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1 Introduction

The aim in the analysis of sample surveys is frequently to derive estimates of subpopulation character-
istics. This task is denoted small area estimation (SAE) (Rao, 2003). Often, the sample available for
the subpopulation is, however, too small to allow a reliable estimate. Frequently, auxiliary variables
exist that are correlated with the variable of interest. Several estimators can make use of auxiliary
information which may reduce the variance of the estimate (Rao, 2003). Another term for small area
is domain. These two terms will be used interchangeable in the following.

The JoSAE package implements the generalized regression (GREG) (Sérndal, 1984) and unit level
empirical best linear unbiased prediction (EBLUP) (Battese et al., 1988) estimators and their variances.
The synthetic regression and the simple random sample (SRS) estimates are also calculated. The
purpose of the JoSAE package is to document the functions used in the publication of (Breidenbach
and Astrup, 2011). The data used in that study are also provided.

If R is running, the JoSAE package can be installed by typing

> install.packages ("JoSAE")
>

into the console!.
The command

> library(JoSAE)

loads the package into the current workspace. We can get an overview of the packages’ contents by
typing

> ?JoSAE

2 Using the provided functions - small area estimates

For our small area estimates, we need

e sample data which contain the variable of interest and the auxiliary variables of all sampled
population elements and

e domain data which contain the mean of the auxiliary variables of all population elements within
each domain of interest. It is assumed that auxiliary information is available for every population
element.

Both data sets need to have a corresponding domain ID.

*Norwegian Forest and Landscape Institute, 1431 As, Norway, job@skogoglandskap.no, Tel.: +47 64 94 89 81
!The character ”>” is not part of the command. A working Internet connection is required.



2.1 Mean forest biomass within Norwegian municipalities
To load and plot the data used by (Breidenbach and Astrup, 2011) we write:

> #mean auxiliary variables for the populations in the domains
> data(JoSAE.domain.data)

> #data for the sampled elements

> data(JoSAE.sample.data)

> #plot(biomass.ha "mean.canopy.ht,JoSAE.sample.data)

>

>

>

library(lattice)
print (xyplot(biomass.ha ~ mean.canopy.ht | domain.ID, data = JoSAE.sample.data))
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mean.canopy.ht

The data set JoSAE.sample.data contains the above-ground forest biomass (the variable of in-
terest) observed on sample plots of the Norwegian National Forest Inventory (NNFI) and the mean
canopy height derived from overlapping digital aerial images (the auxiliary variable). The domain ID
indicates in which of 14 municipalities (i.e., our small areas) the sample plot was located.

The data set JoSAE.domain.data contains the mean canopy height, photogrammetrically obtained
from overlapping digital aerial images within the forest of a municipality. All population elements (i.e.,
not only those elements where field data from the NNFI were available) were used to derive this mean.

In order to make use of the auxiliary variables, a statistical model needs to be fit that links the
variable of interest to the auxiliary variables. We fit a linear mixed-effects model (Pinheiro et al.,
2011) with a random intercept on the municipality level to our data:

> #1me model
> summary(fit.lme <- Ime(biomass.ha ~ mean.canopy.ht, data=JoSAE.sample.data
+ , random="1|domain.ID))



Linear mixed-effects model fit by REML
Data: JoSAE.sample.data
AIC BIC logLik
15563.764 1565.616 -772.8822

Random effects:

Formula: "1 | domain.ID
(Intercept) Residual

StdDev: 10.30361 49.85829

Fixed effects: biomass.ha ™~ mean.canopy.ht
Value Std.Error DF  t-value p-value
(Intercept) 6.694678 8.334032 130 0.803294 0.4233
mean.canopy.ht 1.375782 0.077531 130 17.744832 0.0000
Correlation:
(Intr)
mean.canopy.ht -0.754

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.12149463 -0.56323615 -0.05238025 0.55696863 3.11427777

Number of Observations: 145
Number of Groups: 14

In combination with the domain-level data, the functions provided in the JoSAE package can now
be used to calculate domain level EBLUP estimates and their variances. Since the functions expect
variable names in the domain data and the sample data to be the same, we first have to do some
renaming:

> #domain data need to have the same column names as sample data or vice versa
> d.data <- JoSAE.domain.data
> names(d.data) [3] <- "mean.canopy.ht"

Then we can use the eblup.mse.f.wrap function, which does all the work. This function is a
wrapper function that calls several other JoSAE functions. All attributes the function needs are the
domain data and the fitted model (an lme object).

