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Abstract

This report walks through a derivation of the variance-covariance matrix for the joint conditional
model and state residuals for multivariate autoregressive Gaussian state-space (MARSS) models. The
bulk of the report focuses on ‘smoothations’ residuals (Harvey et al., 1998), which are the residuals
conditioned on all the data t = 1 to T . The final part of the report covers ‘innovations’ residuals, which
are residuals conditioned on the data t = 1 to t− 1.

The MARSS model can be written: xxxt = Bxxxt−1 + u +wwwt, yyyt = Zxxxt + z + vvvt, where wwwt and vvvt are
independent multivariate Gaussian error-terms with variance-covariance matrices Qt and Rt respectively.
The joint conditional residuals are the wwwt and vvvt conditioned on the observed data, which may be
incomplete (missing values). Harvey, Koopman and Penzer (1998) show a recursive algorithm for the
smoothation residuals (residuals conditioned on all the data). I show an alternate algorithm to compute
these residuals using the conditional variances of the states and the conditional covariance between
unobserved data and states. This allows one to compute the variance of un-observed smoothation residuals
(residuals associated with missing or left-out data), which is needed for leave-one-out cross-validation tests
using smoothation residuals. I show how to modify the Harvey et al. algorithm in the case of missing
values and how to modify it to return the non-normalized conditional residuals.
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1 Overview of MARSS residuals

This report discusses the computation of the variance of the conditional model and state residuals for MARSS
models of the form:

xxxt = Btxxxt−1 + ut +wwwt, where WWW t ∼ MVN(0,Qt)

yyyt = Ztxxxt + at + vvvt, where VVV t ∼ MVN(0,Rt)

XXX0 ∼ MVN(ξ,Λ) or xxx0 = πππ.

(1)

The state and model residuals are respectively

wwwt = xxxt −Btxxxt−1 − ut

vvvt = yyyt − Ztxxxt − at.
(2)

The model (and state) residuals are a random variables since yyyt and xxxt are drawn from the joint multivariate
distribution of YYY t and XXXt defined by the MARSS equations (Equation 1). The unconditional1 variance of
the model residuals is

varXY [VVV t] = varXY [YYY t − (ZtXXXt + at)] = Rt (3)

based on the distribution of VVV t in Equation 1. varXY indicates that the integration is over the joint uncon-
ditional distribution of XXX and YYY .

Once we have data, Rt is not the variance-covariance matrix of our model residuals because our residuals
are now conditioned2 on a set of observed data. There are two types of conditional model residuals used in
MARSS analyses: innovations and smoothations. Innovations are the model residuals at time t using the
expected value of XXXt conditioned on the data from 1 to t − 1. Smoothations are the model residuals using
the expected value of XXXt conditioned on all the data, t = 1 to T . Smoothations are used in computing
standardized residuals for outlier and structural break detection (Harvey and Koopman, 1992; Harvey et al.,
1998; de Jong and Penzer, 1998; Commandeur and Koopman, 2007).

It should be noted that all the calculations discussed here are conditioned on the MARSS parameters:
B, Q, U, R, Z and A. These are treated as known. This is different than standard discussions of residual
distributions for linear models where the uncertainty in the model parameters enters into the calculations (as
it enters into the calculation of the influence of yyy on the expected (or fitted) value of yyy). In the calculations in
this report, yyy does not affect the estimates of the parameters (which are fixed, perhaps at estimated values)
but does affect the expected value of YYY t by affecting the estimate of the expected value and variance of XXXt.

2 Distribution of MARSS smoothation residuals

This section discusses computation of the variance of the model and state residuals conditioned on all the
data from t = 1 to T . These MARSS residuals are often used for outlier detection and shock detection, and
in this case you only need the distribution of the model residuals for the observed values. However if you
wanted to do a leave-one-out cross-validation, you would need to know the distribution of the residuals for
data points you left out (treated as unobserved). The equations in this report give you the former and the
latter, while the algorithm by Harvey et al. (1998) gives only the former. These equations for residuals for
‘left-out‘ data are different that other (typical) discussions of state-space cross-validation (de Jong, 1988) in
that they are conditioned on all the data (smoothations residuals) rather than conditioned on data up to
t− 1 (innovations residuals).

2.1 Notation and relations

Throughout, I follow the convention that capital letters are random variables and small letters are a realization
from the random variable. This only applies to random variables; parameters are not random variables3.

1meaning not conditioning on any particular set of observed data but rather taking the expectation across all possible values
of yyyt and xxxt.

2‘conditioned’ means that the probability distribution of the residual has changed. The distribution is now the distribution
given that YYY = yyy, say. Expectations and variances var[] are integrals over the value that a random variable might take multiplied
by the probability of that value. When presenting an ‘expectation’, the probability distribution is normally implicit but for
derivations involving conditional expectations, it is important to be explicit about the distribution that is being integrated over.

3in a frequentist framework
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Parameters are shown in Roman font while while random variables are bold slanted font. Parameters written
as capital letters are matrices, while parameters written in small letters are strictly column matrices.

In this report, the distribution over which the integration is done in an expectation or variance is given
by the subscript; e.g., EA[f(A)] indicates an unconditional expectation over the distribution of A without
conditioning on another random variable while EA|b[f(A)|b] would indicate an expectation over the distri-
bution of A conditioned on B = b; presumably A and B are not independent otherwise B = b would have
no effect on A. EA|b[f(A)|b] is a fixed value, not random. It is the expected value when B = b. In contrast,
EA|B [f(A)|B] denotes the random variable over all the possible EA|b[f(A)|b] given all the possible b values
that B might take. The variance of EA|B [f(A)|B] is the variance of this random variable. The variance of
EA|b[f(A)|b] in contrast is 0 since it is a fixed value. We will often be working with the random variables,
EA|B [f(A)|B] or varA|B [f(A)|B], inside an expectation or variance: such as varB [EA|B [f(A)|B]].

2.1.1 Law of total variance

The “law of total variance” can be written

varA[A] = varB [EA|B [A|B]] + EB [ varA|B [A|B]]. (4)

The subscripts on the inner expectations make it explicit that the expectations are being taken over the
conditional distributions. varA|B [A|B] and EA|B [A|B] are random variables because the B in the conditional
is a random variable. We take the expectation or variance with B fixed at one value, b, but B can take other
values of b also.

