Package 'MBAnalysis'

July 10, 2025

Title Multiblock Exploratory and Predictive Data Analysis

Version 2.1.0

Description Exploratory and predictive methods for the analysis of several blocks of variables measured on the same individuals.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.0.0)

LazyData false

Imports ggplot2, ggrepel, grDevices, stats, utils

NeedsCompilation no

Author Benjamin Mahieu [aut, cre], Essomanda Tchandao Mangamana [aut], Evelyne Vigneau [aut], Veronique Cariou [aut]

Maintainer Benjamin Mahieu <benjamin.mahieu@oniris-nantes.fr>

Repository CRAN

Date/Publication 2025-07-10 10:00:02 UTC

Contents

ef.MBPLS	2
ef.MBWCov	3
omDim	1
ım	5
BPCA	5
BplotBlocks	3
BplotScores)
BplotVars	l
BPLS	2
BValidation	1

MBWCov	15
plot.ComDim	17
plot.MBPCA	18
plot.MBPLS	19
plot.MBWCov	20
predict.MBPLS	21
predict.MBWCov	22
print.ComDim	23
print.MBPCA	23
print.MBPLS	24
print.MBWCov	25
summary.ComDim	25
summary.MBPCA	26
summary.MBPLS	27
summary.MBWCov	28
	29

Index

coef.MBPLS

Regression coefficients of MBPLS models

Description

Computes regression coefficients from MBPLS.

Usage

```
## S3 method for class 'MBPLS'
coef(object, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBPLS.
ncomp	The number of components to be considered in the model. By default, all components computed in MBPLS or MBWCov are considered.
	further arguments passed to or from other methods.

Value

A matrix of regression coefficients where each row corresponds to a variable in X and each column corresponds to a variable in Y.

See Also

predict.MBPLS

coef.MBWCov

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
coef(res.mbpls)</pre>
```

coef.MBWCov

```
Regression coefficients of MBWCov models
```

Description

Computes regression coefficients from MBWCov.

Usage

```
## S3 method for class 'MBWCov'
coef(object, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBWCov.
ncomp	The number of components to be considered in the model. By default, all components computed in MBPLS or MBWCov are considered.
	further arguments passed to or from other methods.

Value

A matrix of regression coefficients where each row corresponds to a variable in X and each column corresponds to a variable in Y.

See Also

predict.MBWCov

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
coef(res.mbwcov)</pre>
```

ComDim

Description

Performs ComDim analysis on a set of quantitative blocks of variables. ComDim can be viewed as a Multiblock Weighted Principal Components Analysis (MBWPCA)

Usage

```
ComDim(
   X,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   threshold = 1e-08
)
```

Arguments

Х	Dataset obtained by horizontally merging all the blocks of variables.
block	Vector indicating the number of variables in each block.
name.block	names of the blocks of variables (NULL by default).
ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.
scale	Logical, if TRUE (by default) then variables are scaled to unit variance (all variables are centered anyway).
scale.block	Logical, if TRUE (by default) each block of variables is divided by the square root of its inertia (Frobenius norm).
threshold	Convergence threshold

Value

Returns a list of the following elements:

optimalcrit	Numeric vector of the optimal value of the criterion (sum of squared saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each block of variables on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).

W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings (normed).
Proj.g	Matrix of global projection (to compute scores from pretreated X).
explained.X	Matrix of percentages of inertia explained in each block of variables.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X blocks explained by the global components.
Block	A list containing block components (T.b) and block weights (W.b)

References

E.M. Qannari, I. Wakeling, P. Courcoux, J.M. MacFie (2000). Defining the underlying sensory dimensions, Food Quality and Preference, 11: 151-154.

E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glèlè Kakaï, E.M. Qannari (2019). Unsupervised multiblock data analysis: A unified approach and extensions, Chemometrics and Intelligent Laboratory Systems, 194, 103856.

See Also

summary.ComDim plot.ComDim

Examples

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
summary(res.comdim)
plot(res.comdim)</pre>
```

ham

Ham data

Description

Case study pertaining to the sensory evaluation of eight American dry-cured ham products, performed by a panel of trained assessors.

Usage

data(ham)

Format

An object of class "list" with 8 products, 3 blocks of X variables (Flavor, Aroma, Texture) and 1 block of Y variables corresponding to hedonic measures:

- X dataframe of 8 products and 25 variables structured into 3 blocks: Flavor (11 variables), Aroma (8 variables) and Texture (6 variables)
- Y dataframe of 8 products and 6 vectors of hedonic values corresponding to consumers' segmentation

block vector indicating the number of variables per block

References

M.D. Guardia, A.P. Aguiar, A. Claret, J. Arnau & L. Guerrero (2010). Sensory characterization of dry-cured ham using free-choice profiling. Food Quality and Preference, 21(1), 148-155. doi:10.1016/j.foodqual.2009.08.014

Examples

data(ham)
ham\$X
ham\$Y
ham\$block

MBPCA

Multiblock Principal Components Analysis (MB-PCA)

Description

Performs MB-PCA on a set of quantitative blocks of variables.

Usage