> result <- eblup.mse.f.wrap(domain.data = d.data, lme.obj = fit.lme)

Besides the EBLUP estimate and its variance, the function calculates the GREG and SRS estimate
as well as a synthetic regression estimate based on a linear model fitted with the fixed-part of the lme
formula. Many other domain characteristics are calculated by the eblup.mse.f.wrap function. The
help page lists the details. Let’s print some of the most interesting results in Tables 1 and 2.



domain.ID N.i.domain n.i.sample sample.mean GREG EBLUP Synth

1 105267 1 92.73 11297 153.76  155.73
2 202513 6 109.06 87.43 107.82  113.81
3 134156 3 169.54 105.08 132,74 136.82
4 193807 2 53.29 99.76 123.88 126.45
5 1379945 35 118.39 115.20 118.49 124.05
6 176731 4 93.63 136.18 116.91 114.23
7 474615 17 152.52  135.54 11773 105.72
8 442280 12 106.40  105.79 99.86  97.69
9 495568 12 113.70  112.59 116.84 119.66
10 520141 14 124.14  100.89 110.76  117.47
11 230756 8 152.95 14297 135.89 133.98
12 83441 1 34.11 74.37 118.19 120.66
13 57858 1 130.78  124.36 95.01  94.67
14 905387 29 97.77  106.32 102.46  98.42

Table 1: Number of population and sampled elements as well as simple random sample, synthetic,
GREG and EBLUP estimates of the mean above-ground forest biomass within 14 Norwegian munici-
palities.

domain.ID n.i.sample sample.se GREG.se EBLUP.se.1 EBLUP.se.2

1 1 11.93 12.01
2 6 46.19 22.36 12.62 12.37
3 3 36.10 24.96 12.26 12.21
4 2 31.51 0.65 11.59 11.84
5 35 14.09 8.64 7.74 8.34
6 4 23.14 16.98 11.77 11.97
7 17 35.99 14.88 15.63 13.48
8 12 17.67 15.41 9.83 10.72
9 12 20.56 7.14 9.48 10.54
10 14 21.16 12.35 11.11 11.20
11 8 40.58 24.78 10.29 11.16
12 1 11.80 11.86
13 1 11.65 11.82
14 29 13.51 8.30 8.28 8.91

Table 2: Number of population and sampled elements as well as standard errors of the simple random
sample, GREG and EBLUP estimates of the mean above-ground forest biomass within 14 Norwegian
municipalities.



The eblup.mse.f.wrap function does not return a standard error for the synthetic regression
estimate, since no estimators exist that consider its model bias. In Table 2, it needs to be noted that
variances for the SRS and GREG estimates are unstable for small sample sizes within domains (say
<6 observations). A variance estimate is technically impossible for domains with just one observation.
The EBLUP variances are frequently smaller than the GREG variances and stable even for domains
with just one observation. However, the EBLUP variance is model-based and thus relies on the
correctness of the fitted model. Rao (2003) suggests two different EBLUP variances estimates. Both
are returned by the eblup.mse.f.wrap function (Table 2).

The data can be visualized by:

> tmp <- result[,c("biomass.ha.sample.mean", "Synth", "GREG", "EBLUP")]

> #actual plot

> tmpl <- barplot(t(as.matrix(tmp)), beside=T

+ , names.arg=result$domain.ID

+ , xlab="Municipalities"

+ , ylab=expression(paste("Estimated biomass (Mg ", ha~{-1}, ")" ))

+ , ylim=c(0,200))

> #print n.sample plots

> text(tmpl[2,]+.5, y = 50, labels = result$n.i.sample,cex=1.5)

> #error bars

> tmp2<- result[,c("sample.se", "sample.se", "GREG.se", "EBLUP.se.2")]#sample.se twice to fill
> tmp2[is.na(tmp2)] <- 0

> #plot error bars

> #sample mean

> arrows (xO=tmp1[1,], yO=tmp[,1]+tmp2[,1], x1=tmp1[1,], y1
+ , length = 0.01, angle = 90, code = 3)

