poly", eValType = "linear", N = 100)
MFPCA based on univariate FPCA
PCA <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "uFPCA"),

list(type = "uFPCA")))

Reconstruct the original data
pred <- predict(PCA) # default reconstructs data used for the MFPCA fit

plot the results: 1st element
plot(sim$simData[[1]]) # original data
plot(pred[[1]], add = TRUE, lty = 2) # reconstruction

plot the results: 2nd element
plot(sim$simData[[2]]) # original data
plot(pred[[2]], add = TRUE, lty = 2) # reconstruction

print.MFPCAfit Print the results of a Multivariate Functional Principal Component
Analysis

Description

A print function for class MFPCAfit.

Usage

S3 method for class 'MFPCAfit'
print(x, ...)

Arguments

x An object of class MFPCAfit, usually returned by a call to MFPCA.

... Arguments passed to or from other methods.

Value

No return value, called for side effects

16 scoreplot

print.summary.MFPCAfit

Print summary of a Multivariate Functional Principal Component
Analysis

Description

A print method for class MFPCAfit.summary

Usage

S3 method for class 'summary.MFPCAfit'
print(x, ...)

Arguments

x An object of class MFPCAfit.summary, usually returned by a call to MFPCAfit.summary.

... Arguments passed to or from other methods.

Value

No return value, called for side effects

scoreplot Scoreplot Generic

Description

Redirects to plot.default

Usage

scoreplot(PCAobject, ...)

Arguments

PCAobject A principal component object

... Arguments passed from or to other methods

Value

A bivariate plot of scores.

scoreplot.MFPCAfit 17

scoreplot.MFPCAfit Plot the Scores of a Multivariate Functional Principal Component
Analysis

Description

This function plots two scores of a multivariate functional principal component analysis for each
observation.

Usage

S3 method for class 'MFPCAfit'
scoreplot(PCAobject, choices = 1:2, scale = FALSE, ...)

Arguments

PCAobject An object of class MFPCAfit, typically returned by the MFPCA function.

choices The indices of the scores that should by displayed. Defaults to 1:2, i.e. the
scores corresponding to the two leading modes of variability in the data.

scale Logical. Should the scores be scaled by the estimated eigenvalues to empha-
size the proportions of total variance explained by the components. Defaults to
FALSE.

... Further parameters passed to the plot.default function.

Value

A bivariate plot of scores.

See Also

MFPCA

Examples

and calculate MFPCA (cf. MFPCA help)
set.seed(1)
simulate data (one-dimensional domains)
sim <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),

M = 5, eFunType = "Poly", eValType = "linear", N = 100)
MFPCA based on univariate FPCA
PCA <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "uFPCA"),

list(type = "uFPCA")))

Plot the first two scores
scoreplot(PCA) # no scaling (default)
scoreplot(PCA, scale = TRUE) # scale the scores by the first two eigenvalues

18 screeplot.MFPCAfit

screeplot.MFPCAfit Screeplot for Multivariate Functional Principal Component Analysis

Description

This function plots the proportion of variance explained by the leading eigenvalues in an MFPCA
against the number of the principal component.

Usage

S3 method for class 'MFPCAfit'
screeplot(
x,
npcs = min(10, length(x$values)),
type = "lines",
ylim = NULL,
main = deparse(substitute(x)),
...

)

Arguments

x An object of class MFPCAfit, typically returned by a call to MFPCA.

npcs The number of eigenvalued to be plotted. Defaults to all eigenvalues if their
number is less or equal to 10, otherwise show only the leading first 10 eigenval-
ues.

type The type of screeplot to be plotted. Can be either "lines" or "barplot". De-
faults to "lines".

ylim The limits for the y axis. Can be passed either as a vector of length 2 or as
NULL (default). In the second case, ylim is set to (0,max(pve)), with pve the
proportion of variance explained by the principal components to be plotted.

main The title of the plot. Defaults to the variable name of x.

... Other graphic parameters passed to plot.default (for type = "lines") or barplot
(for type = "barplot").

Value

A screeplot, showing the decrease of the principal component score.

