Package ‘LogicReg’

January 20, 2025

Version 1.6.6

Date 2023-07-24

Title Logic Regression

Author Charles Kooperberg <clk@fredhutch.org> and Ingo Ruczinski <ingo@jhu.edu>
Maintainer Charles Kooperberg <clk@fredhutch.org>

License GPL (>=2)

Depends R (>=2.10), survival

Imports stats, graphics, utils, grDevices

Description Routines for fitting Logic Regression models. Logic Regression is described
in Ruczinski, Kooperberg, and LeBlanc (2003) <DOI:10.1198/1061860032238>. Monte
Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005)
<DOI:10.1002/gepi.20042>.

NeedsCompilation yes
Repository CRAN
Date/Publication 2023-08-08 23:10:10 UTC

Contents
cumhaz 2
evallogreg L e e 3
frame.dogreg L e 4
logreg e e e 6
logreg.anneal.control L 14
logreg.mc.control 18
logreg.myownl e 20
logreg.savefitl 23
logreg.testdat L L e 24
logreg.tree.control 24
logregmodel 26
logregtree L. e e 27
plotlogreg 29
plotlogregmodel 31

https://doi.org/10.1198/1061860032238
https://doi.org/10.1002/gepi.20042

2 cumhaz

plotlogregtree e e e e e e e e e 32
predictlogreg L 34
printlogreg 35
printlogregmodel oL 37
printlogregtree L e 38
Index 40
cumhaz Cumulative hazard transformation
Description

Transforms survival times using the cumulative hazard function.

Usage
cumhaz(y, d)

Arguments
vector of nonnegative survival times
d vector of censoring indicators, should be the same length as y. If d is missing
the data is assumed to be uncensored.
Value

A vector of transformed survival times.

Note

The primary use of doing a cumulative hazard transformation is that after such a transformation,
exponential survival models yield results that are often very much comparable to proportional haz-
ards models. In our implementation of Logic Regression, however, exponential survival models run
much faster than proportional hazards models when there are no continuous separate covariates.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

See Also

logreg

eval.logreg 3

Examples

data(logreg. testdat)

#

this is not survival data, but it shows the functionality

yy <- cumhaz(exp(logreg.testdat[,1]), logreg.testdat[, 21)

then we would use

logreg(resp=yy, cens=logreg.testdat[,2], type=5, ...

insted of

logreg(resp=logreg.testdat[,1], cens=logreg.testdat[,2], type=4, ...

eval.logreg Evaluate a Logic Regression tree

Description

This function evaluates a logic tree, typically a part of an object generated by logreg.

Usage

eval.logreg(ltree, data)

Arguments
ltree an object of class logregmodel or an object of class logregtree. Typically
this object will be part of the result of an object of class logreg, generated with
select =1 (single model fit), select = 2 (multiple model fit), or select =6
(greedy stepwise fit).
data a data frame on which the logic tree is to be evaluated. data should be binary,
and have the same number of columns as the bin component of the original
logreg fit.
Value

A binary vector with length equal to the number of rows of data; a 1 corresponds to cases for which
ltree was TRUE and a O corresponds to cases for which 1tree was FALSE if 1tree was an object of
class logregtree or the trees component of such an object. Otherwise a matrix with one column
for each tree in 1tree.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

frame.logreg

logreg, logregtree, logregmodel, frame.logreg, logreg.testdat

Examples

data(logreg.savefitl)
myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)
logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

#

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)

treel <- eval.logreg(logreg.savefiti$model$trees[[1]], logreg.savefitis$binary)
tree2 <- eval.logreg(logreg.savefiti$model$trees[[2]], logreg.savefitis$hinary)
alltrees <- eval.logreg(logreg.savefiti$model, logreg.savefiti$binary)

frame.logreg

Constructs a data frame for one or more Logic Regression models

Description

Evaluates all components of one or more Logic Regression models fitted by a single call to logreg.

Usage

frame.logreg(fit, msz, ntr, newbin, newresp, newsep, newcens, newweight)

Arguments

fit

msz

ntr
newbin

newresp

newsep
newweight

newcens

object of class logreg, that resulted from applying the function logreg with
select =1 (single model fit), select = 2 (multiple model fit), or select = 6
(greedy stepwise fit).

if frame.logreg is executed on an object of class logreg, that resulted from
applying the function logreg with select = 2 (multiple model fit) or select =
6 (greedy stepwise fit) all logic trees for all fitted models are returned. To restrict
the model size and the number of trees to some models, specify msz and ntr (for
select = 2) or just msz (for select = 6).

see msz.

binary predictors to evaluate the logic trees at. If newbin is omitted, the original
(training) data is used.

the response. If newbin is omitted, the original (training) response is used. If
newbin is specified and newresp is omitted, the resulting data frame will not
have a response column.

separate (linear) predictors. If newbin is omitted, the original (training) predic-
tors are used, even if newsep is specified.

case weights. If newbin is omitted, the original (training) weights are used. If
newbin is specified and newweight is omitted, the weights are taken to be 1.
censoring indicator. For proportional hazards models and exponential survival
models only. If newbin is omitted, the original (training) censoring indicators
are used. If newbin is specified and newcens is omitted, the censoring indicators
are taken to be 1.

frame.logreg 5

Details

This function calls eval . logreg.

Value

A data frame. The first column is the response, later columns are weights, censoring indicator,
separate predictors (all of which are only provided if they are relevant) and all logic trees. Column
names should be transparent.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

logreg, eval.logreg, predict.logreg, logreg.testdat

Examples

data(logreg.savefitl,logreg.savefit2,logreg.savefit6)

#

fit a single mode

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)
logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)
framel <- frame.logreg(logreg.savefitl)
#

a complete sequence
myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 0)
logreg.savefit2 <- logreg(select = 2, ntrees = c(1,2), nleaves =c(1,7),

oldfit = logreg.savefitl, anneal.control = myanneal2)
frame2 <- frame.logreg(logreg.savefit2)
#

a greedy sequence
logreg.savefit6 <- logreg(select = 6, ntrees = 2, nleaves =c(1,12), oldfit = logreg.savefitl)
frame6 <- frame.logreg(logreg.savefit6, msz = 3:5) # restrict the size

logreg

logreg

Logic Regression

Description

Fit one or a series of Logic Regression models, carry out cross-validation or permutation tests for
such models, or fit Monte Carlo Logic Regression models.

Logic regression is a (generalized) regression methodology that is primarily applied when most of
the covariates in the data to be analyzed are binary. The goal of logic regression is to find predictors
that are Boolean (logical) combinations of the original predictors. Currently the Logic Regression
methodology has scoring functions for linear regression (residual sum of squares), logistic regres-
sion (deviance), classification (misclassification), proportional hazards models (partial likelihood),
and exponential survival models (log-likelihood). A feature of the Logic Regression methodology
is that it is easily possible to extend the method to write ones own scoring function if you have a
different scoring function. logreg.myown contains information on how to do so.

Usage

logreg(resp, bin, sep, wgt, cens, type, select, ntrees, nleaves,

Arguments

resp

bin

sep

wgt

cens

type

select

penalty, seed, kfold, nrep, oldfit, anneal.control, tree.control,
mc.control)

vector with the response variables. Let n1 be the length of this column.

matrix or data frame with binary data. Let n2 be the number of columns of this
object. bin should have n1 rows.

(optional) matrix or data frame that is fitted additively in the logic regression
model. sep should have n1 rows. When exponential survival models (type =
5) are used, the additive predictors have to be binary. When logistic regression
models (type = 3) are used logreg is much faster when all additive predictors
are binary.

(optional) vector of length n1 with case weights; default is rep(1,n1).