Going forward, I will write the law or total variance more succinctly as

var[A] = varB [E[A|B]] + EB [ var[A|B]]. (5)

I leave off the subscript on the inner conditional expectation or variance. Just remember that when you
see a conditional in an expectation or variance, the integration is over over the conditional distribution of
A conditioned on B = b. Even when you see A|B, the conditioning is on B = b and the B indicates that
this is a random variable because B can take different b values. When computing varB [EA|B [A|B]], we will
typically compute EA|b[A|b] and then compute (or infer) the variance or expectation of that over all possible
values of b.

The law of total variance will appear in this report in the following form:

varXY [f(YYY ,XXX)] = varY (1) [EXY |Y (1) [f(YYY ,XXX)|YYY (1)]] + EY (1) [ varXY |Y (1) [f(YYY ,XXX)|YYY (1)]], (6)

where f(YYY t,XXXt) is some function of XXXt and YYY t and YYY
(1) is the observed data from t = 1 to T (YYY (2) is the

unobserved data).

2.2 Model residuals conditioned on all the data

Define the smoothations v̂vvt as:
v̂vvt = yyyt − Ztx̃xx

T
t − at, (7)

where x̃xx
T
t is E[XXXt|yyy

(1)]. The smoothation is different from vvvt because it uses x̃xx
T
t not xxxt; xxxt is not known,

and x̃xx
T
t is its estimate. x̃xx

T
t is output by the Kalman smoother. yyy(1) means all the observed data from t = 1

to T . yyy(1) is a sample from the random variable YYY
(1). The unobserved yyy will be termed yyy(2) and is a

sample from the random variable YYY (2). When YYY appears without a superscript, it means both YYY
(1) and YYY

(2)

together. Similarly yyy means both yyy(1) and yyy(2) together—the observed data that we use to estimate x̃xx
T
t and

the unobserved data that we do not use and may or may not know. v̂vvt exists for both yyy(1) and yyy(2), though
we might not know yyy(2) and thus might not know its corresponding v̂vvt. In some cases, however, we do know
yyy(2); they are data that we left out of our model fitting, in say a k-fold or leave-one-out cross-validation.

v̂vvt is a sample from the random variable V̂VV t. We want to compute the mean and variance of this random
variable over all possibles values that XXXt and YYY t might take. The mean of V̂VV t is 0 and we are concerned only
with computing the variance:

var[V̂VV t] = varXY [YYY t − Zt E[XXXt|YYY
(1)]− at]. (8)
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Notice we have an unconditional variance over XXX,YYY on the outside and a conditional expectation over a
specific value of YYY (1) on the inside (in the E[ ]).

From the law of total variance (Equation 4), we can write the variance of the model residuals as

var[V̂VV t] = varY (1) [E[V̂VV t|YYY
(1)]] + EY (1) [ var[V̂VV t|YYY

(1)]]. (9)

2.2.1 First term on right hand side of Equation 9

The random variable inside the var[ ] in the first term is

E[V̂VV t|YYY
(1)] = E[(YYY t + Zt E[XXXt|YYY

(1)] + at)|YYY
(1)]. (10)

Let’s consider this for a specific value YYY
(1) = yyy(1).

E[V̂VV t|yyy
(1)] = E[(YYY t + Zt E[XXXt|yyy

(1)] + at)|yyy
(1)] = E[YYY t|yyy

(1)] + Zt E[E[XXXt|yyy
(1)]|yyy(1)] + E[at|yyy

(1)]. (11)

E[XXXt|yyy
(1)] is a fixed value, and the expected value of a fixed value is itself. So E[E[XXXt|yyy

(1)]|yyy(1)] = E[XXXt|yyy
(1)].

Thus,
E[V̂VV t|yyy

(1)] = E[YYY t|yyy
(1)] + Zt E[XXXt|yyy

(1)] + E[at|yyy
(1)]. (12)

We can move the conditional out and write

E[V̂VV t|yyy
(1)] = E[(YYY t + ZtXXXt + at)|yyy

(1)] = E[VVV t|yyy
(1)]. (13)

The right side is E[VVV t|yyy
(1)], no ‘hat’ on the VVV t, and this applies for all yyy(1). This means that the first term

in Equation 9 can be written with no hat on VVV :

varY (1) [E[V̂VV t|YYY
(1)]] = varY (1) [E[VVV t|YYY

(1)]]. (14)

If YYY t were completely observed (no missing values), this would be zero since E[VVV t|yyy] would be a fixed value

in that case. But YYY t is not assumed to be fully observed; it may have YYY
(2)
t which is unobserved, or more

precisely, not included in the estimation of V Vt for whatever reason (‘unknown" because it was unobserved
being one reason). The derivation of E[YYY t|yyy

(1)] is given in Holmes (2012)4.
Using the law of total variance, we can re-write var[VVV t] as:

var[VVV t] = varY (1) [E[VVV t|YYY
(1)]] + EY (1) [ var[VVV t|YYY

(1)]]. (15)

From Equation 15, we can solve for varY (1) [E[VVV t|YYY
(1)]]:

varY (1) [E[VVV t|YYY
(1)]] = var[VVV t]− EY (1) [ var[VVV t|YYY

(1)]]. (16)

From Equation 3, we know that var[VVV t] = Rt (this is the unconditional variance). Thus,

varY (1) [E[VVV t|YYY
(1)]] = Rt − EY (1) [ var[VVV t|YYY

(1)]]. (17)

The second term in Equation 17 to the right of the equal sign and inside the expectation is var[VVV t|YYY
(1)].

This is the variance of VVV t with YYY
(1) held at a specific fixed yyy(1). The variability in var[VVV t|yyy

(1)] (notice yyy(1)

not YYY (1) now) comes from XXXt and YYY
(2) which are random variables. Let’s compute this variance for a specific

yyy(1) value.
var[VVV t|yyy

(1)] = var[YYY t − ZtXXXt − at|yyy
(1)]. (18)

Notice that there is no E (expectation) on the XXXt; this is VVV t not V̂VV t. at is a fixed value and can be dropped.
Equation 18 can be written as5:

var[VVV t|yyy
(1)] = var[YYY t − ZtXXXt|yyy

(1)]

= var[−ZtXXXt|yyy
(1)] + var[YYY t|yyy

(1)] + cov[YYY t,−ZtXXXt|yyy
(1)] + cov[−ZtXXXt,YYY t|yyy

(1)]

= ZtṼVV
T

t Z
⊤
t + Ũ

T

t − S̃
T

t Z
⊤
t − Zt(S̃

T

t )
⊤.