See Also

MFPCA, screeplot

summary.MFPCAfit 19

Examples

Simulate multivariate functional data on one-dimensonal domains
and calculate MFPCA (cf. MFPCA help)
set.seed(1)
simulate data (one-dimensional domains)
sim <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),

M = 5, eFunType = "Poly", eValType = "linear", N = 100)
MFPCA based on univariate FPCA
PCA <- MFPCA(sim$simData, M = 5, uniExpansions = list(list(type = "uFPCA"),

list(type = "uFPCA")))

screeplot
screeplot(PCA) # default options
screeplot(PCA, npcs = 3, type = "barplot", main= "Screeplot")

summary.MFPCAfit Summarize a Multivariate Functional Principal Component Analysis

Description

A summary method for class MFPCAfit

Usage

S3 method for class 'MFPCAfit'
summary(object, ...)

Arguments

object An object of class MFPCAfit, usually returned by a call to MFPCA.

... Arguments passed to or from other methods.

Value

An object of class summary.MFPCAfit

ttv Tensor times vector calculation

Description

Functionality adapted from the MATLAB tensor toolbox (https://www.tensortoolbox.org/).

Usage

ttv(A, v, dim)

https://www.tensortoolbox.org/

20 ttv

Arguments

A An array.

v A list of the same length as dim.

dim A vector specifying the dimensions for the multiplication.

Details

Let A be a tensor with dimensions d1 × d2 × . . . × dp and let v be a vector of length di. Then the
tensor-vector-product along the i-th dimension is defined as

Bj1...ji−1ji+1...jd =

di∑
i=1

Aj1...ji−1iji+1...jd · vi.

It can hence be seen as a generalization of the matrix-vector product.

The tensor-vector-product along several dimensions between a tensor A and multiple vectors v_1,...,v_k
(k ≤ p) is defined as a series of consecutive tensor-vector-product along the different dimensions.
For consistency, the multiplications are calculated from the dimension of the highest order to the
lowest.

Value

An array, the result of the multiplication.

References

B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm prototyp-
ing, ACM Transactions on Mathematical Software 32(4):635-653, December 2006.

See Also

UMPCA

Examples

create a three-mode tensor
a1 <- seq(0,1, length.out = 10)
a2 <- seq(-1,1, length.out = 20)
a3 <- seq(-pi, pi, length.out = 15)
A <-a1 %o% a2 %o% a3
dim(A)

multiply along different dimensions
dim(ttv(A = A, v = list(rnorm(10)), dim = 1))
dim(ttv(A = A, v = list(rnorm(20)), dim = 2))
dim(ttv(A = A, v = list(rnorm(15)), dim = 3))

multiply along more than one dimension
length(ttv(A = A, v = list(rnorm(10), rnorm(15)), dim = c(1,3)))

UMPCA 21

UMPCA UMPCA: Uncorrelated Multilinear Principle Component Analysis

Description

This function implements the uncorrelated multilinear principal component analysis for tensors of
dimension 2, 3 or 4. The code is basically the same as in the MATLAB toolbox UMPCA by Haiping
Lu (Link: https://www.mathworks.com/matlabcentral/fileexchange/35432-uncorrelated-multilinear-principal-component-analysis-umpca,
see also references).

Usage

UMPCA(TX, numP)

Arguments

TX The input training data in tensorial representation, the last mode is the sample
mode. For Nth-order tensor data, TX is of (N+1)th-order with the (N+1)-mode to
be the sample mode. E.g., 30x20x10x100 for 100 samples of size 30x20x10.

numP The dimension of the projected vector, denoted as P in the paper. It is the num-
ber of elementary multilinear projections (EMPs) in tensor-to-vector projection.

Value

Us The multilinear projection, consisting of numP (P in the paper) elementary mul-
tilinear projections (EMPs), each EMP is consisted of N vectors, one in each
mode.

TXmean The mean of the input training samples TX.

odrIdx The ordering index of projected features in decreasing variance.

Warning

As this algorithm aims more at uncorrelated features than at an optimal reconstruction of the data,
hence it might give poor results when used for the univariate decomposition of images in MFPCA.