(optional) an indicator variable with censoring indicators if type equals 4 (pro-
portional hazards model) or 5 (exponential survival model); defaultis rep(1,n1).

type of model to be fit: (1) classification, (2) regression, (3) logistic regres-
sion, (4) proportional hazards model (Cox regression), (5) exponential survival
model, or (0) your own scoring function. If type = @, the code needs to be re-
compiled, uncompiled type = @ results in a constant score of 0, which may be
useful to generate a sample from the prior when select = 7 (Monte Carlo Logic
Regression).

type of model selection to be carried out: (1) fit a single model, (2) fit multiple
models, (3) cross-validation, (4) null-model permutation test, (5) conditional
permutation test, (6) a greedy stepwise algorithm, or (7) Monte Carlo Logic
Regression (using MCMC). See details below.

logreg 7

ntrees number of logic trees to be fit. A single number if you select to fit a single model
(select = 1), carry out the null-model permutation test (select = 4), carry out
greedy stepwise selection (select = 6) or, select using MCMC (select = 7), or
arange (e.g. c(ntreeslow,ntreeshigh)) for any of the other selection options.
In our applications, we usually ended up with models having between one and
four trees. In general, fitting one and two trees in the initial exploratory analysis
is a good idea.

nleaves maximum number of leaves to be fit in all trees combined. A single number if
you select to fit a single model (select = 1) carry out the null-model permuta-
tion test (select = 4), carry out greedy stepwise selection (select = 6) or, se-
lect using MCMC (select = 7), or arange (e.g. c(nleaveslow,nleaveshigh))
for any of the other selection options. If select is 1, 4, 6, or 7, the default is -1,
which is expanded to become ntrees * tree.control\$treesize .

penalty specifying the penalty parameter allows you to penalize the score of larger mod-
els. The penalty takes the form penalty times the number of leaves in the
model. (For some score functions, we compute average scores: the penalty is
naturally adjusted.) Thus penalty = 2 is somewhat comparable to AIC. Note,
however, that there is no relation between the size of the model and the num-
ber of parameters (dimension) of the model, as is usual the case for AIC like
penalties. penalty is only relevant when select = 1.

seed a seed for the random number generator. The random seed is taken to be abs (seed).
\ For the cross-validation version, if seed < @ the sequence of the cases is not
permuted for division in training-test sets. This is useful if you already per-
muted the sequence, and wish to compare results with other approaches, or if
there is a relation between the sequence of the cases, for example for a matched
case-control study.

kfold the number of groups the cases are randomly assigned to. In turn, the model is
trained on (kfold - 1) of those groups, and scored on the group left out. Com-
mon choices are kfold =5 and kfold = 10. Only relevant for cross-validation
(select = 3).

nrep the number of runs on permuted data for each model size. We recommend first
running this program with a small number of repetitions (e.g. 10 or 25) before
sending off a big job. Only relevant for the null-model test (select = 4) or the
permutation test (select = 5).

oldfit object of class logreg, typically the result of a previous call to logreg. All op-
tions that are not specified default to the value used in oldfit. For the permu-
tation test (select = 5) an oldfit object obtained with select = 2 (fit multiple
models) is mandatory, as the best models of each size need to be in place.

anneal.control simulated annealing parameters - best set using the function logreg.anneal.control.
tree.control several secondary parameters - best set using the function logreg. tree.control.

mc.control Markov chain Monte Carlo parameters - best set using the function logreg.mc.control.

Details

Logic Regression is an adaptive regression methodology that attempts to construct predictors as
Boolean combinations of binary covariates.

logreg

In most regression problems a model is developed that only relates the main effects (the predictors
or transformations thereof) to the response. Although interactions between predictors are consid-
ered sometimes as well, those interactions are usually kept simple (two- to three-way interactions at
most). But often, especially when all predictors are binary, the interaction between many predictors
is what causes the differences in response. This issue often arises in the analysis of SNP microarray
data or in data mining problems. Given a set of binary predictors X, we try to create new, better
predictors for the response by considering combinations of those binary predictors. For example, if
the response is binary as well (which is not required in general), we attempt to find decision rules
such as “if X1, X2, X3 and X4 are true”, or “X5 or X6 but not X7 are true”, then the response is
more likely to be in class 0. In other words, we try to find Boolean statements involving the binary
predictors that enhance the prediction for the response. In more specific terms: Let X1,...,Xk be
binary predictors, and let Y be a response variable. We try to fit regression models of the form
g(E[Y]) =b0 + bl L1+ ...+ bn Ln, where Lj is a Boolean expression of the predictors X, such as
Lj=[(X2 or X4c) and X7]. The above framework includes many forms of regression, such as linear
regression (g(E[Y])=E[Y]) and logistic regression (g(E[Y])=log(E[Y]/(1-E[Y]))). For every model
type, we define a score function that reflects the “quality” of the model under consideration. For
example, for linear regression the score could be the residual sum of squares and for logistic regres-
sion the score could be the deviance. We try to find the Boolean expressions in the regression model
that minimize the scoring function associated with this model type, estimating the parameters bj si-
multaneously with the Boolean expressions Lj. In general, any type of model can be considered, as
long as a scoring function can be defined. For example, we also implemented the Cox proportional
hazards model, using the partial likelihood as the score.

Since the number of possible Logic Models we can construct for a given set of predictors is huge, we
have to rely on some search algorithms to help us find the best scoring models. We define the move
set by a set of standard operations such as splitting and pruning the tree (similar to the terminology
introduced by Breiman et al (1984) for CART). We investigated two types of algorithms: a greedy
and a simulated annealing algorithm. While the greedy algorithm is very fast, it does not always
find a good scoring model. The simulated annealing algorithm usually does, but computationally
it is more expensive. Since we have to be certain to find good scoring models, we usually carry
out simulated annealing for our case studies. However, as usual, the best scoring model generally
over-fits the data, and methods to separate signal and noise are needed. To assess the over-fitting of
large models, we offer the option to fit a model of a specific size. For the model selection itself we
developed and implemented permutation tests and tests using cross-validation. If sufficient data is
available, an analysis using a training and a test set can also be carried out. These tests are rather
complicated, so we will not go into detail here and refer you to Ruczinski I, Kooperberg C, LeBlanc
ML (2003), cited below.

There are two alternatives to the simulated annealing algorithm. One is a stepwise greedy selection
of models. This is when setting select = 6, and yields a sequence of models from size 1 through
a maximum size. At each time among all the models that are one larger than the current model the
best model is selected, yielding a sequence of models of different sizes. Usually these models are
not the best possible, and, if the simulated annealing chain is long enough, you should expect that
the models selected using select = 2 are better.

The second alternative is to run a Markov Chain Monte Carlo (MCMC) algorithm. This is what is
done in Monte Carlo Logic Regression. The algorithm used is a reversible jump MCMC algorithm,
due to Green (1995). Other than the length of the Markov chain, the only parameter that needs to be
set is a parameter for the geometric prior on model size. Other than in many MCMC problems, the
goal in Monte Carlo Logic Regression is not to yield one single best predicting model, but rather to
provide summaries of all models. These are exactly the elements that are shown above as the output

logreg 9

when select = 7.
MONITORING

The help file for logreg.anneal.control, contains more information on how to monitor the sim-
ulated annealing optimization for logreg. Here is some general information.

Find the best scoring model of any size (select = 1)

During the iterations the following information is printed out:

log-temp current score best score acc/ rej/ sing current parameters
-1.000 1.494 1.494 0(0) 0 0 2.88-1.99 0.00
-1.120 1.150 1.043 655(54) 220 71 3.630.15-1.82
-1.240 1.226 1.043 555(49) 316 80 3.830.05-1.71
-2.320 0.988 0.980 147(36) 759 58 3.00-2.11 1.11
-2.440 0.982 0.980 25(31) 884 60 2.89-2.121.24
-2.560 0.988 0979 35(61) 850 51 3.00-2.11 1.11
-3.760 0.964 0.964 2(22) 961 15 2.57-2.151.55
-3.880 0.964 0.964 0(17) 961 22 2.57-2.151.55
-4.000 0.964 0.964 0(13) 970 17 2.57-2.151.55
log-temp:

logarithm (base 10) of the temperature at the last iteration before the print out.

current score:

the score after the last iterations.

best score:

the single lowest score seen at any iteration.

acc:

the number of proposed moves that were accepted since the last print out for which the model
changed, within parenthesis, the number of those that were identical in score to the move before
acceptance.

rej:

the number of proposed moves that gave numerically acceptable results, but were rejected by the
simulated annealing algorithm since the last print out.

sing:

the number of proposed moves that were rejected because they gave numerically unacceptable re-
sults, for example because they yielded a singular system.

current parameters:

the values of the coefficients (first for the intercept, then for the linear (separate) components, then
for the logic trees).

This information can be used to judge the convergence of the simulated annealing algorithm, as
described in the help file of logreg.anneal.control. Typically we want (i) the number of accep-
tances to be high in the beginning, (ii) the number of acceptances with different scores to be low
at the end, and (iii) the number of iterations when the fraction of acceptances is moderate to be as
large as possible.

Find the best scoring models for various sizes (select = 2)

10

logreg

During the iterations the same information as for find the best scoring model of any size, for each
size model considered.