```
MBPCA(
   X,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE
```

```
)
```

Arguments

Х	Dataset obtained by horizontally merging all the blocks of variables.
block	Vector indicating the number of variables in each block.
name.block	names of the blocks of variables (NULL by default).

MBPCA

ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.
scale	Logical, if TRUE (by default) then variables are scaled to unit variance (all variables are centered anyway).
scale.block	Logical, if TRUE (by default) each block of variables is divided by the square root of its inertia (Frobenius norm).

Value

Returns a list of the following elements:

optimalcrit	Numeric vector of the optimal value of the criterion (sum of saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each block of variables on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings (normed) = W.g in the specific context of MB-PCA.
Proj.g	Matrix of global projection (to compute scores from pretreated X) = W.g in the specific context of MB-PCA.
explained.X	Matrix of percentages of inertia explained in each block of variables.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X blocks explained by the global components.
Block	A list containing block components (T.b) and block weights (W.b)

References

S. Wold, S. Hellberg, T. Lundstedt, M. Sjostrom, H. Wold (1987). Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection, in: Proc. Symp. On PLS Model Building: Theory and Application, Frankfurt am Main.

E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glèlè Kakaï, E.M. Qannari (2019). Unsupervised multiblock data analysis: A unified approach and extensions, Chemometrics and Intelligent Laboratory Systems, 194, 103856.

See Also

summary.MBPCA plot.MBPCA

Examples

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
summary(res.mbpca)
plot(res.mbpca)</pre>
```

MBplotBlocks

Customizable plots of blocks related information

Description

Plots blocks related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotBlocks(
  res,
  which = "explained.blocks&Y",
  axes = c(1, 2),
  blocks.axes = 1:max(axes),
  title = NULL,
  size = 2.25
)
```

Arguments

res	An object resulting from MBPCA, ComDim, MBPLS or MBWCov.
which	$Either \ "explained.blocks \& Y", \ "scree", \ "structure" \ or \ "blocks.axes". \ See \ details.$
axes	Which global dimensions should be plotted? Only useful if <i>which=structure</i> or <i>which=blocks.axes</i>
blocks.axes	Which individual blocks dimensions should be correlated with global ones? Only useful if <i>which=blocks.axes</i>
title	An optional title to be added to the plot.
size	The overall size of labels, points, etc.

Details

- explained.blocks&Y: Barplot of the percentages of inertia explained in each block of variables (and Y for MBPLS or MBWCov) by each global components.
- scree: Barplot of the saliences of each block of variables on each global components.
- structure: Blocks coordinates (saliences) on the global selected axes
- blocks.axes: Correlations of the selected individual *blocks.axes* with the global selected *axes*.

MBplotScores

Value

The required plot.

See Also

plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov

Examples

Unsupervised example

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
MBplotBlocks(res.mbpca,which="explained.blocks&Y")
MBplotBlocks(res.mbpca,which="scree")
MBplotBlocks(res.mbpca,which="blocks.axes")</pre>
```

Supervised example

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))
MBplotBlocks(res.mbpls,which="explained.blocks&Y")
MBplotBlocks(res.mbpls,which="scree")
MBplotBlocks(res.mbpls,which="structure")
MBplotBlocks(res.mbpls,which="blocks.axes")</pre>
```

MBplotScores

Customizable plots of scores related information

Description

Plots scores related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotScores(
  res,
  axes = c(1, 2),
  block = 0,
  color = NULL,
  select = 1:nrow(res$Scor.g),
```

```
title = NULL,
size = 2.25
)
```

Arguments

res	An object resulting from MBPCA, ComDim, MBPLS or MBWCov.
axes	Which dimensions should be plotted?
block	Of which block? Block 0 corresponds to global components.
color	Either NULL (default) or a character vector of length <i>select</i> . Controls the color of each individual plotted. Useful if individuals pertain to different a priori known groups. By default individuals are colored in black for global components and in the block color (the same as in MBplotVars) for block components.
select	A numeric or integer vector to select which individuals should be plotted. By default, all individuals are plotted.
title	An optional title to be added to the plot.
size	The overall size of labels, points, etc.

