Package ‘JOUSBoost’

January 20, 2025

Type Package
Title Implements Under/Oversampling for Probability Estimation
Version 2.1.0

Description Implements under/oversampling for probability estimation. To be
used with machine learning methods such as AdaBoost, random forests, etc.

License MIT + file LICENSE

LazyData TRUE

Suggests testthat, knitr, rmarkdown
LinkingTo Rcpp

Depends R (>=2.10)

Imports Rcpp, rpart, stats, doParallel, foreach
RoxygenNote 6.0.1

NeedsCompilation yes

Author Matthew Olson [aut, cre]

Maintainer Matthew Olson <maolson@wharton.upenn.edu>
Repository CRAN

Date/Publication 2017-07-12 19:13:02 UTC

Contents
adaboost L e e e 2
circle_data. e 3
friedman_data e e 4
grid_probs 5
INAEX_OVET . . o o o o o e e 6
Index_under e e 6
JOUS o o v e e e e e e e 7
JOUSBOOSt o e 9
predict.adaboost 10
Predictjous oL e e e e 11
print.adaboost oL 12

2 adaboost

PIINLJOUS . . . o o o e e e e e e e e e e 12
SOMAL . . o v v v e et i e e e e e e e e e e e e e e e e e 13
Index 14
adaboost AdaBoost Classifier
Description

An implementation of the AdaBoost algorithm from Freund and Shapire (1997) applied to decision
tree classifiers.
Usage

adaboost(X, y, tree_depth = 3, n_rounds = 100, verbose = FALSE,
control = NULL)

Arguments

X A matrix of continuous predictors.

y A vector of responses with entries in c(-1, 1).

tree_depth The depth of the base tree classifier to use.

n_rounds The number of rounds of boosting to use.

verbose Whether to print the number of iterations.

control A rpart.control list that controls properties of fitted decision trees.
Value

Returns an object of class adaboost containing the following values:

alphas Weights computed in the adaboost fit.

trees The trees constructed in each round of boosting. Storing trees allows one to
make predictions on new data.

confusion_matrix
A confusion matrix for the in-sample fits.

Note

Trees are grown using the CART algorithm implemented in the rpart package. In order to conserve
memory, the only parts of the fitted tree objects that are retained are those essential to making
predictions. In practice, the number of rounds of boosting to use is chosen by cross-validation.

References

Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization of online learning and an
application to boosting, Journal of Computer and System Sciences 55: 119-139.

circle_data 3

Examples

Not run:

Generate data from the circle model
set.seed(111)

dat = circle_data(n = 500)
train_index = sample(1:500, 400)

ada = adaboost(dat$X[train_index,], dat$y[train_index], tree_depth = 2,
n_rounds = 200, verbose = TRUE)

print(ada)

yhat_ada = predict(ada, dat$X[-train_index,])

calculate misclassification rate
mean(dat$y[-train_index] != yhat_ada)

End(Not run)

circle_data Simulate data from the circle model.

Description

Simulate draws from a bernoulli distribution over c(-1,1). First, the predictors x are drawn i.i.d.
uniformly over the square in the two dimensional plane centered at the origin with side length
2xouter_r, and then the response is drawn according to p(y = 1|z), which depends on r(z), the
euclidean norm of . If r(z) < inner,, then p(y = 1|z) = 1, if r(z) > outer, then p(y = 1|z) =
1, and p(y = 1|z) = (outer, — r(z))/(outer, — inner,) when inner, <= r(x) <= outer,. See
Mease (2008).

Usage

circle_data(n = 500, inner_r = 8, outer_r = 28)

Arguments
n Number of points to simulate.
inner_r Inner radius of annulus.
outer_r Outer radius of annulus.
Value

Returns a list with the following components:

Vector of simulated response in c(-1,1).
X An nx2 matrix of simulated predictors.

P The true conditional probability p(y = 1|x).

4 friedman_data

References

Mease, D., Wyner, A. and Buha, A. (2007). Costweighted boosting with jittering and over/under-
sampling: JOUS-boost. J. Machine Learning Research 8 409-439.