Carry out cross-validation for model selection (select = 3)

Information about the simulated annealing as described above can be printed out. Otherwise, during
the cross-validation process information like

Step50f 10 [2 trees; 4 leaves] The CV score is 1.127 1.1201.0521.122

The first of the four scores is the training-set score on the current validation sample, the second
score is the average of all the fraining-set scores that have been processed for this model size, the
third is the fest-set score on the current validation sample, and the fourth score is the average of
all the test-set scores that have been processed for this model size. Typically we would prefer the
model with the lowest test-set score average over all cross-validation steps.

Carry out a permutation test to check for signal in the data (select = 4)

Information about the simulated annealing as described above can be printed out. Otherwise, first
the score of the model of size O (typically only fitting an intercept) and the score of the best model
are printed out. Then during the permutation lines like

Permutation number 21 out of 50 has score 1.47777

are printed. Each score is the result of fitting a logic tree model, on data where the response has
been permuted. Typically we would believe that there is signal in the data if most permutations have
worse (higher) scores than the best model, but we may believe that there is substantial over-fitting
going on if these permutation scores are much better (lower) than the score of the model of size 0.

Carry out a permutation test for model selection (select = 5)

To be able to run this option, an object of class logreg that was run with (select =2) needs
to be in place. Information about the simulated annealing as described above can be printed out.
Otherwise, lines like

Permutation number 8 out of 25 has score 1.00767 model size 3 with 2 tree(s)

are printed. We can compare these scores to the tree of the same size and the best tree. If the scores
are about the same as the one for the best tree, we think that the “true” model size may be the one
that is being tested, while if the scores are much worse, the true model size may be larger. The
comparison with the model of the same size suggests us again how much over-fitting may be going
on. plot.logreg generates informative histograms.

Greedy stepwise selection of Logic Regression models (select = 6)
The scores of the best greedy models of each size are printed.
Monte Carlo Logic Regression (select =7)

A status line is printed every so many iterations. This information is probably not very useful, other
than that it helps you figure out how far the code is.

PARAMETERS

As Logic Regression is written in Fortran 77 some parameters had to be hard coded in. The default
values of these parameters are

maximum number of columns in the input file: 1000
maximum number of leaves in a logic tree: 128
maximum number of logic trees: 5

maximum number of separate parameters: 50

logreg 11
maximum number of total parameters(separate + trees): 55

If these parameters are not large enough (an error message will let you know this), you need to reset
them in slogic.f and recompile. In particular, the statements defining these parameters are

PARAMETER (LGCn2MAX = 1000)
PARAMETER (LGCnknMAX = 128)
PARAMETER (LGCntrMAX = 5)

PARAMETER (LGCnsepMAX = 50)
PARAMETER (LGCbetaMAX = 55)

The unfortunate thing is that you will have to change these parameter definitions several times in
the code. So search until you have found them all.

Value

An object of the class logreg. This contains virtually all input parameters, and in addition

If select=1:

an object of class logregmodel: the Logic Regression model. This model contains a list of ntrees
objects of class logregtree.

If select =2 or select = 6:

nmodels: the number of models fitted.

allscores: a matrix with 3 columns, containing the scores of all models. Column 1 contains the
score, column 2 the number of leaves and column 3 the number of trees.

alltrees: alist with nmodels objects of class logregmodel.

If select =3:

cvscores: a matrix with the results of cross validation. The train.ave and test.ave columns
for train and test contain running averages of the scores for individual validation sets. As such these
scores are of most interest for the rows where k=kfold.

If select = 4:

nullscore: score of the null-model.
bestscore: score of the best model.
randscores: scores of the permutations; vector of length nrep.

If select =5:

bestscore: score of the best model.
randscores: scores of the permutations; each column corresponds to one model size.

If select=7:

size: a matrix with two columns, indicating which size models were fit how often.
single: avector with as many elements as there are binary predictors. single[i] shows how often

12 logreg

predictor i is in any of the MCMC models. Note that when a predictor is twice in the same model, it
is only counted once, thus, in particular, sum(size[,1]*size[, 2] will typically be slightly larger
than sum(single).

double: square matrix with as size the number of binary predictors. double[i, j] shows how often
predictors i and j are in the same tree of the same MCMC model if i>j, if i<=j double[i, j]
equals zero. Note that for models with several logic trees two predictors can both be in the model
but not be in the same tree.

triple: square 3D array with as size the number of binary predictors. See double, but here
tripleli, j, k] shows how often three predictors are jointly in one logic tree.

In addition, the file slogiclisting.tmp in the current working directory can be created. This
file contains a compact listing of all models visited. Column 1: proportional to the log posterior
probability of the model; column 2: score (log-likelihood); column 3: how often was this model
visited, column 4 through 3 + maximum number of leaves: summary of the first tree, if there are two
trees, column 4 + maximum number of leaves through 3 + twice the maximum number of leaves
contains the second tree, and so on.

In this compact notation, leaves are in the same sequence as the rows in a logregtree object; a
zero means that the leave is empty, a 1000 means an “and” and a 2000 an “or”, any other positive
number means a predictor and a negative number means “not” that predictor.

The mc. control element output can be used to surppress the creation of double, triple, and/or
slogiclisting. tmp. There doesn’t seem to be too much use in surppressing double. Surpressing
triple speeds up computations a bit (in particular on machines with limited memory when there
are many binary predictors), and reduces the size of both the code and the object, surppressing
slogiclisting. tmp saves the creation of a possibly very large file, which can slow down the code
considerably. See logreg.mc.control for details.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L (2001). Sequence Analysis using Logic Regres-
sion, Genetic Epidemiology, 21, S626-S631.

Kooperberg C, Ruczinki I (2005). Identifying interacting SNPs using Monte Carlo Logic Regres-
sion, Genetic Epidemiology, 28, 157-170.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

See Also

eval.logreg, frame.logreg, plot.logreg,print.logreg, predict.logreg, logregtree, plot.logregtree,
print.logregtree, logregmodel, plot.logregtree, print.logregtree, logreg.myown, logreg.anneal.control,
logreg.tree.control, logreg.mc.control, logreg. testdat

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

logreg 13

Examples

data(logreg.savefitl,logreg.savefit2,logreg.savefit3,logreg.savefit4,
logreg.savefit5,logreg.savefit6,logreg.savefit7,logreg. testdat)

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 500, update = 100)
in practie we would use 25000 iterations or far more - the use of 500 is only
to have the examples run fast
Not run: myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 500)
fitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 1, ntrees = 2, anneal.control = myanneal)
the best score should be in the 0.95-1.10 range
plot(fit1)
you'll probably see X1-X4 as well as a few noise predictors
use logreg.savefitl for the results with 25000 iterations
plot(logreg.savefitl)
print(logreg.savefitl)
z <- predict(logreg.savefitl)
plot(z, logreg.testdat[,1]-z, xlab="fitted values”, ylab="residuals")
there are some streaks, thanks to the very discrete predictions
#
a bit less output
myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 500, update = Q)
in practie we would use 25000 iterations or more - the use of 500 is only
to have the examples run fast
Not run: myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 0)
#
fit multiple models
fit2 <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 2, ntrees = c¢(1,2), nleaves =c(1,7), anneal.control = myanneal2)
equivalent
Not run: fit2 <- logreg(select = 2, ntrees = c(1,2), nleaves =c(1,7), oldfit = fit1,
anneal.control = myanneal2)
End(Not run)
plot(fit2)
use logreg.savefit2 for the results with 25000 iterations
plot(logreg.savefit2)
print(logreg.savefit2)
After an initial steep decline, the scores only get slightly better
for models with more than four leaves and two trees.
#
cross validation
fit3 <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 3, ntrees = c¢(1,2), nleaves=c(1,7), anneal.control = myanneal2)
equivalent
Not run: fit3 <- logreg(select = 3, oldfit = fit2)
plot(fit3)
use logreg.savefit3 for the results with 25000 iterations
plot(logreg.savefit3)
4 leaves, 2 trees should top
null model test
fit4 <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 4, ntrees = 2, anneal.control = myanneal2)