Value

The required plot.

See Also

plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov

Examples

```
# Unsupervised example
```

data(ham)
X=ham\$X
block=ham\$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
MBplotScores(res.mbpca)</pre>

Supervised example

data(ham)
X=ham\$X
block=ham\$block
Y=ham\$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))
MBplotScores(res.mbpls)</pre>

MBplotVars

Description

Plots variables related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotVars(
  res,
  axes = c(1, 2),
  which = ifelse(res$call$scale, "correlation", "loading"),
  block = 0,
  select = 0,
  title = NULL,
  size = 2.25
)
```

Arguments

res	An object resulting from MBPCA, ComDim, MBPLS or MBWCov.
axes	Which dimensions should be plotted?
which	Either "correlation" or "loading".
block	Selection of variables by blocks. A number or integer, possibly a vector, corresponding to the index of the blocks from which the variables should be plotted. For MBPLS and MBWCov the Y response block corresponds to the index <i>length(res\$call\$size.block)+1</i> . By default, all variables of all blocks are plotted. Only one of <i>block</i> and <i>select</i> can differ from 0 (the default) both at the same time.
select	Selection of variables by index. A number or integer, possibly a vector, corresponding to the index of the variables that should be plotted. For MBPLS and MBWCov the Y variables index start from $ncol(res$call$X)+1$. By default, all variables of all blocks are plotted. Only one of <i>block</i> and <i>select</i> can differ from 0 (the default) both at the same time.
title	An optional title to be added to the plot.
size	The overall size of labels, points, etc.

Value

The required plot.

See Also

plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov

Examples

Unsupervised example

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
MBplotVars(res.mbpca)</pre>
```

```
# Supervised example
```

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))
MBplotVars(res.mbpls)</pre>
```

```
MBPLS
```

Multiblock Partial Least Squares (MB-PLS) regression

Description

MB-PLS regression applied to a set of quantitative blocks of variables.

Usage

```
MBPLS(
   X,
   Y,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   scale.Y = TRUE
)
```

Arguments

Х	Dataset obtained by horizontally merging all the predictor blocks of variables.
Y	Response block of variables.
block	Vector indicating the number of variables in each predictor block.
name.block	Names of the predictor blocks of variables (NULL by default).
ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.

MBPLS

scale	Logical, if TRUE (by default) the variables in X are scaled to unit variance (all variables in X are centered anyway).
scale.block	Logical, if TRUE (by default) each predictor block of variables is divided by the square root of its inertia (Frobenius norm).
scale.Y	Logical, if TRUE (by default) then variables in Y are scaled to unit variance (all variables in Y are centered anyway).

Value

Returns a list of the following elements:

optimalcrit	Numeric vector of the optimal value of the criterion (sum of saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each predictor block on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings.
Proj.g	Matrix of global projection (to compute scores from pretreated X).
explained.X	Matrix of percentages of inertia explained in each predictor block.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X and Y blocks explained by the global components.
Y	A list containing un-normed Y components (U), normed Y weights (W.Y) and Y loadings (Load.Y) $% \left(x_{1}^{2}\right) =\left(x_{1}^{2}\right$
Block	A list containing block components (T.b) and block weights (W.b)

References

S. Wold (1984). Three PLS algorithms according to SW. In: Symposium MULDAST (Multivariate Analysis in Science and Technology), Umea University, Sweden. pp. 26–30.

E. Tchandao Mangamana, R. Glèlè Kakaï, E.M. Qannari (2021). A general strategy for setting up supervised methods of multiblock data analysis. Chemometrics and Intelligent Laboratory Systems, 217, 104388.

See Also

summary.MBPLS plot.MBPLS

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
summary(res.mbpls)
plot(res.mbpls)</pre>
```

MBValidation Cross-Validation of MBPLS or MBWCov models

Description

Computes MSEP and corresponding standard error based on Leave One Out (LOO) or Out Of Bag (OOB) Cross-Validation (CV) by number of components of a MBPLS or MBWCov model from MBPLS or MBWCov.

Usage

```
MBValidation(
  res,
  ncomp.max = min(res$call$ncomp, nrow(res$call$X) - 2, ncol(X)),
  method = "LOO",
  nboot = 1000,
  graph = TRUE,
  size.graph = 2.25
)
```

Arguments

res	An object resulting from MBPLS or MBWCov.
ncomp.max	The maximum number of components to be investigated in the CV procedure.
method	Either "LOO" or "OOB". Default is LOO.
nboot	Number of bootstrap samples to be generated in case of OOB CV.
graph	Logical. Should the results be plotted? Default is TRUE.
size.graph	If graph=TRUE, the overall size of labels, points, etc.