Examples

Generate data from the circle model
set.seed(111)
dat = circle_data(n = 500, inner_r = 1, outer_r = 5)

Not run:

Visualization of conditional probability p(y=1]|x)

inner_r = 0.5

outer_r = 1.5

x = seq(-outer_r, outer_r, by=0.02)

radius = sqrt(outer(x*2, x*2, "+"))

prob = ifelse(radius >= outer_r, 0, ifelse(radius <= inner_r, 1,
(outer_r-radius)/(outer_r-inner_r)))

image(x, x, prob, main='Probability Density: Circle Example')

End(Not run)

friedman_data Simulate data from the Friedman model

Description

Simulate draws from a bernoulli distribution over c(-1, 1), where the log-odds is defined according
to:

logp(y = 1|z)/p(y = —1|z) = gamma * (1 — x1 + x2 — ... + 6) * (x1 + 22 + ... + T6)

and z is distributed as N(0, I_dxd). See Friedman (2000).

Usage

friedman_data(n = 500, d = 10, gamma = 10)

Arguments
n Number of points to simulate.
d The dimension of the predictor variable z.
gamma A parameter controlling the Bayes error, with higher values of gamma corre-

sponding to lower error rates.

grid_probs 5

Value

Returns a list with the following components:

y Vector of simulated response in c(-1,1).

X An nxd matrix of simulated predictors.

P The true conditional probability p(y = 1|x).
References

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical view of
boosting (with discussion), Annals of Statistics 28: 337-307.

Examples

set.seed(111)
dat = friedman_data(n = 500, gamma = 0.5)

grid_probs Function to compute predicted quantiles

Description

Find predicted quantiles given classification results at different quantiles.

Usage

grid_probs(X, q, delta, median_loc)

Arguments
X Matrix of class predictions, where each column gives the predictions for a given
quantile in q.
q The quantiles for which the columns of X are predictions.
delta The number of quantiles used.

median_loc Location of median quantile (0-based indexing).

6 index_under

index_over Return indices to be used for jittered data in oversampling

Description

Return indices to be used for jittered data in oversampling

Usage

index_over(ix_pos, ix_neg, q)

Arguments

ix_pos Indices for positive examples in data.

ix_neg Indices for negative examples in data.

q Quantiles for which to construct tilted datasets.
Value

returns a list, each of element of which gives indices to be used on a particular cut (note: will be of
length delta - 1)

index_under Return indices to be used in original data for undersampling

Description

(note: sampling is done without replacement)

Usage

index_under(ix_pos, ix_neg, q, delta)

Arguments
ix_pos Indices for positive examples in data.
ix_neg Indices for negative examples in data.
q Quantiles for which to construct tilted datasets.
delta Number of quantiles.
Value

returns a list, each of element of which gives indices to be used on a particular cut (note: will be of
length delta - 1)

jous

jous

Jittering with Over/Under Sampling

Description

Perform probability estimation using jittering with over or undersampling.

Usage

jous(X, y, class_func, pred_func, type = c("under”, "over"), delta = 10,
nu =1, X_pred = NULL, keep_models = FALSE, verbose = FALSE,
parallel = FALSE, packages = NULL)

Arguments
X
y

class_func

pred_func

type
delta

nu

X_pred

keep_models

verbose

parallel

packages

A matrix of continuous predictors.
A vector of responses with entries in c(-1, 1).

Function to perform classification. This function definition must be exactly of
the form class_func(X, y) where X is a matrix and y is a vector with entries
in c(-1, 1), and it must return an object on which pred_func can create pre-
dictions. See examples.

Function to create predictions. This function definition must be exactly of the
form pred_func(fit_obj, X) where fit_obj is an object returned by class_func
and X is a matrix of new data values, and it must return a vector with entries in
c(-1, 1). See examples.

Type of sampling: "over" for oversampling, or "under" for undersampling.
An integer (greater than 3) to control the number of quantiles to estimate:

The amount of noise to apply to predictors when oversampling data. The noise
level is controlled by nu * sd(X[, j1) for each predictor - the default of nu =1
works well. Such "jittering" of the predictors is essential when applying jous to
boosting type methods.