14 logreg.anneal.control

equivalent
Not run: fit4 <- logreg(select = 4, anneal.control = myanneal2, oldfit = fit1)
plot(fit4)
use logreg.savefit4 for the results with 25000 iterations
plot(logreg.savefit4)
A histogram of the 25 scores obtained from the permutation test. Also shown
are the scores for the best scoring model with one logic tree, and the null
model (no tree). Since the permutation scores are not even close to the score
of the best model with one tree (fit on the original data), there is overwhelming
evidence against the null hypothesis that there was no signal in the data.
fit5 <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 5, ntrees = c¢(1,2), nleaves=c(1,7), anneal.control = myanneal2,
nrep = 10, oldfit = fit2)
equivalent
Not run: fit5 <- logreg(select = 5, nrep = 10, oldfit = fit2)
plot(fit5)
use logreg.savefit5 for the results with 25000 iterations and 25 permutations
plot(logreg.savefit5)
The permutation scores improve until we condition on a model with two trees and
four leaves, and then do not change very much anymore. This indicates that the
best model has indeed four leaves.
#
greedy selection
fit6 <- logreg(select = 6, ntrees = 2, nleaves =c(1,12), oldfit = fit1)
plot(fit6)
use logreg.savefit6 for the results with 25000 iterations
plot(logreg.savefit6)
#
Monte Carlo Logic Regression
fit7 <- logreg(select = 7, oldfit = fit1, mc.control=
logreg.mc.control(nburn=500, niter=2500, hyperpars=log(2), output=-2))
we need many more iterations for reasonable results
Not run: logreg.savefit7 <- logreg(select = 7, oldfit = fit1, mc.control=
logreg.mc.control(nburn=1000, niter=100000, hyperpars=log(2)))
End(Not run)
#
plot(fit7)
use logreg.savefit7 for the results with 100,000 iterations
plot(logreg.savefit7)

logreg.anneal.control Control for Logic Regression

Description

Control of simulated annealing parameters needed in logreg.

Usage

logreg.anneal.control(start=0, end=0, iter=0, earlyout=0, update=0)

logreg.anneal.control 15

Arguments

start the upper temperature (on a log10 scale) in the annealing chain. Le. if start
= 3, the annealing chain starts at temperature 1000. The acceptance function is
the usual min(1,exp(-diff(scores)/temp)), so any temperature larger than
what would be expected as possible differences between any two models pretty
much generates a random walk in the beginning, and means that you need to
wait longer on results. A too low starting temperature means that the chain may
end up in a local optimal (rather than global optimal) solution. If you select
both start and end the default of 0, the program will attempt to find reasonable
numbers itself (it is known to be only moderately successful in this though).

end the lower temperature (on a logl0 scale) in the annealing chain. L.e. if end is
-2, the annealing chain ends at temperature 0.01. If this temperature is very low
one can use the early out possibility listed below, as otherwise the chain may
run longer than desired!

iter the total number of iterations in the annealing chain. This is the total over all
annealing chains, not the number of iterations of a chain at a given temperature.
If this number is too small the chain may not find a good (the best) solution, if
the chain is too long the program may take long...

earlyout if the end temperature is very low, the simulated annealing algorithm may not
move any more, but one still needs to wait on all possible moves being evaluated
(and rejected)! An early out possibility is offered. If during consecutive five
blocks of earlyout iterations, in each block 10 or fewer moves are accepted
(for which the score changes), the program terminates. This is a desirable option
after one is convinced the program otherwise runs fine: it can be dangerous on
the first run.

update every how many iterations there should be an update of the scores. L.e. if update
= 1000, a score will get printed every 1000 iterations. So if iter = 100000 iter-
ations, there will be 100 updates on your screen. If you update = 0, a one line
summary for each fitted model is printed. If update = -1, there is virtually no
printed output.

Details

Missing arguments take defaults. If the argument start is a list with arguments start, end, iter,
earlyout, and update, those values take precedent of directly specified values.

This is a rough outline how the automated simulated annealing works: The algorithm starts running
at a very high temperature, and decreases the temperature until the acceptance ratio of moves is
below a certain threshold (in the neighborhood of 95%). At this point we run longer chains at fixed
temperatures, and stop the search when the last "n" consecutive moves have been rejected. If you
think that the search was either not sufficiently long or excessively long (both of which can very
well happen since it is pretty much impossible to specify default values that are appropriate for all
sorts of data and models), you can over-write the default values.

If you want more detailed information continue reading....

These are some more detailed suggestions on how to set the parameters for the beginning tempera-
ture, end temperature and number of iterations for the Logic Regression routine. Note that if start
temperature and end temperature are both zero, the routine uses its default values. The number of

16

logreg.anneal.control

iterations iter is irrelevant in this case. In our opinion, the default values are OK, but not great,
and you can usually do better if you’re willing to invest time in learning how to set the parameters.

The starting temperature is the log(10) value of start - i.e., if start is 2 it means iterations start at
a temperature of 100. The end temperature is again the log(10) value. The number of iterations are
equidistant on a log-scale.

Considerations in setting these parameters.....

1) start temperature. If this is too high you’re "wasting time", as the algorithm is effectively just
making a random walk at high temperatures. If the starting temperature is too low, you may already
be in a (too) localized region of the search space, and never reach a good solution. Typically
a starting temperature that gives you 90% or so acceptances (ignoring the rejected attempts, see
below) is good. Better a bit too high than too low. But don’t waste too much time.

2) end temperature. By the time that you reach the end temperature the number of accepted it-
erations should be only a few per 1000, and the best score should no longer change. Even zero
acceptances is fine. If there are many more acceptances, lower end. If there are zero acceptances
for many cycles in a row, raise it a bit. You can set a lower end temperature than needed using the
earlyout test: if in 5 consecutive cycles of 1000 iterations there are fewer than a specified number
of acceptances per cycle, the program terminates.

3) number of iterations. What really counts is the number of iterations in the "crunch time", when
the number of acceptances is, say, more than 5% but fewer than 40% of the iterations. If you print
summary statistics in blocks of 1000, you want to see as many blocks with such acceptance numbers
as possible. Obviously within what is reasonable.

Here are two examples, with my analysis....
(A) logreg.anneal.control(start =2, end=1, iter = 50000, update = 1000)

The first few lines are (cutting of some of the last columns...)

log-temp current score best score acc/ rej/ sing current parameters
2.000 1198.785 1198.785 0 0 0 0.508 -0.368 -0.144
1.980 1197.962 1175311 719(18) 34 229 1.273-0.275-0.109
1.960 1197909 1168.159 722(11) 38 229 0.416-0.345-0.173
1.940 1181.545 1168.159 715(19) 35 231 0.416-0.345-0.173

1.020 1198.258 1167.578 663(16) 128 193 1.685-0.216-0.024
1.000 1198.756 1167.578 641(23) 104 232 1.685-0.216 -0.024
1.000 1198.756 1167.578 1(0) 0 0 1.685-0.216-0.024

Ignore the last line. This one is just showing a refitting of the best model. Otherwise, this suggests
(1) end is ***way*** too high, as there are still have more than 600 acceptances in blocks of 1000.
It is hard to judge what end should be from this run. (ii) The initial number of acceptances is
really high (719+18)/(719+18+34))=95% - but when 1.00 is reached it’s at about 85%. One could
change start to 1, or keep it at 2 and play it save.

(B) logreg.anneal.control(start =2, end = -2, iter = 50000, update = 1000) - different dataset/problem

The first few lines are

log-temp current score best score acc/ rej/ sing current parameters

logreg.anneal.control

2.000
1.918
1.837
1.755

The last few are

log-temp
-1.837
-1.918
-2.000
-2.000

1198.785
1189.951
1191.542
1191.907

current score
1132.731
1132.731
1132.731
1132.731

1198.785
1172.615
1166.739
1162.902

best score
1131.866
1131.866
1131.866
1131.866

0(0)
634(23)
651(24)
613(30)

acc/
0(18)
0(25)
0(17)
0(0)

But there really weren’t any acceptances since

log-temp
-0.449
-0.531
-0.612

Going down from 400 to fewer than 10 acceptances went pretty fast....

log-temp
0.776
0.694
0.612
0.531
0.449
0.367
0.286
0.204
0.122
0.041
-0.041
-0.122

What does this tell me - (i) start was probably a bit high - no real harm done, (ii) end was lower

current score
1133.622
1133.622
1133.622

current score
1182.156
1168.504
1167.747
1162.085
1143.841
1176.152
1138.384
1138.224
1150.370
1144.536
1137.898
1139.403

best score
1131.866
1131.866
1131.866

best score
1156.354
1150.931
1150.931
1145.920
1142.321
1142.321
1131.866
1131.866
1131.866
1131.866
1131.866
1131.866

acc/
4(21)
0(19)
0(33)

acc/
464(31)
306(17)
230(38)
124(12)
63(20)
106(21)
62(18)
11(27)
15(12)
30(19)
21(25)
12(30)