> #GREG

> arrows (xO=tmp1[3,], yO=tmp[,3]+tmp2[,3], x1=tmp1[3,], yl
+ , length = 0.01, angle = 90, code = 3)

> #EBLUP

> arrows (xO=tmp1[4,], yO=tmp[,4]+tmp2[,4], x1=tmp1[4,], y1
+ , length = 0.01, angle = 90, code = 3)

> #legend

> legend(13,200, fill=grey(c(.3, .6, .8, .9)), legend=c("SRS", "Synth", "GREG", "EBLUP"), bty=
>

tmp[,1]-tmp2[, 1]

tmp[, 3] -tmp2[, 3]

tmp[,4]-tmp2[,4]
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2.2 County crop areas in lowa

Battese et al. (1988) were the first to describe the EBLUP estimator. They demonstrated its appli-
cation using Landsat data to estimate the mean hectares of corn and soybeans within counties (small
areas) in north-central ITowa. Thanks to Schoch (2011), the Landsat data are available in R. The func-
tions in the JoSAE package should give approximately similar results as those presented by Battese et
al. (1988) and Rao (2003, Table 7.3,p.144).

Let’s get the data, split the data sets into a domain-specific and sample specific data frame and
add a numeric domain ID to both. We will also exclude an “outlying” domain?
suggested by Battese et al. (1988):

in row 33 as was

> data(landsat)

> #prepare the domain data - exclude "outlying" domain

> landsat.domains <- unique(landsat[-33,c(1, 7:8,10)])

> #add a numeric domain ID

> landsat.domains$domain.ID <- 1:nrow(landsat.domains)

> #change names to the names in the sample data

> names (landsat.domains) [2:3] <- c("PixelsCorn", "PixelsSoybeans")
> #prepare the unit-level sample data

> tmp <- landsat[-33,c(2:6, 10)]

> #add numeric domain ID

> landsat.sample <- merge(landsat.domains[4:5], tmp, by="CountyName")
>

Now we can fit a linear mixed-effects model and obtain our small area estimates:

> summary(landsat.lme <- lme(HACorn ~ PixelsCorn + PixelsSoybeans

2The rsae package was specifically developed for robust estimation where outliers do not need to be excluded. As of
R 3.0.2, rsae is archived. Therefore, the landsat data were included in JoSAE.



+ , data=landsat.sample
+ , random="1|domain.ID))

Linear mixed-effects model fit by REML
Data: landsat.sample
AIC BIC logLik
308.3666 315.8492 -149.1833

Random effects:

Formula: ~1 | domain.ID
(Intercept) Residual

StdDev: 11.83317 12.13543

Fixed effects: HACorn ™ PixelsCorn + PixelsSoybeans
Value Std.Error DF  t-value p-value
(Intercept) 51.07040 24.409705 22 2.092217 0.0482

PixelsCorn 0.32872 0.049876 22 6.590780 0.0000
PixelsSoybeans -0.13457 0.055194 22 -2.438092 0.0233
Correlation:

(Intr) Px1sCr
PixelsCorn -0.935
PixelsSoybeans -0.892 0.723

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.87576686 -0.70964548 -0.08543767 0.72472023 1.65660575

Number of Observations: 36
Number of Groups: 12

> #obtain EBLUP estimates and MSE

> result <- eblup.mse.f.wrap(domain.data = landsat.domains
+ , lme.obj = landsat.lme)

>

Countyname n.i EBLUP EBLUP.se.l EBLUP.se.2 GREG.se

Cerro Gordo 1 122.20 9.04 9.52

Hamilton 1 126.22 9.04 9.46

Worth 1 106.70 10.66 10.19

Humboldt 2 108.44 8.11 8.18 19.88
Franklin 3 144.28 7.10 6.89 6.86
Pocahontas 3 112.14 6.68 6.70 6.65
Winnebago 3 112.80 6.62 6.66 9.13
Wright 3 122.00 6.29 6.55 8.73
Webster 4 115.33 5.95 5.92 4.09
Hancock 5 124.42 5.13 5.28 4.22
Kossuth 5 106.90 5.62 5.48 3.18
Hardin 5 143.01 5.57 5.63 5.06

Table 3: EBLUP estimates of county means of hectares under corn and estimated standard errors of
the EBLUP and GREG estimates.