References

Haiping Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Uncorrelated Multilinear Principal Com-
ponent Analysis for Unsupervised Multilinear Subspace Learning", IEEE Transactions on Neural
Networks, Vol. 20, No. 11, Page: 1820-1836, Nov. 2009.

https://www.mathworks.com/matlabcentral/fileexchange/35432-uncorrelated-multilinear-principal-component-analysis-umpca

22 univDecomp

Examples

set.seed(12345)

define "true" components
a <- sin(seq(-pi, pi, length.out = 100))
b <- exp(seq(-0.5, 1, length.out = 150))

simulate tensor data
X <- a %o% b %o% rnorm(80, sd = 0.5)

estimate one component
UMPCAres <- UMPCA(X, numP = 1)

plot the results and compare to true values
plot(UMPCAres$Us[[1]][,1])
points(a/sqrt(sum(a^2)), pch = 20) # eigenvectors are defined only up to a sign change!
legend("topright", legend = c("True", "Estimated"), pch = c(20, 1))

plot(UMPCAres$Us[[2]][,1])
points(b/sqrt(sum(b^2)), pch = 20)
legend("topleft", legend = c("True", "Estimated"), pch = c(20, 1))

univDecomp Univariate basis decomposition

Description

This function calculates a univariate basis decomposition for a (univariate) functional data object.

Usage

univDecomp(type, funDataObject, ...)

Arguments

type A character string, specifying the basis for which the decomposition is to be
calculated.

funDataObject A funData object, representing the (univariate) functional data samples.

... Further parameters, passed to the function for the particular basis to use.

Details

Functional data Xi(t) can often be approximated by a linear combination of basis functions bk(t)

Xi(t) =

K∑
k=1

θikbk(t), i = 1, . . . , N.

univExpansion 23

The basis functions may be prespecified (such as spline basis functions or Fourier bases) or can
be estimated from the data (e.g. by functional principal component analysis) and are the same
for all observations X1(t), . . . , Xn(t). The coefficients (or scores) θik reflect the weight of each
basis function bk(t) for the observed function Xi(t) and can be used to characterize the individual
observations.

Value

scores A matrix of scores (coefficients) for each observation based on the prespecified
basis functions.

B A matrix containing the scalar products of the basis functions. Can be NULL if
the basis functions are orthonormal.

ortho Logical. If TRUE, the basis functions are all orthonormal.

functions A functional data object, representing the basis functions. Can be NULL if the
basis functions are not estimated from the data, but have a predefined form. See
Details.

Warning

The options type = "DCT2D" and type = "DCT3D" have not been tested with ATLAS/MKL/OpenBLAS.

See Also

MFPCA, univExpansion, fpcaBasis, splineBasis1D, splineBasis1Dpen, splineBasis2D, splineBasis2Dpen,
umpcaBasis, fcptpaBasis, fdaBasis, dctBasis2D, dctBasis3D

Examples

generate some data
dat <- simFunData(argvals = seq(0,1,0.01), M = 5,

eFunType = "Poly", eValType = "linear", N = 100)$simData

decompose the data in univariate functional principal components...
decFPCA <- univDecomp(type = "uFPCA", funDataObject = dat, npc = 5)
str(decFPCA)

or in splines (penalized)
decSplines <- univDecomp(type = "splines1Dpen", funDataObject = dat) # use mgcv's default params
str(decSplines)

univExpansion Calculate a univariate basis expansion

Description

This function calculates a univariate basis expansion based on given scores (coefficients) and basis
functions.

24 univExpansion

Usage

univExpansion(
type,
scores,
argvals = ifelse(!is.null(functions), functions@argvals, NULL),
functions,
params = NULL

)

Arguments

type A character string, specifying the basis for which the decomposition is to be
calculated.

scores A matrix of scores (coefficients) for each observation based on the given basis
functions.

argvals A list, representing the domain of the basis functions. If functions is not NULL,
the usual default is functions@argvals. See funData and the underlying ex-
pansion functions for details.

functions A functional data object, representing the basis functions. Can be NULL if the
basis functions are not estimated from observed data, but have a predefined form.
See Details.

params A list containing the parameters for the particular basis to use.