22
32
20

rej /
701
676
718

rej /
875
829
808

rej /
258
355
383
571
590
649
731
823
722
789
911
883

322
293
337

sing
281
299
265

sing
100
152
159

sing
247
322
349
293
327
224
189
139
251
162

43

75

0.50847 -0.36814
0.38163 -0.28031
1.75646 -0.22451
1.80210 -0.32276

current parameters

0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994

current parameters

0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994

current parameters
1.00543 -0.26602
1.56695 -0.43351
1.56695 -0.43351
1.15376 -0.15223
2.20150 -0.43795
2.20150 -0.43795
0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994
0.00513 -0.45994

17

than needed. Since there really weren’t any acceptances after 10log(T) was about (-0.5), an ending
log-temperature of (-1) would have been fine, (iii) there were far too few runs. The crunch time
didn’t take more than about 10 cycles (10000 iterations). You see that this is the time the "best
model" decreased quite a bit - from 1156 to 1131. I would want to spend considerably more than
10000 iterations during this period for a larger problem (how many depends very much on the size
of the problem). So, I’d pick (A)logreg.anneal.control(start =2,end=-1, iter = 200000,

18 logreg.mc.control

update = 5000). Since the total range is reduced from 2-(-2)=4 to 2-(-1)=3, over a range of
10log temperatures of 1 there will be 200000/3=67000 rather than 50000/4=12500 iterations. I
would repeat this run a couple of times.

In general I may sometimes run several models, and check the scores of the best models. If those
are all the same, I’m very happy, if they’re similar but not identical, it’s OK, though I may run one
or two longer chains. If they’re very different, something is wrong. For the permutation test and
cross-validation I am usually less picky on convergence.

Value
A list with arguments start, end, iter, earlyout, and update, that can be used as the value of
the argument anneal . control oflogreg.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-1logic.pdf

See Also

logreg, logreg.mc.control, logreg.tree.control

Examples

myannealcontrol <- logreg.anneal.control(start = 2, end = -2, iter = 50000, update = 1000)

logreg.mc.control Control for Logic Regression

Description

Control of MCMC annealing parameters needed in logreg.

Usage

logreg.mc.control (nburn=1000, niter=25000, hyperpars=0, update=0,
output=4)

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

logreg.mc.control

Arguments

nburn

niter

hyperpars

update

output

Details

19

number of burn in MCMC iterations that are ignored when computing sum-
maries

number of MCMC iterations that are used to compute summary statistics

hyperparameters. The code allows up to 10 such parameters, but currently only
one is used. In particular, log(P(size=k)/P(size=k+1)) equals hyperpars[1],
where P is the prior on model size. Since a maximum model size (specified in
logreg is being used, hyperpars[1] can even be smaller than 0.

every how many iterations there should be an update of the scores. L.e. if update
= 1000, a score will get printed every 1000 iterations. So if iter = 100000 it-
erations, there will be 100 updates on your screen. If update =0, a one line
summary for each fitted model is printed. If update = -1, there is virtually no
printed output.

If abs(output) > 1 bivariate statistics are gathered, if abs(output) > 2 trivari-
ate statistics are also gathered, otherwise only univariate statistics are gathered.
If output >0 all fitted models are saved in a text file “slogiclisting.tmp”, if
output < @ this does not happen.

Considerations for setting nburn and niter are as for any MCMC problem. In our experience
Logic Regression mixes quickly, and a real small nburn (1000, for example) suffices. If there are
many trees and large models niter may need to be large.

A more detailed description of the output options can be found in the helpfile of logreg.

Value

A list with arguments nburn, niter, hyperpars, update, and output, that can be used as the value
of the argument mc. control of logreg.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Kooperberg C, Ruczinki I (2005). Identifying interacting SNPs using Monte Carlo Logic Regres-
sion, Genetic Epidemiology, 28, 157-170.

See Also

logreg, logreg.tree.control, logreg.anneal.control

20

logreg.myown

Examples

mymccontrol <- logreg.mc.control(nburn = 500, niter = 500000, update = 25000,
hyperpars = log(2), output = -2)

logreg.myown Writing your own Logic Regression scoring function

Description

Help file for writing your own scoring function for logreg!

Usage

logreg.myown()

Details

You can write your own scoring function for logreg! This may be useful if you have a model other
than those which we already programmed in.

Essentially you need to provide two routines in the file Myownscoring.f:

(i) A routine Myownfitting which fits your model: it provides a coefficient (beta) for each of the
logic trees and provides a score of how good the model is. Low scores are good. (So add a minus
sign if your score is a log-likelihood.)

(i1) A routine Myownscoring which - given the betas - provides the score of your model. [If you
don’t use cross-validation, this second routine is not needed, though some dummy routine to satisfy
the compiler should still be provided.]

After recompilation, you can fit your model using the option type =0 in logreg. Below we give
an example for a version of the My.own functions for conditional logistic regression which are also
provided as inst/condlogic.ff when you downloaded the files.

PROGRAMMING DETAILS

Below is a list of variables that are passed on. Most of them are as you expect - response, predictors
(binary ones and continuous ones), number of cases, number of predictors. In addition there are two
columns - dcph and weight - that can either be used to pass on an auxiliary variable for each case
(discrete for dcph and continuous for weight), or even some overall auxiliary variables - as these
numbers are not used anywhere else. If you do not need any of the variables - just ignore them!

prtr:

the predictions of the logic trees in the current model: this is an integer matrix of size n1 times ntr
- although only the first nop columns contain useful information.

rsp:

the response variable: this is a real (single precision) vector of length n1.

dcph:

censor times: this is an integer vector of length n1 this could be used as an auxiliary (integer) vector
- as it is just passed on. (There is no check that this is a 0/1 variable, when you use your own scoring
function.) For example, you could use this to pass on something like cluster membership.

weight:

logreg.myown 21

weights for the cases this is a real vector of length n1. this could be used as an auxiliary (real) vector
- as it is just passed on. There is no check that these numbers are positive, when you choose your
own scoring function.

ordrs:

the order (by response size) of the cases This is an integer vector of length n1. For the case with
the smallest response this one is 1, for the second smallest 2, and so on. Ties are resolved arbitrary.
Always computed, although only used for proportional hazards models. Use it as you wish.

ni:

the total number of cases in the data.

ntr:

the number of logic trees ALLOWED in the tree.

nop:

the number of logic trees in the CURRENT model. The subroutines should work if nop is 0.

wh:

the index of the tree that has been edited in the last move - i.e. the column of prtr that has changes
since the last call.

nsep:

number of variables that get fit a separate parameter The subroutines should work if nsep is 0.
seps:

array of the above variables - this is a single precision matrix of size nsep times n1. Note that seps
and prtr are stored in different directions.

For Myownfitting you should return:

betas:

a vector of parameters of the model that you fit. betas (@) should be the parameter for the intercept
betas(1:nsep) should be the parameters for the continuous variables in seps betas((nsep+1) : (nsep+nop))
should be the parameters for the binary trees in prtr if you have more parameters, use dcph, or
weight; these variables will not be printed however.

score:

whatever score you assign to your model small should be good (i.e. deviance or -log.likelihood).
reject:

an indicator whether or not to reject the proposed move *regardless* of the score (for example when
an iteration necessary to determine the score failed to converge (0 = move is OK ; 1 = reject move)
set this one to 0O if there is no such condition.

You are allowed to change the values of dcph, and weight.

For Myownscoring additional input is:
betas: the coefficients

You should return:
score: whatever score you assign to your model small should be good (i.e. deviance or -log.likelihood).
If the model "crashes", you should simply return a very large number.

While we try to prevent that models are singular, it is possible that for your model a single or
degenerate model is passed on for evaluation. For Myownfitting you can pass the model back with
reject =1, for Myownscoring you can pass it on with a very large value for score. Currently
Myownscoring.f contains empty frames for the scoring functions; condlogic.ff contains an example
with conditional logistic regression.

The logic regression program is written in Fortran 77.
CONDITIONAL LOGISTIC REGRESSION

22

logreg.myown

A function for a conditional logistic regression score function is attached as an example function on
how to write your own scoring function for Logic Regression. Obviously you can also use it if you
have conditional logistic data.