(19)

4 E[YYY
(2)
t |yyy(1)] is not Ztx̃xx

T
t + at in general since YYY

(2)
t and YYY

(1)
t may be correlated through R in addition to being correlated

through x̃xxT
t

5 var(A+B) = var(A) + var(B) + cov(A,B) + cov(B,A)

4



ṼVV
T

t = var[XXXt|yyy
(1)] and is output by the Kalman smoother. Ũ

T

t = var[YYY t|yyy
(1)] and S̃

T

t = cov[YYY t,XXXt|yyy
(1)].

The equations for these are given in Holmes (2012) and are output by the MARSShatyt() function in the

{MARSS} package6. If there were no missing data, i.e., if yyy(1) = yyy, then Ũ
T

t and S̃
T

t would be zero because

YYY t would be fixed at yyyt. This would reduce Equation 19 to ZtṼVV
T

t Z
⊤
t . But we are concerned with the case

where there are missing values. Those missing values need not be for all t. That is, there may be some
observed y at time t and some missing y. yyyt is multivariate.

From Equation 19, we know var[VVV t|yyy
(1)] for a specific yyy(1). We want EY (1) [ var[VVV t|YYY

(1)]] which is its
expected value over all possible values of yyy(1). VVV t is a multivariate normal random variable with two random
variables YYY (1) and YYY

(2). The conditional variance of a multivariate Normal does not depend on the value that
you are conditioning on. Let the A be a N-dimensional multivariate Normal random variable partitioned

into A1 and A2 with variance-covariance matrix Σ =

[
Σ1 Σ12

Σ21 Σ2

]
. The variance-covariance matrix of A

conditioned on A1 = a is Σ =

[
0 0
0 Σ2 − Σ12Σ1Σ21

]
. Notice that a does not appear in the conditional

variance matrix. This means that var[VVV t|yyy
(1)] does not depend on yyy(1). Its variance only depends on the

MARSS model parameters7.
Because var[VVV t|yyy

(1)] only depends on the MARSS parameters values, Q, B, R, etc., the second term in

Equation 16, EY (1) [ var[VVV t|YYY
(1)]], is equal to var[VVV t|yyy

(1)] (Equation 19). Putting this into Equation 17, we
have

varY (1) [E[VVV t|YYY
(1))]] = Rt − var[VVV t|yyy

(1)] = Rt − ZtṼVV
T

t Z
⊤
t − Ũ

T

t + S̃
T

t Z
⊤
t + Zt(S̃

T

t )
⊤. (20)

Since varY (1) [E[VVV t|YYY
(1))]] = varY (1) [E[V̂VV t|YYY

(1))]] (Equation 14), this means that the first term in Equation
9 is

varY (1) [E[V̂VV t|YYY
(1))]] = Rt − ZtṼVV

T

t Z
⊤
t − Ũ

T

t + S̃
T

t Z
⊤
t + Zt(S̃

T

t )
⊤. (21)

2.2.2 Second term on right hand side of Equation 9

Consider the second term in Equation 9. This term is

EY (1) [ var[V̂VV t|YYY
(1)]] = EY (1) [ var[(YYY t − Zt E[XXXt|YYY

(1)]− at)|YYY
(1)]]. (22)

The middle term is:
EY (1) [ var[E[XXXt|YYY

(1)]|YYY (1)]]. (23)

Let’s solve the inner part for a specific YYY (1) = yyy(1). E[XXXt|yyy
(1)] is a fixed value. Thus var[E[XXXt|yyy

(1)]|yyy(1)] = 0
since the variance of a fixed value is 0. This is true for all yyy(1) so the middle term reduces to 0. at is also
fixed and its variance is also 0. The covariance between a random variable and a fixed value is 08. Thus for

a specific YYY
(1) = yyy(1), the inside of the right hand side expectation reduces to var[YYY t|yyy

(1)] which is Ũ
T

t . As

noted in the previous section, Ũ
T

t is only a function of the MARSS parameters; it is not a function of yyy(1)

and var[YYY t|yyy
(1)] = Ũ

T

t for all yyy(1). Thus the second term in Equation 9 is simply Ũ
T

t :

EY (1) [ var[V̂VV t|YYY
(1)]] = var[V̂VV t|yyy

(1)] = Ũ
T

t . (24)

2.2.3 Putting together the first and second terms

We can now put the first and second terms in Equation 9 together (Equations 21 and 24) and write out the
variance of the model residuals:

var[V̂VV t] = Rt − ZtṼVV
T

t Z
⊤
t − Ũ

T

t + S̃
T

t Z
⊤
t + Zt(S̃

T

t )
⊤ + Ũ

T

t

= Rt − ZtṼVV
T

t Z
⊤
t + S̃

T

t Z
⊤
t + Zt(S̃

T

t )
⊤.

(25)

6Ũ
T

t is OtT - tcrossprod(ytT) in the MARSShatyt() output.
7This also implies that ṼVV

T

t , Ũ
T

t and S̃
T

t do not depend on yyy(1), which is rather counter-intuitive since yyy(1) is part of the
algorithm (Kalman filter and smoother) used to compute these values. The value of yyy(1) affects the expected values of XXXt but
only its presence (versus absence) affects XXXt’s conditional variance.

8 var[A+B] = var[A] + var[B] + cov[A,B]
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Equation 25 will reduce to Rt − ZtṼVV
T

t Z
⊤
t if yyyt has no missing values since S̃

T

t = 0 in this case. If yyyt is all

missing values, S̃
T

t = ZtṼVV
T

t because

cov[YYY t,XXXt|yyy
(1)] = cov[ZtXXXt + at + VVV t,XXXt|yyy

(1)] = cov[ZtXXXt,XXXt|yyy
(1)] = Zt cov[XXXt,XXXt|yyy

(1)] = ZtṼVV
T

t . (26)

The reduction in Equation 26 occurs because VVV t and WWW t and by extension VVV t and XXXt are independent in
the form of MARSS model used in this report (Equation 1)9. Thus when yyyt is all missing values, Equation

25 will reduce to Rt +ZtṼVV
T

t Z
⊤
t . The behavior if yyyt has some missing and some not missing values depends

on whether Rt is a diagonal matrix or not, i.e., if the yyy
(1)
t and yyy

(2)
t are correlated.