Value

A matrix with two rows (MSEP and std.error) and ncomp.max+1 columns. The +1 column corresponds to the null model (Dim.0) where Y is predicted by its empirical average on the training sample.

MBWCov

See Also

predict.MBPLS predict.MBWCov

Examples

With MBPLS

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
MBValidation(res.mbpls)
# With MBWCov</pre>
```

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
MBValidation(res.mbwcov)</pre>
```

MBWCov

Multiblock Weighted Covariate analysis (MB-WCov)

Description

MB-WCov analysis applied to a set of quantitative blocks of variables.

Usage

```
MBWCov(
   X,
   Y,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   scale.Y = TRUE,
   threshold = 1e-08
)
```

Arguments

Х	Dataset obtained by horizontally merging all the predictor blocks of variables.
Υ	Response block of variables.
block	Vector indicating the number of variables in each predictor block.
name.block	Names of the predictor blocks of variables (NULL by default).
ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.
scale	Logical, if TRUE (by default) the variables in X are scaled to unit variance (all variables in X are centered anyway).
scale.block	Logical, if TRUE (by default) each predictor block of variables is divided by the square root of its inertia (Frobenius norm).
scale.Y	Logical, if TRUE (by default) then variables in Y are scaled to unit variance (all variables in Y are centered anyway).
threshold	Convergence threshold

Value

optimalcrit	Numeric vector of the optimal value of the criterion (sum of squared saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each predictor block on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings.
Proj.g	Matrix of global projection (to compute scores from pretreated X).
explained.X	Matrix of percentages of inertia explained in each predictor block.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X and Y blocks explained by the global components.
Υ	A list containing un-normed Y components (U), normed Y weights (W.Y) and Y loadings (Load.Y)
Block	A list containing block components (T.b) and block weights (W.b)

References

E. Tchandao Mangamana, R. Glèlè Kakaï, E.M. Qannari (2021). A general strategy for setting up supervised methods of multiblock data analysis. Chemometrics and Intelligent Laboratory Systems, 217, 104388.

See Also

summary.MBWCov plot.MBWCov

plot.ComDim

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
summary(res.mbwcov)
plot(res.mbwcov)</pre>
```

plot.ComDim

Default plots for ComDim objects

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

```
## S3 method for class 'ComDim'
plot(x, axes = c(1, 2), size = 2.25, ...)
```

Arguments

х	An object resulting from ComDim.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

MBplotScores MBplotVars MBplotBlocks

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
plot(res.comdim)</pre>
```

plot.MBPCA

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

S3 method for class 'MBPCA'
plot(x, axes = c(1, 2), size = 2.25, ...)

Arguments

х	An object resulting from MBPCA.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

MBplotScores MBplotVars MBplotBlocks

Examples

data(ham)
X=ham\$X
block=ham\$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
plot(res.mbpca)</pre>

plot.MBPLS

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

S3 method for class 'MBPLS'
plot(x, axes = c(1, 2), size = 2.25, ...)

Arguments

х	An object resulting from MBPLS.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

MBplotScores MBplotVars MBplotBlocks

Examples

data(ham)
X=ham\$X
block=ham\$block
Y=ham\$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
plot(res.mbpls)</pre>

plot.MBWCov

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

S3 method for class 'MBWCov'
plot(x, axes = c(1, 2), size = 2.25, ...)

Arguments

х	An object resulting from MBWCov.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

MBplotScores MBplotVars MBplotBlocks

Examples

data(ham)
X=ham\$X
block=ham\$block
Y=ham\$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
plot(res.mbwcov)</pre>

predict.MBPLS

Description

Computes predictions of Y from MBPLS using calibration X (default) or new X observations.

Usage

```
## S3 method for class 'MBPLS'
predict(object, newdata = object$call$X, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBPLS.
newdata	A matrix or data.frame of (new) observations having the same ncol and same colnames as the X of fitting observations.
ncomp	The number of components to be considered in the model to perform the predic- tions. By default, all components computed in MBPLS are considered.
	further arguments passed to or from other methods.

Value

A matrix of predicted Y values where each row corresponds to an observation and each column corresponds to a Y variable.

See Also

coef.MBPLS MBValidation

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
predict(res.mbpls)</pre>
```

predict.MBWCov

Description

Computes predictions of Y from MBWCov using calibration X (default) or new X observations.