Conditional logistic regression is common model fitting technique for matched case-control studies,
in which each case is matched with one or more controls. (In conditional logistic regression several
cases could be matched to several controls, in the implementation provided here only one case can
be matched with each group of controls.) Conditional logistic regression models are parameterized
like regular logistic regression models, except that the intercept is no longer identifiable. See, for
example, Breslow and Day - Volume 1 (1990, Statistical Methods in Cancer Research, International
Agency for Research on Cancer, Lyon) for details. Conditional logistic regression models are most
easily fit using a stratified proportional hazards model (if there is one-to-one case-control matching
it can also be fit using logistic regression, but that method breaks down if there is more than one
control per case). Each group of a case and controls is one stratum. All cases get an arbitrarily event
time of 1.00, and all controls get a censoring time of 2.00.

In our implementation we use the response column to indicate the matching. For all controls this
column is 0, for a case it is k, indicating that the next k records are the matched controls for the
current case. Thus, we order our cases so that each case is followed by its controls. Cases with a
negative response are put in a stratum -1, which is not used in any computations. This has implica-
tions for cross-validation. See below.

In Myownfitting and Myownscoring we first allocate various vectors (strata, index, censoring vari-
able) that are local, as well as some work arrays that are used by our fitting routines. (We need to set
some of the parameters for that, see the help page of logreg for details.) We then define idx(j)=j
for j=1,n1, and we define the strata and delta vectors. We use slightly modified versions of the
proportional hazards routines that are already used otherwise in the Logic Regression program, to
include stratification. After the model is fitted, we assign minus the partial likelihood to score(1)
and (for Myownfitting) we pass on the betas.

Recompile after replacing Myownscoring.f by condlogic.ff

The permutation and null model versions are not directly usable (we could do some permutation
tests, but they require more programming), but we can use cross-validation. Obviously we should
keep cases and controls match. To that extend, we would run permutation with a negative seed (see
logreg) and we would take care ourselves that case-control groups are in a random order, and that
every block has the same number of records. We achieve the later by adding some records with
response -1. In particular, suppose that we have 19 pairs of case- (single) control data, and that we
want to do 3-fold cross validation. We would permute the sequence of the 19 pairs, and add two
records with response -1 after the 13th pair, and two records with -1 at the end of the file, so that
the total data file would have 42 records.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.

logreg.savefit1 23

Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L (2001). Sequence Analysis using Logic Regres-
sion, Genetic Epidemiology, 21, S626-S631.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

See Also

logreg

Examples

logreg.myown() # displays this help file
help(logreg.myown) # equivalent

logreg.savefitl Sample results for Logic Regression

Description

The logreg.savefit objects are the results of fitting logreg with various options. The examples
in the functions of the LogicReg packages all use far fewer iterations than is needed. (The number
of iterations was reduced to provide quick results for bug-checking.) The number of iterations
in the logreg.savefit objects are more reasonable (though they would still be small for larger
problems). Otherwise the arguments used to fit the logreg. savefit objects are identical as those
used in the examples of logreg. The logreg.savefit objects are used for examples involving
things like plotting, printing, and predicting.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>

See Also

logreg, logreg. testdat

Examples

data(logreg.savefitl)
print(logreg.savefiti$call)
data(logreg.savefit2)
print(logreg.savefit2$call)
data(logreg.savefit3)
print(logreg.savefit3$call)
data(logreg.savefit4)
print(logreg.savefit4$call)
data(logreg.savefith)
print(logreg.savefit5%call)

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

24 logreg.tree.control

data(logreg.savefit6)
print(logreg.savefit6$call)
data(logreg.savefit7)
print(logreg.savefit7$call)

logreg. testdat Test data for Logic Regression

Description

logreg.testdat has 500 cases, and 21 columns. Column 1 is the response Y, column k+1, k=1,...,20
is (binary) predictor Xk. Each predictor Xk is simulated as an independent Bernoulli(pk) random
variables, with success probabilities pk between 0.1 and 0.9. The response variable is simulated
from the model

Y=3+1L1-2L2+N(0,1),

where L1=(X1 or X2) and L2=(X3 or X4). So the task is to use the linear model in the logic
regression framework to find L1 and L2.

See Also

logreg

Examples

data(logreg. testdat)

logreg.tree.control Control for logreg

Description

Control of various secondary parameters of tree shape needed in logreg.

Usage

logreg.tree.control(treesize=8, opers=1, minmass=0, nl)

Arguments

treesize specify the maximum number of allowed leaves per logic tree. Allowing one
leave means that the tree is (at most) a simple predictor, two leaves allows for
trees such as (X1 or X2) or (not X3 and X4). Four, eight and sixteen leaves allow
for two, three or four levels of operators. To be able to interpret the results, do
not choose too many leaves. Since the model selection techniques usually trim
down the trees, it is recommend to allow at least four or eight leaves per tree.

logreg.tree.control

opers

minmass

nl

Details

25

The default is to allow both "and" and "or" operators in the logic trees. If the
interest is in logic statements in disjunctive normal form, use only one of the
two operator types. Choose 1 for both operators, 2 for only "and" and 3 for only

" "

or .

specify the minimum number of cases for which any tree needs to be 1 and for
which any tree needs to be 0 to be considered as a logic tree in the model. This
is to prevent that logreg, will select trees with, for example, 999 1s and one 0
out of 1000 cases. The default is to take 5% of the cases or 15, whatever is less.

if you specify the sample size n1, it is checked that minmass is smaller than
n1/4. This option is used by logreg, but is likely not useful for direct use.

Missing arguments take defaults. If the argument treesize is a list with arguments treesize,
opers, and minmass, those values take precedent of directly specified values.

Value

A list with components treesize, opers, and minmass, that can be used as the value of the argu-
ment tree.control of logreg.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

See Also

logreg, logreg.anneal.control, logreg.mc.control

Examples

mytreecontrol <- logreg.tree.control(treesize = 16, minmass = 10)

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

26 logregmodel

logregmodel Format of class logregmodel

Description

This help file contains a description of the format of class logregmodel.

Usage
logregmodel ()

Value

An object of class logregtree has the following components:

ntrees the number of trees in the current model.

nleaves the number of leaves for the fitted model.

coef the coefficients for this model.

score the score of the fitted model.

trees a list of ntrees objects of class logregtree.
Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L (2001). Sequence Analysis using Logic Regres-
sion, Genetic Epidemiology, 21, S626-S631.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-1logic.pdf

See Also

logreg, plot.logregmodel, print.logregmodel, logregtree

Examples

logregmodel () # displays this help file
help(logregmodel) # equivalent

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

logregtree 27

logregtree Format of class logregtree

Description

This help file contains a description of the format of class logregtree.

Usage

logregtree()

Details

When storing trees, we number the location of the nodes using the following scheme (this is an
example for a tree with at most 8 ferminal nodes, but the generalization should be obvious):

1

Each node may or may not be present in the current tree. If it is present, it can contain an operator
(“and” or “or”), in which case it has to child nodes, or it can contain a variable, in which case the
node is a terminal node. It is also possible that the node does not exist (as the user only specifies
the maximum tree size, not the tree size that is actually fitted).

Output files have one line for each node. Each line contains 5 numbers:

1. the node number.

2. does this node contain an “and” (1), an “or” (2), a variable (3), or is the node empty (0).

3. if the node contains a variable, which one is it; e.g. if this number is 3 the node contains X3.
4. if the node contains a variable, does it contain the regular variable (0) or its complement (1)
5.

is the node empty (0) or not (1) (this information is redundant with the second number)

Example

AND
OR OR

OR OR X20 OR

X117 X12 X3 X13c X2 X1

28 logregtree

is represented as

1 1 0 0 1
2 2 0 0 1
32 0 0 1
4 2 0 0 1
52 0 0 1
6 3 20 0 1
7 2 0 0 1
8 3 17 0 1
9 3 12 0 1
10 3 3 0 1
11 3 13 1 1
12 0 0 0 O
30 0 0 O
4 3 2 0 1
15 3 1 0 1

Value

An object of class logregtree is typically a substructure of an object of the class logregmodel. It
will typically be the result of using the fitting function logreg. An object of class logictree has the
following components:

whichtree the sequence number of the current tree within the model.

coef the coefficients of this tree.

trees a matrix (data.frame) with five columns; see below for the format.
Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-1logic.pdf

See Also

logreg, plot.logregtree, print.logregtree, logregmodel

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

plot.logreg 29

Examples

logregtree() # displays this help file
help(logregtree) # equivalent

plot.logreg Plots for Logic Regression

Description

Makes plots for objects fitted by logreg.