2.3 State residuals conditioned on the data

The state residuals are xxxt − (Btxxxt−1 + ut) = wwwt. The unconditional expected value of the state residuals is
E[XXXt − (BtXXXt−1 + ut)] = E[WWW t] = 0 and the unconditional variance of the state residuals is

var[XXXt − (BtXXXt−1 + ut)] = var[WWW t] = Qt (27)

based on the definition of WWW t in Equation 1. The conditional state residuals (conditioned on the data from
t = 1 to t = T ) are defined as

ŵwwt = x̃xx
T
t −Btx̃xx

T
t−1 − ut. (28)

where x̃xx
T
t = E[XXXt|yyy

(1)] and x̃xx
T
t−1 = E[XXXt−1|yyy

(1)]. ŵwwt is a sample from the random variable ŴWW t; random

over different possible data sets. The expected value of ŴWW t is 0, and we are concerned with computing its
variance.

We can write the variance of WWW t (no hat) using the law of total variance.

var[WWW t] = varY (1) [E[WWW t|YYY
(1)]] + EY (1) [ var[WWW t|YYY

(1)]]. (29)

Notice that

E[WWW t|yyy
(1)] = E[(XXXt −BtXXXt−1 − ut)|yyy

(1)] = x̃xx
T
t −Btx̃xx

T
t−1 − ut = E[ŴWW t|yyy

(1)] = ŵwwt. (30)

This is true for all yyy(1), thus E[WWW t|YYY
(1)] is ŴWW t, and varY (1) [E[WWW t|YYY

(1)]] = var[ŴWW t]. Equation 29 can thus
be written

var[WWW t] = var[ŴWW t] + EY (1) [ var[WWW t|YYY
(1)]]. (31)

Solve for var[ŴWW t]:

var[ŴWW t] = var[WWW t]− EY (1) [ var[WWW t|YYY
(1)]]. (32)

The variance in the expectation on the far right for a specific YYY
(1) = yyy(1) is

var[WWW t|yyy
(1)] = var[(XXXt −BtXXXt−1 − ut)|yyy

(1)]. (33)

ut is not a random variable and can be dropped. Thus10,

var[WWW t|yyy
(1)] = var[(XXXt −BtXXXt−1)|yyy

(1)]

= var[XXXt|yyy
(1)] + var[BtXXXt−1|yyy

(1)] + cov[XXXt,−BtXXXt−1|yyy
(1)] + cov[−BtXXXt−1,XXXt|yyy

(1)]

= ṼVV
T

t +BtṼVV
T

t−1B
⊤
t − ṼVV

T

t,t−1B
⊤
t −BtṼVV

T

t−1,t.

(34)

Again this is conditional multivariate normal variance, and its value does not depend on the value, yyy(1) that
we are conditioning on. It depends only on the parameters values, Q, B, R, etc., and is the same for all
values of yyy(1). So EY (1) [ var[WWW t|YYY

(1)]] = var[WWW t|yyy
(1)], using any value of yyy(1). Thus

EY (1) [ var[WWW t|YYY
(1)]] = ṼVV

T

t +BtṼVV
T

t−1B
⊤
t − ṼVV

T

t,t−1B
⊤
t −BtṼVV

T

t−1,t. (35)

Putting EY (1) [ var[WWW t|YYY
(1)]] from Equation 35 and var[WWW t] = Qt into Equation 32, the variance of the

conditional state residuals is

var[ŴWW t] = Qt − ṼVV
T

t −BtṼVV
T

t−1B
⊤
t + ṼVV

T

t,t−1B
⊤
t +BtṼVV

T

t−1,t. (36)
9This is not the case for the Harvey et al. (1998) form of the MARSS model where VVV t and WWW t are allowed to be correlated.

10 var[A − B] = var[A] + var[B] + cov[A,−B] + cov[−B,A]. Be careful about the signs in this case as they are a little
non-intuitive.
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2.4 Covariance of the conditional model and state residuals

The unconditional model and state residuals, VVV t and WWW t, are independent by definition11 (in Equation 1),

i.e., cov[VVV t,WWW t] = 0. However the conditional model and state residuals, cov[V̂VV t, ŴWW t], are not independent
since both depend on yyy(1). Using the law of total covariance, we can write

cov[V̂VV t, ŴWW t] = covY (1) [E[V̂VV t|YYY
(1)], E[ŴWW t|YYY

(1)]] + EY (1) [ cov[V̂VV t, ŴWW t|YYY
(1)]]. (37)

For a specific value of YYY (1) = yyy(1), the covariance in the second term on the right is cov[V̂VV t, ŴWW t|yyy
(1)].

Conditioned on a specific value of YYY (1), ŴWW t is a fixed value, ŵwwt = x̃xx
T
t − Btx̃xx

T
t−1 − ut, and conditioned on

yyy(1), x̃xx
T
t and x̃xx

T
t−1 are fixed values. ut is also fixed; it is a parameter. V̂VV t is not a fixed value because it has

YYY
(2)
t and that is a random variable. Thus cov[V̂VV t, ŴWW t|yyy

(1)] is the covariance between a random variable and
a fixed variable and thus the covariance is 0. This is true for all yyy(1). Thus the second right-side term in
Equation 37 is zero, and the equation reduces to

cov[V̂VV t, ŴWW t] = covY (1) [E[V̂VV t|YYY
(1)], E[ŴWW t|YYY

(1)]]. (38)