A matrix of predictors for which to form probability estimates.

Whether to store all of the models used to create the probability estimates. If
type=FALSE, the user will need to re-run jous when creating probability esti-
mates for test data.

If TRUE, print the function’s progress to the terminal.

If TRUE, use parallel foreach to fit models. Must register parallel before hand,
such as doParallel. See examples below.

If parallel = TRUE, a vector of strings containing the names of any packages
used in class_func or pred_func. See examples below.

8 jous

Value

Returns a list containing information about the parameters used in the jous function call, as well as
the following additional components:

q The vector of target quantiles estimated by jous. Note that the estimated prob-
abilities will be located at the midpoints of the values in q.

phat_train The in-sample probability estimates p(y = 1|z).

phat_test Probability estimates for the optional test data in X_test

models If keep_models=TRUE, a list of models fitted to the resampled data sets.

confusion_matrix
A confusion matrix for the in-sample fits.

Note

The jous function runs the classifier class_func a total of delta times on the data, which can
be computationally expensive. Also,jous cannot yet be applied to categorical predictors - in the
oversampling case, it is not clear how to "jitter" a categorical variable.

References

Mease, D., Wyner, A. and Buja, A. (2007). Costweighted boosting with jittering and over/under-
sampling: JOUS-boost. J. Machine Learning Research 8 409-439.

Examples

Not run:

Generate data from Friedman model
set.seed(111)

dat = friedman_data(n = 500, gamma = 0.5)
train_index = sample(1:500, 400)

Apply jous to adaboost classifier
class_func = function(X, y) adaboost(X, y, tree_depth = 2, n_rounds = 200)
pred_func = function(fit_obj, X_test) predict(fit_obj, X_test)

jous_fit = jous(dat$X[train_index,], dat$y[train_index], class_func,
pred_func, keep_models = TRUE)

get probability

phat_jous = predict(jous_fit, dat$X[-train_index,], type = "prob")

compare with probability from AdaBoost

ada = adaboost(dat$X[train_index,], dat$y[train_index], tree_depth = 2,
n_rounds = 200)

phat_ada = predict(ada, dat$X[train_index,], type = "prob")

mean((phat_jous - dat$p[-train_index])*2)
mean((phat_ada - dat$p[-train_index])*2)

Example using parallel option

JOUSBoost 9

library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)

n.b. the packages='rpart' is not really needed here since it gets

exported automatically by JOUSBoost, but for illustration

jous_fit = jous(dat$X[train_index,], dat$y[train_index], class_func,
pred_func, keep_models = TRUE, parallel = TRUE,
packages = 'rpart')

phat = predict(jous_fit, dat$X[-train_index,], type = 'prob')

stopCluster(cl)

Example using SVM

library(kernlab)

class_func = function(X, y) ksvm(X, as.factor(y), kernel = 'rbfdot')

pred_func = function(obj, X) as.numeric(as.character(predict(obj, X)))

jous_obj = jous(dat$X[train_index,], dat$y[train_index], class_func = class_func,
pred_func = pred_func, keep_models = TRUE)

jous_pred = predict(jous_obj, dat$X[-train_index,], type = 'prob')

End(Not run)

JOUSBoost JOUSBoost: A package for probability estimation

Description

JOUSBoost implements under/oversampling with jittering for probability estimation. Its intent is to
be used to improve probability estimates that come from boosting algorithms (such as AdaBoost),
but is modular enough to be used with virtually any classification algorithm from machine learning.

Details

For more theoretical background, consult Mease (2007).

References

Mease, D., Wyner, A. and Buja, A. (2007). Costweighted boosting with jittering and over/under-
sampling: JOUS-boost. J. Machine Learning Research 8 409-439.

10 predict.adaboost

predict.adaboost Create predictions from AdaBoost fit

Description

Makes a prediction on new data for a given fitted adaboost model.