Usage
S3 method for class 'logreg'
plot(x, pscript=FALSE, title=TRUE, ...)
Arguments
X object of class logreg, typically the result of the function logreg.
pscript if TRUE all plots will be stored in postscript files with distinct names.
title if TRUE this generates a title for some plots, typically listing the number of trees

and the model size.

graphical parameters can be given as arguments to plot.

Value

The type of the plots generated depends on the value of x$select.
if select =1 the fitted trees for the results of find the best scoring model of any size are plotted;

if select = 2 or select = 6 the fitted trees are plotted, as well as a graph of the scores for various
model sizes versus model size for the results of find the best scoring models for various sizes, or fit
a sequence of logic regression models using a stepwise greedy algorithm;

if select = 3 training and test set scores as a function of model size for the results of carry out
cross-validation for model selection are plotted;

if select =4 a histogram of the permutation scores with various important values highlighted for
the results of carry out a permutation test to check for signal in the data are plotted,;

if select =5 a series of histograms of the permutation scores with various important values high-
lighted for the results of carry out a permutation test for model selection are plotted;

if select = 7 a histogram of the size frequency of the fitted models, a histogram of the frequency
that predictors are marginally in the model, and (if that information was collected) an image plot
for the observed frequency that predictors were jointly in the model, and an image plot of the
observed/expected ratio of that joint frequency. See Kooperberg and Ruczinski (2004) for the defi-
nition of the expected frequency.

30 plot.logreg

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Kooperberg C, Ruczinki I (2005). Identifying interacting SNPs using Monte Carlo Logic Regres-
sion, Genetic Epidemiology, 28, 157-170.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

See Also

logreg, plot.logregmodel, plot.logregtree, logreg. testdat

Examples

data(logreg.savefitl,logreg.savefit2,logreg.savefit3,logreg.savefit4,
logreg.savefit5,logreg.savefit6,logreg.savefit7)

#

fit a single model

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)

logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)

the best score should be in the 0.96-0.98 range

plot(logreg.savefit1)

#

fit multiple models

myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 0)

logreg.savefit2 <- logreg(select = 2, ntrees = c(1,2), nleaves =c(1,7),

oldfit = logreg.savefitl, anneal.control = myanneal2)

plot(logreg.savefit2)

After an initial steep decline, the scores only get slightly better

for models with more than four leaves and two trees.

#

cross validation

logreg.savefit3 <- logreg(select = 3, oldfit = logreg.savefit2)

plot(logreg.savefit3)

4 leaves, 2 trees should give the best test set score

#

null model test

logreg.savefit4 <- logreg(select = 4, anneal.control = myanneal2, oldfit = logreg.savefitl)

plot(logreg.savefit4)

A histogram of the 25 scores obtained from the permutation test. Also shown

are the scores for the best scoring model with one logic tree, and the null

model (no tree). As the permutation scores are not even close to the score

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

plot.logregmodel 31

of the best model with one tree (fit on the original data), there is strong
evidence against the null hypothesis that there was no signal in the data.

#

Permutation tests

logreg.savefith <- logreg(select = 5, oldfit = logreg.savefit2)
plot(logreg.savefith)

The permutation scores improve until we condition on a model with two

trees and four leaves, and then do not change very much anymore. This

indicates that the best model has indeed four leaves.

#

a greedy sequence

logreg.savefit6 <- logreg(select = 6, ntrees = 2, nleaves =c(1,12), oldfit = logreg.savefitl)
plot(logreg.savefit6)

Monte Carlo Logic Regression

logreg.savefit7 <- logreg(select = 7, oldfit = logreg.savefitl, mc.control=
logreg.mc.control(nburn=1000, niter=100000, hyperpars=log(2)))
plot(logreg.savefit7)

plot.logregmodel Plots for Logic Regression

Description

Makes plots for an object of class logregmodel fitted by logreg.

Usage
S3 method for class 'logregmodel'’
plot(x, pscript=FALSE, title=TRUE, nms, ...)
Arguments
X object of class logregmodel, typically a part of an object of class logreg, which
is the result of the function logreg.
pscript if TRUE all plots will be stored in postscript files with distinct names.
title if TRUE this generates a title for some plots, typically listing the number of trees

and the model size.

nms names of variables. If nms is provided variable names will be plotted, otherwise
indices will be used.

graphical parameters can be given as arguments to plot.

Value

The fitted trees are plotted.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

32 plot.logregtree

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-1logic.pdf

See Also

logreg, logregmodel, plot.logreg, logreg. testdat

Examples

data(logreg.savefitl)

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)
logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)

plot(logreg.savefitl)

plot(logreg.savefiti$model) # does the same

plot.logregtree A plot of one Logic Regression tree.

Description

Makes a plot of one Logic Regression tree, fitted by logreg.

Usage

S3 method for class 'logregtree'
plot(x, nms, full=TRUE, and.or.cx=1.0, leaf.sz=1.0,
leaf.txt.cx=1.0, coef.cx=1.0, indents=rep(0,4), coef=TRUE,

coef.rd=4, ...)
Arguments

X an object of class logregtree, or the trees component of such an object. Typi-
cally this object will be part of the result of an object of class logreg, generated
with select = 1 (single model fit) or select = 2 (multiple model fit).

nms names of variables. If nms is provided variable names will be plotted, otherwise
indices will be used.

full if TRUE, the tree occupies the entire window with margins specified by indents.

and.or.cx character expansion (size) for the operators and/or.

leaf.sz character expansion for the size of the leaves.

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

plot.logregtree 33

leaf.txt.cx character expansion for the text in the leaves.

coef.cx character expansion for the coefficient string.

indents indents for plot - bottom, left, top, right.

coef if TRUE, the coefficient of the tree is plotted.

coef.rd controls how many digits of the above coefficient are displayed.

graphical parameters can be given as arguments to plot.

Value

This function makes a plot of one logic tree. The character expansion terms (and.or.cx, leaf.sz,
leaf.txt.cx, coef.cx) defaults of 1.0 are chosen to generate a pretty plot of a single tree with up
to eight leaves (4 levels deep). To plot more than one tree, or trees of different complexity, scale
accordingly.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

Selected chapters from the dissertation of Ingo Ruczinski, available from https://research.
fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

See Also

logreg, frame.logreg, logreg. testdat

Examples

data(logreg.savefit2)

#

myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = Q)

logreg.savefit2 <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:211],

type = 2, select = 2, ntrees = c(1,2), nleaves =c(1,7),

anneal.control = myanneal2)

for(i in 1:logreg.savefit2$nmodels) for(j in 1:logreg.savefit2$alltrees[[i]l]$ntrees[1]){
plot.logregtree(logreg.savefit2$alltrees[[i]]1$trees[[j1]1)
title(main=paste("model”,i,"tree",j))

https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf
https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf

34

predict.logreg

predict.logreg

Predicted values Logic Regression

Description

Computes predicted values for one or more Logic Regression models that were fitted by a single

call to logreg.

Usage
S3 method for class 'logreg'
predict(object, msz, ntr, newbin, newsep, ...)
Arguments
object Object of class logreg, that resulted from applying the function logreg with

msz

ntr

newbin

newsep

Details

select =1 (single model fit), select = 2 (multiple model fit), or select = 6
(greedy stepwise fit).

if predict.logreg is executed on an object of class logreg, that resulted from
applying the function logreg with select = 2 (multiple model fit) or select =
6 (greedy stepwise fit) all logic trees for all fitted models are returned. To restrict
the model size and the number of trees to some models, specify msz and ntr (for
select = 2) or just msz (for select = 6).

se€e€ msz

binary predictors to evaluate the logic trees at. If newbin is omitted, the original
(training) data is used.

separate (linear) predictors. If newbin is omitted, the original (training) predic-
tors are used, even if newsep is specified.

other options are ignored

This function calls frame. logreg.

Value

If object$select = 1, a vector with fitted values, otherwise a data frame with fitted values, where
columns correspond to models.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

print.logreg 35

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

logreg, frame.logreg, logreg. testdat

Examples

data(logreg.savefitl,logreg.savefit2,logreg.savefit6,logreg.testdat)

#

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)

logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21], type = 2,
select = 1, ntrees = 2, anneal.control = myanneal)

z1 <- predict(logreg.savefitl)

plot(z1, logreg.testdat[,1]-z1, xlab="fitted values”, ylab="residuals")

myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 0)

logreg.savefit2 <- logreg(select = 2, nleaves =c(1,7), oldfit = logreg.savefitl,

anneal.control = myanneal2)

z2 <- predict(logreg.savefit2)

logreg.savefit6 <- logreg(select = 6, ntrees = 2, nleaves =c(1,12), oldfit = logreg.savefitl)
z6 <- predict(logreg.savefit6, msz = 3:5)

print.logreg Prints Logic Regression Output

Description

Prints formulas for objects fitted by logreg.