Notice that E[ŴWW t|yyy
(1)] = E[WWW t|yyy

(1)] and E[V̂VV t|yyy
(1)] = E[VVV t|yyy

(1)] since

E[WWW t|yyy
(1)] = E[XXXt|yyy

(1)]−Bt E[XXXt−1|yyy
(1)]− ut = x̃xx

T
t −Btx̃xx

T
t−1 − ut = ŵwwt = E[ŴWW t|yyy

(1)] (39)

and
E[VVV t|yyy

(1)] = E[YYY t|yyy
(1)]− Zt E[XXXt|yyy

(1)]− at = E[YYY t|yyy
(1)]− Ztx̃xx

T
t − at = E[V̂VV t|yyy

(1)]. (40)

Thus the right side of Equation 38 can be written in terms of VVV t and WWW t instead of V̂VV t and ŴWW t:

cov[V̂VV t, ŴWW t] = covY (1) [E[VVV t|YYY
(1)], E[WWW t|YYY

(1)]]. (41)

Using the law of total covariance, we can write:

cov[VVV t,WWW t] = EY (1) [ cov[VVV t,WWW t|YYY
(1)]] + covY (1) [E[VVV t|YYY

(1)], E[WWW t|YYY
(1)]]. (42)

The unconditional covariance of VVV t and WWW t is 0. Thus the left side of Equation 42 is 0 and we can rearrange
the equation as

covY (1) [E[VVV t|YYY
(1)], E[WWW t|YYY

(1)]] = −EY (1) [ cov[VVV t,WWW t|YYY
(1)]]. (43)

Combining Equation 41 and 43, we get

cov[V̂VV t, ŴWW t] = −EY (1) [ cov[VVV t,WWW t|YYY
(1)]], (44)

and our problem reduces to solving for the conditional covariance of the model and state residuals (right side
of Equation 44).

For a specific YYY
(1) = yyy(1), the conditional covariance cov[VVV t,WWW t|yyy

(1)] can be written out as

cov[VVV t,WWW t|yyy
(1)] = cov[YYY t − ZtXXXt − at, XXXt −BtXXXt−1 − ut|yyy

(1)]. (45)

at and ut are fixed values and can be dropped. Thus12

cov[VVV t,WWW t|yyy
(1)] = cov[YYY t − ZtXXXt,XXXt −BtXXXt−1|yyy

(1)]

= cov[YYY t,XXXt|yyy
(1)] + cov[YYY t,−BtXXXt−1|yyy

(1)] + cov[−ZtXXXt,XXXt|yyy
(1)] + cov[−ZtXXXt,−BtXXXt−1|yyy

(1)]

= S̃
T

t − S̃
T

t,t−1B
⊤
t − ZtṼVV

T

t + ZtṼVV
T

t,t−1B
⊤
t ,

(46)

where S̃
T

t = cov[YYY t,XXXt|yyy
(1)] and S̃

T

t,t−1 = cov[YYY t,XXXt−1|yyy
(1)]; the equations for S̃

T

t and S̃
T

t,t−1 are given in
Holmes (2012) and are output by the MARSShatyt() function in the {MARSS} package.

11This independence is specific to the way the MARSS model for this report (Equation 1). It is possible for the model and
state residuals to covary. In the MARSS model written in Harvey et al. (1998) form, they do covary.

12 cov[BA,CD] = B cov[A,D]C⊤.
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Both VVV t and WWW t are multivariate normal random variables that depend on YYY
(1) and YYY

(2) and the condi-
tional covariance is not a function of the variable that we condition on (in this case yyy(1)). The conditional
covariance is only a function of the MARSS parameters13. Thus

EY (1) [ cov[VVV t,WWW t|YYY
(1)]] = cov[VVV t,WWW t|yyy

(1)] = S̃
T

t − S̃
T

t,t−1B
⊤
t − ZtṼVV

T

t + ZtṼVV
T

t,t−1B
⊤
t . (47)

cov[V̂VV t, ŴWW t] is the negative of this (Equation 44), thus

cov[V̂VV t, ŴWW t] = −S̃
T

t + S̃
T

t,t−1B
⊤
t + ZtṼVV

T

t − ZtṼVV
T

t,t−1B
⊤
t . (48)

The Harvey et al. algorithm (next section) gives the joint distribution of the model residuals at time t

and state residuals at time t+ 1. Using the law of total covariance as above, the covariance in this case is

covY (1) [E[VVV t|YYY
(1)], E[WWW t+1|YYY

(1)]] = −EY (1) [ cov[VVV t,WWW t+1|YYY
(1)]] (49)

and

cov[VVV t,WWW t+1|yyy
(1)] = cov[YYY t − ZtXXXt − at, XXXt+1 −Bt+1XXXt − ut+1|yyy

(1)]

= cov[YYY t − ZtXXXt, XXXt+1 −Bt+1XXXt|yyy
(1)]

= S̃
T

t,t+1 − S̃
T

t B
⊤
t+1 − ZtṼVV

T

t,t+1 + ZtṼVV
T

t B
⊤
t+1.

(50)

Thus,

covY (1) [E[VVV t|YYY
(1)], E[WWW t+1|YYY

(1)]] = −EY (1) [ cov[VVV t,WWW t+1|YYY
(1)]]

= −S̃
T

t,t+1 + S̃
T

t B
⊤
t+1 + ZtṼVV

T

t,t+1 − ZtṼVV
T

t B
⊤
t+1.

(51)

2.5 Joint distribution of the conditional residuals

We now can write the variance of the joint distribution of the conditional residuals. Define

ε̂t =

[
v̂vvt
ŵwwt

]
=

[
yyyt − Ztx̃xx

T
t − at

x̃xx
T
t −Btx̃xx

T
t−1 − ut

]
. (52)

ε̂t is a sample drawn from the distribution of the random variable Êt. The expected value of Êt over all
possible yyy is 0 and the variance of Êt is

Σ̂t = var[Êt] =




var[V̂VV t] cov[V̂VV t, ŴWW t]

( cov[V̂VV t, ŴWW t])
⊤ var[ŴWW t]


 (53)

which is




Rt − ZtṼVV
T

t Z
⊤
t + S̃

T

t Z
⊤
t + Zt(S̃

T

t )
⊤ −S̃

T

t + S̃
T

t,t−1B
⊤
t + ZtṼVV

T

t − ZtṼVV
T

t,t−1B
⊤
t

(−S̃
T

t + S̃
T

t,t−1B
⊤
t + ZtṼVV

T

t − ZtṼVV
T

t,t−1B
⊤
t )

⊤ Qt − ṼVV
T

t −BtṼVV
T

t−1B
⊤
t + ṼVV

T

t,t−1B
⊤
t +BtṼVV

T

t−1,t


 , (54)

where S̃
T

t = cov[YYY t,XXXt|yyy
(1)], S̃

T

t,t−1 = cov[YYY t,XXXt−1|yyy
(1)], ṼVV

T

t = var[XXXt|yyy
(1)], ṼVV

T

t,t−1 = cov[XXXt,XXXt−1|yyy
(1)],

and ṼVV
T

t−1,t = cov[XXXt−1,XXXt|yyy
(1)]. This gives the variance of both ‘observed’ model residuals (the ones

associated with yyy(1)) and the unobserved model residuals (the ones associated with yyy(2)). When there are no

missing values in yyyt, the S̃
T

t and S̃
T

t,t−1 terms equal 0 and drop out.