Details

This function calculates functional data Xi(t), i = 1 . . . N that is represented as a linear combina-
tion of basis functions bk(t)

Xi(t) =

K∑
k=1

θikbk(t), i = 1, . . . , N.

The basis functions may be prespecified (such as spline basis functions or Fourier bases) or can
be estimated from observed data (e.g. by functional principal component analysis). If type =
"default" (i.e. a linear combination of arbitrary basis functions is to be calculated), both scores
and basis functions must be supplied.

Value

An object of class funData with N observations on argvals, corresponding to the linear combina-
tion of the basis functions.

Warning

The options type = "spline2Dpen", type = "DCT2D" and type = "DCT3D" have not been tested
with ATLAS/MKL/OpenBLAS.

univExpansion 25

See Also

MFPCA, splineFunction1D, splineFunction2D, splineFunction2Dpen, dctFunction2D, dctFunction3D,
expandBasisFunction

Examples

oldPar <- par(no.readonly = TRUE)
par(mfrow = c(1,1))

set.seed(1234)

Spline basis
simulate coefficients (scores) for N = 10 observations and K = 8 basis functions
N <- 10
K <- 8
scores <- t(replicate(n = N, rnorm(K, sd = (K:1)/K)))
dim(scores)

expand spline basis on [0,1]
funs <- univExpansion(type = "splines1D", scores = scores, argvals = list(seq(0,1,0.01)),

functions = NULL, # spline functions are known, need not be given
params = list(bs = "ps", m = 2, k = K)) # params for mgcv

plot(funs, main = "Spline reconstruction")

PCA basis
simulate coefficients (scores) for N = 10 observations and K = 8 basis functions
N <- 10
K <- 8

scores <- t(replicate(n = N, rnorm(K, sd = (K:1)/K)))
dim(scores)

Fourier basis functions as eigenfunctions
eFuns <- eFun(argvals = seq(0,1,0.01), M = K, type = "Fourier")

expand eigenfunction basis
funs <- univExpansion(type = "uFPCA", scores = scores,

argvals = NULL, # use argvals of eFuns (default)
functions = eFuns)

plot(funs, main = "PCA reconstruction")

par(oldPar)

Index

barplot, 18

dctBasis2D, 23
dctBasis3D, 23
dctFunction2D, 25
dctFunction3D, 25

eval.fd, 7
expandBasisFunction, 25

FCP_TPA, 2
fcptpaBasis, 4, 23
fdaBasis, 23
fpcaBasis, 12, 23
funData, 11, 12, 24
funData2fd, 7

irregFunData, 11

MFPCA, 4, 13–15, 17–19, 23, 25
multiFunData, 5, 7, 8
multivExpansion, 10

optimize, 3

PACE, 7, 8, 11
plot, 8
plot.default, 16–18
plot.funData, 13
plot.MFPCAfit, 13
predict.MFPCAfit, 14
print.MFPCAfit, 15
print.summary.MFPCAfit, 16

scoreplot, 8, 16
scoreplot.MFPCAfit, 17
screeplot, 18
screeplot.MFPCAfit, 18
splineBasis1D, 23
splineBasis1Dpen, 23
splineBasis2D, 23

splineBasis2Dpen, 23
splineFunction1D, 25
splineFunction2D, 25
splineFunction2Dpen, 25
summary, 8
summary.MFPCAfit, 19

ttv, 19

UMPCA, 20, 21
umpcaBasis, 23
univDecomp, 6–8, 12, 22
univExpansion, 7, 8, 23, 23

26

	FCP_TPA
	MFPCA
	multivExpansion
	PACE
	plot.MFPCAfit
	predict.MFPCAfit
	print.MFPCAfit
	print.summary.MFPCAfit
	scoreplot
	scoreplot.MFPCAfit
	screeplot.MFPCAfit
	summary.MFPCAfit
	ttv
	UMPCA
	univDecomp
	univExpansion
	Index