Usage
S3 method for class 'logreg'
print(x, nms, notnms, pstyle, ...)
Arguments
X object of class logreg, typically the result of the function logreg.
nms names of variables. If nms is provided variable names will be printted, otherwise

x$binnames will be used. If that does not exist indices will be used.

notnms names of complements of the variables. If notnms is not provided “not” will be
added before the variable names.

36 print.logreg

pstyle parenthesis style. If pstyle =1 (the default) rules are more compact than if
pstyle = 2.

other options are ignored

Value

If x$select equals 1 or 2 the fitted logic rule(s) are generated as a text string. Scores, and if
x$select equals 2 or 6 modelsizes, are also provided. If x$select equals 4 or 5 a summary of the
permutation test(s) is printed. If x$select equals 3 a summary of the cross validation is printed. If
x$select is equal to 7 an error message is generated.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

logreg, print.logregmodel, print.logregtree, logreg.testdat

Examples

data(logreg.savefitl,logreg.savefit2,logreg.savefit3,logreg.savefit4,
logreg.savefit5,logreg.savefit6)

#

fit a single model

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)

logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:211],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)

the best score should be in the 0.96-0.98 range

print(logreg.savefitl)

#

fit multiple models

myanneal2 <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 0)

logreg.savefit2 <- logreg(select = 2, ntrees = c(1,2), nleaves =c(1,7),

oldfit = logreg.savefitl, anneal.control = myanneal2)

print(logreg.savefit2)

After an initial steep decline, the scores only get slightly better

for models with more than four leaves and two trees.

#

cross validation

logreg.savefit3 <- logreg(select = 3, oldfit = logreg.savefit2)

print(logreg.savefit3)

4 leaves, 2 trees should give the best test set score

print.logregmodel 37

#

null model test

logreg.savefit4 <- logreg(select = 4, anneal.control = myanneal2, oldfit = logreg.savefitl)
print(logreg.savefit4)

A summary of the permutation test

#

Permutation tests

logreg.savefit5 <- logreg(select = 5, oldfit = logreg.savefit2)

print(logreg.savefit5)

A table summarizing the permutation tests

#

a greedy sequence

logreg.savefit6 <- logreg(select = 6, ntrees = 2, nleaves =c(1,12), oldfit = logreg.savefitl)
print(logreg.savefit6)

print.logregmodel Prints Logic Regression Formula

Description

Prints formulas for objects fitted by logreg.

Usage
S3 method for class 'logregmodel'’
print(x, nms, notnms, pstyle, ...)
Arguments
X object of class logregmodel, typically a part of an object of class logreg, which

is the result of the function logreg.

nms names of variables. If nms is provided variable names will be printed, otherwise
indices will be used.

notnms names of complements of the variables. If notnms is not provided “not” will be
added before the variable names.

pstyle parenthesis style. If pstyle =1 (the default) rules are more compact than if
pstyle = 2.

other options are ignored

Value

A text representation of the model will be printed.

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

38 print.logregtree

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

logreg, logregmodel, print.logreg, print.logregtree, logreg.testdat

Examples

data(logreg.savefitl)

#

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)
logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)
print(logreg.savefiti$model)

print.logregtree Prints Logic Regression Formula

Description

Prints formulas for objects fitted by logreg.

Usage
S3 method for class 'logregtree'
print(x, nms, notnms, pstyle, ...)
Arguments
X object of class logregtree, typically a part of an object of class logreg, which
is the result of the function logreg, or a matrix with five columns (see logregtree).
nms names of variables. If nms is provided variable names will be printed, otherwise
indices will be used.
notnms names of complements of the variables. If notnms is not provided “not” will be
added before the variable names.
pstyle parenthesis style. If pstyle =1 (the default) rules are more compact than if
pstyle = 2.

other options are ignored

Value

A text representation of the tree will be printed.

print.logregtree 39

Author(s)

Ingo Ruczinski <ingo@jhu.edu> and Charles Kooperberg <clk@fredhutch.org>.

References

Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, Journal of Computational and
Graphical Statistics, 12, 475-511.

Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. Pro-
ceedings of the MSRI workshop on Nonlinear Estimation and Classification (Eds: D. Denison, M.
Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344.

See Also

logreg, logregtree, print.logreg, print.logregmodel, logreg. testdat

Examples

data(logreg.savefitl)

#

myanneal <- logreg.anneal.control(start = -1, end = -4, iter = 25000, update = 1000)
logreg.savefitl <- logreg(resp = logreg.testdat[,1], bin=logreg.testdat[, 2:21],

type = 2, select = 1, ntrees = 2, anneal.control = myanneal)
print(logreg.savefiti$model$trees[[1]1])

Index

x datasets

logreg.savefitil, 23
logreg. testdat, 24

* logic

cumhaz, 2

eval.logreg, 3
frame.logreg, 4
logreg, 6
logreg.anneal.control, 14
logreg.mc.control, 18
logreg.myown, 20
logreg.tree.control, 24
logregmodel, 26
logregtree, 27
plot.logreg, 29
plot.logregmodel, 31
plot.logregtree, 32
predict.logreg, 34
print.logreg, 35
print.logregmodel, 37
print.logregtree, 38

* methods

cumhaz, 2

eval.logreg, 3
frame.logreg, 4
logreg, 6
logreg.anneal.control, 14
logreg.mc.control, 18
logreg.myown, 20
logreg.tree.control, 24
logregmodel, 26
logregtree, 27
plot.logreg, 29
plot.logregmodel, 31
plot.logregtree, 32
predict.logreg, 34
print.logreg, 35
print.logregmodel, 37
print.logregtree, 38

* nonparametric

cumhaz, 2

eval.logreg, 3
frame.logreg, 4
logreg, 6
logreg.anneal.control, 14
logreg.mc.control, 18
logreg.myown, 20
logreg.tree.control, 24
logregmodel, 26
logregtree, 27
plot.logreg, 29
plot.logregmodel, 31
plot.logregtree, 32
predict.logreg, 34
print.logreg, 35
print.logregmodel, 37
print.logregtree, 38

* tree

cumhaz, 2

eval.logreg, 3
frame.logreg, 4
logreg, 6
logreg.anneal.control, 14
logreg.mc.control, 18
logreg.myown, 20
logreg.tree.control, 24
logregmodel, 26
logregtree, 27
plot.logreg, 29
plot.logregmodel, 31
plot.logregtree, 32
predict.logreg, 34
print.logreg, 35
print.logregmodel, 37
print.logregtree, 38

cumhaz, 2

eval.logreg, 3, 5, 12

INDEX

frame.logreg, 4,4, 12, 33,35

logreg, 2,4, 5,6, 18, 19, 23-26, 28, 30, 32,
33, 35, 36, 38, 39
logreg.anneal.control, 12, 14, 19, 25
logreg.mc.control, 12, 18, 18, 25
logreg.myown, 72, 20
logreg.savefitl, 23
logreg.savefit2 (logreg.savefit1), 23
logreg.savefit3 (logreg.savefit1), 23
logreg.savefit4 (logreg.savefitl), 23
logreg.savefit5 (logreg.savefit1), 23
logreg.savefit6 (logreg.savefitl), 23
logreg.savefit7 (logreg.savefitl), 23
logreg.testdat, 4, 5, 12, 23, 24, 30, 32, 33,
35, 36, 38, 39
logreg.tree.control, 12, 18, 19,24
logregmodel, 4, 12, 26, 28, 32, 38
logregtree, 4, 12, 26, 27, 39

plot.logreg, 12,29, 32
plot.logregmodel, 26, 30, 31
plot.logregtree, 12, 28, 30, 32
predict.logreg, 5, 12, 34
print.logreg, 12, 35, 38, 39
print.logregmodel, 26, 36, 37, 39
print.logregtree, 12, 28, 36, 38, 38

41

	cumhaz
	eval.logreg
	frame.logreg
	logreg
	logreg.anneal.control
	logreg.mc.control
	logreg.myown
	logreg.savefit1
	logreg.testdat
	logreg.tree.control
	logregmodel
	logregtree
	plot.logreg
	plot.logregmodel
	plot.logregtree
	predict.logreg
	print.logreg
	print.logregmodel
	print.logregtree
	Index