13By extension, this is also the case for ṼVV
T

t , ṼVV
T

t,t−1, S̃
T

t and S̃
T

t,t−1 which may seem counter-intuitive, but you can show it is
true by working through the Kalman filter and smoother equations starting at t=1. Or run a Kalman filter/smoother algorithm
with different data and the same parameters and you will see that the variances do not change with different data.
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If the residuals are defined as in Harvey et al. (1998) with v̂vvt on top and ŵwwt+1 on the bottom instead of
ŵwwt, then

ε̂t =

[
v̂vvt

ŵwwt+1

]
=

[
yyyt − Ztx̃xx

T
t − at

x̃xx
T
t+1 −Bt+1x̃xx

T
t − ut+1

]
(55)

and the variance of Êt is 


var[V̂VV t] cov[V̂VV t, ŴWW t+1]

( cov[V̂VV t, ŴWW t+1])
⊤ var[ŴWW t+1]


 (56)

which is




Rt − ZtṼVV
T

t Z
⊤
t + S̃

T

t Z
⊤
t + Zt(S̃

T

t )
⊤ −S̃

T

t,t+1 + S̃
T

t B
⊤
t+1 + ZtṼVV

T

t,t+1 − ZtṼVV
T

t B
⊤
t+1

(−S̃
T

t,t+1 + S̃
T

t B
⊤
t+1 + ZtṼVV

T

t,t+1 − ZtṼVV
T

t B
⊤
t+1)

⊤ Qt+1 − ṼVV
T

t+1 −Bt+1ṼVV
T

t B
⊤
t+1 + ṼVV

T

t+1,tB
⊤
t+1 +Bt+1ṼVV

T

t,t+1


 .

(57)

3 Harvey et al. 1998 algorithm for the conditional residuals

Harvey et al. (1998, pgs 112-113) give a recursive algorithm for computing the variance of the conditional
residuals when the time-varying MARSS equation is written as:

xxxt+1 = Bt+1xxxt + ut+1 +Ht+1ϵt,

yyyt = Ztxxxt + at +Gtϵt,

where ϵt ∼ MVN(0, Im+n×m+n)

HtH
⊤
t = Qt,GtG

⊤
t = Rt, and HtG

⊤
t = cov[WWW t,VVV t]

(58)

The Ht and Gt matrices specify the variance and covariance of WWW t and VVV t. Ht has m rows and m + n

columns and Gt has n rows and m + n columns. In the MARSS equation for this report (Equation 1), WWW t

and VVV t are independent. To achieve this in the Harvey et al. form (Equation 58), the first n columns of Ht

are all 0 and the last m columns of Gt are all zero.
The algorithm in Harvey et al. (1998) gives the variance of the ‘normalized’ residuals, the ϵt. I have

modified their algorithm so it returns the ‘non-normalized’ residuals:

εt =

[
Gtϵt

Ht+1ϵt

]
=

[
vvvt

wwwt+1

]
.

The Harvey et al. algorithm is a backwards recursion using the following output from the Kalman filter:

the one-step ahead prediction covariance Ft, the Kalman gain Kt, x̃xx
t−1
t = E[XXXt|yyy

(1),1:t−1] and ṼVV
t−1

t =
var[XXXt|yyy

(1),1:t−1]. In the {MARSS} package, these are output from MARSSkfss() in Sigma, Kt, xtt1 and
Vtt1.

3.1 Algorithm for the non-normalized residuals

Start from t = T and work backwards to t = 1. At time T , rT = 01×m and NT = 0m×m. Bt+1 and Qt+1

can be set to NA or 0. They will not appear in the algorithm at time T since rT = 0 and NT = 0. Note that
the www residual and its associated variance and covariance with vvv at time T is NA since this residual would
be for xxxT to xxxT+1.
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Q′
t+1 =

[
0m×n Qt+1

]
, R′

t =
[
R∗

t 0n×m

]

Ft = Z∗
t ṼVV

t−1

t Z∗
t
⊤
+R∗

t , n× n

Kt = Bt+1Kt = Bt+1ṼVV
t−1

t Z∗
t
⊤
F−1

t , m× n

Lt = Bt+1 −KtZ
∗
t , m×m

Jt = Q′
t+1 −KtR

′
t, m× (n+m)

vt = yyy∗t − Ztx̃xx
t−1
t − at, n× 1

ut = F−1
t vt −K⊤

t rt, n× 1

rt−1 = Z∗
t
⊤
ut +B⊤

t+1rt, m× 1

Nt−1 = Z∗
t
⊤
F−1

t Z∗
t + L⊤

t NtLt, m×m.

(59)

yyy∗t is the observed data at time t with the i-th rows set to 0 if the i-th y is missing. Bolded terms are the same
as in Equation 58 (and are output by MARSSkfss()). Unbolded terms are terms used in Harvey et al. (1998).
The * on Zt and Rt, indicates that they are the missing value modified versions discussed in Shumway and
Stoffer (2006, section 6.4) and Holmes (2012): to construct Z∗

t and R∗
t , the rows of Zt corresponding to

missing rows of yyyt are set to zero and the (i, j) and (j, i) terms of Rt corresponding the missing rows of yyyt
are set to zero. For the latter, this means if the i-th row of yyyt is missing, then then the i-th row and column
(including the value on the diagonal) in Rt are set to 0. Notice that Ft will have 0’s on the diagonal if there
are missing values. A modified inverse of Ft is used: any 0’s on the diagonal of Ft are replaced with 1, the
inverse is taken, and 1s on diagonals is replaced back with 0s.