Comparing Table 3 with the reference (Battese et al., 1988; Rao, 2003) suggests that the results
are quite similar but not exactly the same. The EBLUP estimates for the county means are slightly



different because Battese et al. (1988) adjusted the estimates to sum up to the approximately unbiased
Survey-Regression estimate for the total area. The standard errors are slightly different since Battese
et al. (1988) used the method of fitting of constants to estimate the model parameters but REML was
used here. Finally, Battese et al. (1988) obtained standard errors also for Survey-Regression estimates
within domains with just one observation. Unfortunately, no details were elaborated. Given that the
Survey-Regression estimator should be the same as the GREG (Rao, 2003, p. 20), it is unclear to me
how this was done (any hints would be appreciated).

All in all, it looks like the functions in the JoSAE package are correctly implemented.

3 Synthetic estimation

This section documents the estimators in Breidenbach, et al. (2015). R-code is given rather than
implemented functions since the implementation is rather straight forward. The validation data are
not given here except for one stand for which the variance estimation is explained.

It should again be noted that the synthetic estimators should be avoided, if observations are

available within the small areas. This is because regression models can be biased for specific small
areas.

Load NFTI data, fit the linking model, and create data for one validation stand. Elev.Mean is the

vegetation height, N and E are northing and easting.

>
>
>
>
>
+
>
>

data(nfi)
#fit the model

fit.nfi.iw <- 1m(vol.2011 Elev.Mean, nfi, weights=1/Elev.Mean)

#data (model matrix, X) of one validation stand
stand <- cbind(Intercept=1, Elev.Mean=c(147.41,127.48,98.66,118.85,124,120.81,119.7),

N=c(0,23,0,55,27,80,56), E=c(73,77,0,39,37,54,54) )

#aggregate to obtain X-bar

stand.agg <- apply(stand[,1:2], 2, mean)

As indicated by one reviewer: If just variance estimator (3) is of interest, also a White estimator

could be used. For all other estimators, a model for the residual variance is needed.

Synthetic variance estimators consider the uncertainty in the model. The uncertainty in the model

parameters is the covariance matrix and will be called Sigma. The residual variance will be called sig.
Due to the assumed heteroskedasticity, it needs to be multiplied with z; to be meaningful.

>
>
>
>

#obtain covariance matrix
Sigma <- vcov(fit.nfi.iw)
#residual variance
sig <- summary(fit.nfi.iw)$sigma

Variance estimator (3) is based on the concept of the estimation of superpopulation parameters

and can be obtained as follows for the example stand.

>

var.p <- t(stand.agg) /*) Sigma J*), stand.agg

Variance estimator (5) does not make much sense for heteroskedastic models and is therefore not

shown here. Variance estimator (6) can be implemented as:

>

var.prh <- var.p + sum(sig~2 * stand[,2])/nrow(stand) "2

For variance estimator (7), we need some model that describes the spatial autocorrelation of grid

cells within a stand. In the paper, we use one global model. This may not be the best solution, as it
is likely that the structure of the autocorrelation is different from stand to stand. This is, however,
out of the scope of the paper. A spatial range of 23 m was estimated for the spatial model based on
the validation data. This process is not shown here. First we create the spatial object:



> library(nlme)
> spG <- corGaus(23, form = "N+E)

Then we create the correlation matrix given the distance between the observations and the auto-
correlation structure. Furthermore, we create the matrix of expected variances.

> cormat <- corMatrix(Initialize(spG, data.frame(stand)))
> varmat <- (sig * sqrt(stand[,2])) 7o/ (sig * sqrt(stand[,2]))

This finally results in estimator (7):
> var.prhs <- var.p + sum(cormat * varmat)/nrow(stand) "2

The square root of the variances (ignoring bias) results in the standard error (SE). The SE of the
different estimators increases from (5)-(7) because more error components are considered.

> sqrt(c(var.p, var.prh, var.prhs))
[1] 10.69396 38.05104 47.23384

The larger the number of population elements (i.e., grid cells or pixels) is, the smaller will be the
difference between the estimators. Again, beware of bias in synthetic estimates!
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