Usage

S3 method for class 'adaboost'
predict(object, X, type = c("response”, "prob"),

n_tree = NULL, ...)
Arguments
object An object of class adaboost returned by the adaboost function.
X A design matrix of predictors.
type The type of prediction to return. If type="response”, a class label of -1 or 1 is
returned. If type="prob”, the probability p(y = 1|x) is returned.
n_tree The number of trees to use in the prediction (by default, all them).
Value

Returns a vector of class predictions if type="response”, or a vector of class probabilities p(y =
1]z) if type="prob".
Note

Probabilities are estimated according to the formula:

ply = 1z) = 1/(1 + exp(=2 + f(2)))

where f(z) is the score function produced by AdaBoost. See Friedman (2000).

References

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical view of
boosting (with discussion), Annals of Statistics 28: 337-307.

Examples

Not run:

Generate data from the circle model
set.seed(111)

dat = circle_data(n = 500)
train_index = sample(1:500, 400)

predict.jous 11

ada = adaboost(dat$X[train_index,], dat$y[train_index], tree_depth = 2,
n_rounds = 100, verbose = TRUE)

get class prediction

yhat = predict(ada, dat$X[-train_index,])

get probability estimate

phat = predict(ada, dat$X[-train_index,], type="prob")

End(Not run)

predict. jous Create predictions

Description

Makes a prediction on new data for a given fitted jous model.

Usage
S3 method for class 'jous'
predict(object, X, type = c("response”, "prob"), ...)
Arguments
object An object of class jous returned by the jous function.
X A design matrix of predictors.
type The type of prediction to return. If type="response”, a class label of -1 or 1 is

returned. If type="prob”, the probability p(y = 1|z) is returned.

Value

Returns a vector of class predictions if type="response”, or a vector of class probabilities p(y =
1]z) if type="prob".

Examples

Not run:

Generate data from Friedman model
set.seed(111)

dat = friedman_data(n = 500, gamma = 0.5)
train_index = sample(1:500, 400)

Apply jous to adaboost classifier
class_func = function(X, y) adaboost(X, y, tree_depth = 2, n_rounds = 100)
pred_func = function(fit_obj, X_test) predict(fit_obj, X_test)

12 print.jous

jous_fit = jous(dat$X[train_index,], dat$y[train_index], class_func,
pred_func, keep_models=TRUE)

get class prediction

yhat = predict(jous_fit, dat$X[-train_index, 1)

get probability estimate

phat = predict(jous_fit, dat$X[-train_index,], type="prob")

End(Not run)

print.adaboost Print a summary of adaboost fit.

Description

Print a summary of adaboost fit.

Usage
S3 method for class 'adaboost'
print(x, ...)

Arguments

X An adaboost object fit using the adaboost function.

Value

Printed summary of the fit, including information about the tree depth and number of boosting
rounds used.

print. jous Print a summary of jous fit.

Description

Print a summary of jous fit.

Usage
S3 method for class 'jous'
print(x, ...)

Arguments

X A jous object.

sonar 13

Value

Printed summary of the fit

sonar Dataset of sonar measurements of rocks and mines

Description

A dataset containing sonar measurements used to discriminate rocks from mines.

Usage

data(sonar)

Format

A data frame with 208 observations on 61 variables. The variables V1-V60 represent the energy
within a certain frequency band, and are to be used as predictors. The variable y is a class label, 1
for 'rock’ and -1 for 'mine’.

Source

http://archive.ics.uci.edu/ml/

References

Gorman, R. P, and Sejnowski, T. J. (1988). "Analysis of Hidden Units in a Layered Network
Trained to Classify Sonar Targets" in Neural Networks, Vol. 1, pp. 75-89.

http://archive.ics.uci.edu/ml/

Index

x datasets
sonar, 13

adaboost, 2
circle_data, 3
friedman_data, 4
grid_probs, 5

index_over, 6
index_under, 6

jous, 7
JOUSBoost, 9
JOUSBoost-package (JOUSBoost), 9

predict.adaboost, 10
predict. jous, 11
print.adaboost, 12
print.jous, 12

sonar, 13

14

	adaboost
	circle_data
	friedman_data
	grid_probs
	index_over
	index_under
	jous
	JOUSBoost
	predict.adaboost
	predict.jous
	print.adaboost
	print.jous
	sonar
	Index