The residuals (Harvey et al., 1998, eqn 24) are

ε̂t =

[
v̂vvt

ŵwwt+1

]
= (R′

t)
⊤ut + (Q′

t+1)
⊤rt (60)

The expected value of Êt is 0 and its variance is

Σ̂]t = var[Êt] = R′
t
⊤
F−1

t R′
t + J⊤

t NtJt. (61)

These ε̂t and Σ̂]t are for both the non-missing and missing yyyt. This is a modification to the Harvey et al.
(1998) algorithm which does not give the variance for missing yyy.

3.2 Difference in notation

In Equation 20 in Harvey et al. (1998), their Tt is my Bt+1 and their HtH
⊤
t is my Qt+1. Notice the difference

in the time indexing. My time indexing on B and Q matches the left xxx while in theirs, T and H indexing
matches the right xxx. Thus in my implementation of their algorithm (Harvey et al., 1998, eqns. 21-24), Bt+1

appears in place of Tt and Qt+1 appears in place of Ht. See comments below on normalization and the
difference between Q and H.

Harvey et al. (1998, eqns. 19, 20) use Gt to refer to the chol(Rt)
⊤ (non-zero part of the n × n + m

matrix) and Ht to refer to chol(Qt)
⊤. I have replaced these with R′

t and Q′
t (Equation 59) which causes my

variant of their algorithm (Equation 59) to give the ‘non-normalized’ variance of the residuals. The residuals
function in the {MARSS} package has an option to give either normalized or non-normalized residuals.

Kt is the Kalman gain output by the {MARSS} package MARSSkf() function. The Kalman gain as used
in the Harvey et al. (1998) algorithm is Kt = Bt+1Kt. Notice that Equation 21 in Harvey et al. (1998) has
HtG

⊤
t in the equation for Kt. This is the covariance of the state and observation errors, which is allowed

to be non-zero given the way Harvey et al. write the errors in their Equations 19 and 20. The way the
{MARSS} package model is written, the state and observation errors are independent of each other. Thus
HtG

⊤
t = 0 and this term drops out of the Kt equation in Equation 59.
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3.3 Computing the normalized residuals

To compute the normalized residuals and residuals variance, a block diagonal matrix with the inverse of the
R and Q matrices is used. The normalized residuals are:

[
R−1

t 0

0 Q−1
t

]
ε̂t (62)

The variance of the normalized residuals is
[
R−1

t 0

0 Q−1
t

]
Σ̂]t

[
R−1

t 0

0 Q−1
t

]
(63)

3.4 Computing the Cholesky standardized residuals

The Cholesky standardized residuals are computed by multiplying ε̂t by (Σ̂t)
−1/2 (the inverse of the Cholesky

decomposition of the variance-covariance matrix for ε̂t):

ε̂t,std = (Σ̂t)
−1/2ε̂t. (64)

These residuals are uncorrelated (across the residuals at time t in ε̂t). See Harvey and Koopman (1992)
and Harvey et al. (1998, section V) for a discussion on how to use these residuals for outlier detection and
structural break detection.

It is also common to use the marginal standardized residuals, which would be ε̂t multiplied by the inverse
of the square-root of dg(Σ̂t), where dg(A) is a diagonal matrix formed from the diagonal of the square
matrix A.

ε̂t,mar = dg(Σ̂t)
−1/2ε̂t (65)

Marginal standardized residuals may be correlated at time t (unlike the Cholesky standardized residuals) but
are a bit easier to interpret when there is correlation across the model residuals.

4 Distribution of the MARSS innovation residuals

One-step-ahead predictions (innovations) are often shown for MARSS models and these are used for likelihood
calculations. Innovations are the difference between the data at time t minus the prediction of yyyt given data
up to t − 1. This section gives the residual variance for the innovations and the analogous values for the
states. Innovations residuals are the more common residuals discussed for state-space models; these are also
known as the ‘one-step-ahead‘ prediction residuals.

4.1 One-step-ahead model residuals

Define the innovations vvvt as:
vvvt = E[YYY t|yyy

(1)
t ]− Ztx̃xx

t−1
t − at, (66)

where x̃xx
t−1
t is E[XXXt|yyy

(1),t−1] (expected value of XXXt conditioned on the data up to time t − 1). The random
variable, innovations over all possible yyyt, is VVV t. Its mean is 0 and we want to find its variance.

This is conceptually different than the observed ‘innovations’. First, this is the random variable ‘innova-

tion’. yyy
(1)
t here is not the actual data that you observe (the one data set that you have). It’s the data that

you could observe. yyyt is a sample from the random variable YYY t and vvvt is a sample from the innovations you

could observe. Second, vvvt includes both yyy
(1)
t and yyy

(2)
t (observed and unobserved yyy). Normally, the innovations

for missing data would appear as 0s, e.g., from a call to MARSSfss(). For missing data, vvvt is not necessarily
0. For example if yyy is multivariate and correlated with each other through R or a shared xxx dependency.

The derivation of the variance of VVV t follows the exact same steps as the smoothations V̂VV t, except that we
condition on the data up to t − 1 not up to T . Thus using Equation 25, we can write the variance directly
as:

var[VVV t] = Rt − ZtṼVV
t−1

t Z⊤
t + S̃

t−1

t Z⊤
t + Zt(S̃

t−1

t )⊤ (67)

where the ṼVV
t−1

t and S̃
t−1

t are now conditioned on only the data from 1 to t−1. S̃
t−1

t = cov[YYY t,XXXt|yyy
(1),t−1] =

cov[ZtXXXt + at +VVV t,XXXt|yyy
(1),t−1]. yyyt is not in the conditional since it only includes data up to t− 1. Without
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yyyt in the conditional, VVV t and WWW t and by extension VVV t and XXXt are independent14 and cov[ZtXXXt + at +

VVV t,XXXt|yyy
(1),t−1] = cov[ZtXXXt,XXXt|yyy

(1),t−1] = ZtṼVV
t−1

t . Therefore, Zt(S̃
t−1

t )⊤ = ZtṼVV
t−1

t Z⊤
t = S̃

t−1

t (Zt)
⊤. Thus

Equation 67 reduces to

var[VVV t] = Rt + ZtṼVV
t−1

t Z⊤
t . (68)

Note var[VVV t] is a standard output from Kalman filter functions and is used to compute the likelihood of
the data (conditioned on a set of parameters). In the Kalman filter in the {MARSS} package, it is output
as Sigma from MARSSkfss().