Usage

```
## S3 method for class 'MBWCov'
predict(object, newdata = object$call$X, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBWCov.
newdata	A matrix or data.frame of (new) observations having the same ncol and same colnames as the X of fitting observations.
ncomp	The number of components to be considered in the model to perform the predic- tions. By default, all components computed in MBWCov are considered.
	further arguments passed to or from other methods.

Value

A matrix of predicted Y values where each row corresponds to an observation and each column corresponds to a Y variable.

See Also

coef.MBWCov MBValidation

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
predict(res.mbwcov)</pre>
```

print.ComDim

Description

Print of ComDim objects

Usage

S3 method for class 'ComDim'
print(x, ...)

Arguments

х	An object resulting from ComDim.
	further arguments passed to or from other methods.

See Also

summary.ComDim

Examples

data(ham)
X=ham\$X
block=ham\$block
res.comdim <- ComDim(X,block,name.block=names(block))
print(res.comdim)</pre>

print.MBPCA Print of MBPCA objects

Description

Print of MBPCA objects

Usage

S3 method for class 'MBPCA'
print(x, ...)

Arguments

х	An object resulting from MBPCA.
	further arguments passed to or from other methods.

See Also

summary.MBPCA

Examples

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
print(res.mbpca)</pre>
```

print.MBPLS Print of MBPLS objects

Description

Print of MBPLS objects

Usage

S3 method for class 'MBPLS'
print(x, ...)

Arguments

х	An object resulting from MBPLS.
	further arguments passed to or from other methods.

See Also

summary.MBPLS

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
print(res.mbpls)</pre>
```

print.MBWCov

Description

Print of MBWCov objects

Usage

S3 method for class 'MBWCov'
print(x, ...)

Arguments

х	An object resulting from MBWCov.
	further arguments passed to or from other methods.

See Also

summary.MBWCov

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
print(res.mbwcov)</pre>
```

summary.ComDim Summary of ComDim objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a ComDim object.

Usage

```
## S3 method for class 'ComDim'
summary(object, ...)
```

Arguments

object	An object resulting from ComDim.
	further arguments passed to or from other methods.

Value

The summary.

See Also

plot.ComDim

Examples

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
summary(res.comdim)</pre>
```

summary.MBPCA Summary of MBPCA objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBPCA object.

Usage

```
## S3 method for class 'MBPCA'
summary(object, ...)
```

Arguments

object	An object resulting from MBPCA.
	further arguments passed to or from other methods.

Value

The summary.

See Also

plot.MBPCA

summary.MBPLS

Examples

data(ham)
X=ham\$X
block=ham\$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
summary(res.mbpca)</pre>

summary.MBPLS Summary of MBPLS objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBPLS object.

Usage

```
## S3 method for class 'MBPLS'
summary(object, ...)
```

Arguments

object	An object resulting from MBPLS.
	further arguments passed to or from other methods.

Value

The summary.

See Also

plot.MBPLS

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
summary(res.mbpls)</pre>
```

summary.MBWCov

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBWCov object.

Usage

S3 method for class 'MBWCov'
summary(object, ...)

Arguments

object	An object resulting from MBWCov.
	further arguments passed to or from other methods.

Value

The summary.

See Also

plot.MBWCov

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
summary(res.mbwcov)</pre>
```

Index

* datasets

ham, <mark>5</mark>

coef.MBPLS, 2, 21 coef.MBWCov, 3, 22 ComDim, 4, 8–11, 17, 23, 25, 26

ham, 5

MBPCA, 6, 8-11, 18, 23, 26 MBplotBlocks, 8, 17-20 MBplotScores, 9, 17-20 MBplotVars, 10, 11, 17-20 MBPLS, 2, 3, 8-11, 12, 14, 19, 21, 24, 27 MBValidation, 14, 21, 22 MBWCov, 2, 3, 8-11, 14, 15, 20, 22, 25, 28

plot.ComDim, 5, 9–11, 17, 26 plot.MBPCA, 7, 9–11, 18, 26 plot.MBPLS, 9–11, 13, 19, 27 plot.MBWCov, 9–11, 16, 20, 28 predict.MBPLS, 2, 15, 21 predict.MBWCov, 3, 15, 22 print.ComDim, 23 print.MBPCA, 23 print.MBPLS, 24 print.MBWCov, 25

summary.ComDim, *5*, *23*, summary.MBPCA, *7*, *24*, summary.MBPLS, *13*, *24*, summary.MBWCov, *16*, *25*,