4.2 One-step ahead state residuals

Define the state residuals conditioned on the data from 1 to t− 1 as wwwt.

wwwt = x̃xx
t
t −Btx̃xx

t−1
t−1 − ut, (69)

where x̃xx
t−1
t−1 is E[XXXt−1|yyy

(1),t−1] (expected value of XXXt−1 conditioned on the data up to time t− 1) and x̃xx
t
t is

E[XXXt|yyy
(1),t] (expected value of XXXt conditioned on the data up to time t). From the Kalman filter equations:

x̃xx
t
t = Btx̃xx

t−1
t−1 + ut +Ktvvvt (70)

Thus, wwwt is a transformed vvvt:
wwwt = Ktvvvt, (71)

where Kt is the Kalman gain. Kt = ṼVV
t−1

t Z⊤
t [ZtṼVV

t−1

t Z⊤
t +Rt]

−1 and Zt is the missing values modified Zt

where if the i-th yyyt is missing, the i-th row of Zt is set to all 0s (Shumway and Stoffer 2006, equation 6.78).
Thus the variance of WWW t is

var[WWW t] = Kt var[VVV t]K
⊤
t (72)

4.3 Joint distribution of the conditional one-step-ahead residuals

4.3.1 with the state residuals defined from t− 1 to t

Define the one-step ahead residuals as

εt =

[
vvvt
wwwt

]
(73)

The covariance of VVV t and WWW t is

cov[VVV t,WWW t+1] = cov[VVV t,KtVVV t] = var[VVV t]K
⊤
t (74)

The joint variance-covariance matrix is

Σt = var[εt] =




var[VVV t] var[VVV t]K
⊤
t

Kt var[VVV t] Kt var[VVV t]K
⊤
t


 , (75)

Sincewwwt = Ktvvvt, the state one-step-ahead residuals are perfectly correlated with the model one-step-ahead
residuals so the joint distribution is not useful (all the information is in the variance of VVV t).

The Cholesky standardized residuals for εt are

Σ
−1/2

t εt (76)

However the Cholesky standardized joint residuals cannot be computed since Σt is not positive definite.
Because wwwt equals Ktvvvt, the state residuals are completely explained by the model residuals. However we
can compute the Cholesky standardized model residuals using

var[VVV t]
−1/2vvvt (77)

14This is only true given the way the MARSS equation is written in this report where Vt and Wt are independent. This is
not the case for the more general Harvey et al. MARSS model which allows covariance between Vt and Wt.
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var[VVV t]
−1/2 is the inverse of the lower triangle of the Cholesky decomposition of var[VVV t].

The marginal standardized joint residuals for εt (both model and state one-step ahead residuals) can be
computed with the inverse of the square root of the diagonal of Σt:

dg(Σt)
−1/2εt (78)

where dg(A) is a diagonal matrix formed from the diagonal of the square matrix A.

4.3.2 with the state residuals defined from t to t+ 1

Note that the model residual is conditioned on data 1 to t − 1 and the state residual on data 1 to t in this

case.

Define the one-step ahead residuals as

ε∗t =

[
vvvt

wwwt+1

]
(79)

The covariance of VVV t and WWW t+1 is

cov[VVV t,WWW t+1] = cov[VVV t,Kt+1VVV t+1] = cov[VVV t,VVV t+1]K
⊤
t+1 (80)

Innovations residuals are temporally uncorrelated, thus cov[VVV t,VVV t+1] = 0 and thus cov[VVV t,WWW t+1] = 0.
The joint variance-covariance matrix is

Σ
∗

t = var[ε∗t ] =




var[VVV t] 0

0 Kt+1 var[VVV t+1]K
⊤
t+1


 , (81)

The Cholesky standardized residuals for ε∗t are

(Σ
∗

t )
−1/2ε∗t (82)

Σ
∗

t is positive definite so its Cholesky decomposition can be computed.
The marginal standardized joint residuals for ε∗t are:

dg(Σ
∗

t )
−1/2ε∗t (83)

where dg(A) is a diagonal matrix formed from the diagonal of the square matrix A.

5 Distribution of the MARSS contemporaneous model residuals

Contemporaneous model residuals are the difference between the data at time t minus the prediction of yyyt
given data up to t. This section gives the residual variance for these residuals. There are no state residuals
for this case as that would require the expected value of XXXt conditioned on the data up to t+ 1.

Define the contemporaneous model residuals v̇vvt as:

v̇vvt = E[YYY t|yyy
(1)
t ]− Ztx̃xx

t
t − at, (84)

where x̃xx
t
t is E[XXXt|yyy

(1),t] (expected value of XXXt conditioned on the data up to time t). The random variable,
contemporaneous model residuals over all possible yyyt, is V̇VV t. Its mean is 0 and we want to find its variance.

The derivation of the variance of V̇VV t follows the exact same steps as the smoothations V̂VV t, except that we
condition on the data up to t not up to T . Thus using Equation 25, we can write the variance directly as:

var[V̇VV t] = Rt − ZtṼVV
t

tZ
⊤
t + S̃

t

tZ
⊤
t + Zt(S̃

t

t)
⊤ (85)

where the ṼVV
t

t and S̃
t

t are now conditioned on only the data from 1 to t. S̃
t

t = cov[YYY t,XXXt|yyy
(1),t] = cov[ZtXXXt+

at +VVV t,XXXt|yyy
(1),t]. If yyyt has no missing values, this reduces to Rt −ZtṼVV

t

tZ
⊤
t while if yyyt is all missing values,

this reduces to Rt + ZtṼVV
t

tZ
⊤
t . See discussion of this after Equation 25.

Equation 85 gives the equation for the case where yyyt is partially observed. S̃
t

t is output by the MARSShatyt()

function in the {MARSS} package and ṼVV
t

t is output by the MARSSkfss() function.
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