Package 'ICEbox'

January 20, 2025

Type Package

Title Individual Conditional Expectation Plot Toolbox

Version 1.1.5

Date 2022-08-18

Author Alex Goldstein, Adam Kapelner, Justin Bleich

Maintainer Adam Kapelner <kapelner@qc.cuny.edu>

Description Implements Individual Conditional Expectation (ICE) plots, a tool for visualizing the model estimated by any supervised learning algorithm. ICE plots refine Friedman's partial dependence plot by graphing the functional relationship between the predicted response and a covariate of interest for individual observations. Specifically, ICE plots highlight the variation in the fitted values across the range of a covariate of interest, suggesting where and to what extent they may exist.

License GPL-2 | GPL-3

Depends sfsmisc

Suggests randomForest, MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2022-08-22 14:20:10 UTC

Contents

clusterICE	
dice	3
ice	5
plot.dice	8
plot.ice	
print.dice	12
print.ice	13
summary.dice	13
summary.ice	14
WhiteWine	14
	- 15

Index

clusterICE

Description

Clustering if ICE and d-ICE curves by kmeans. All curves are centered to have mean 0 and then kmeans is applied to the curves with the specified number of clusters.

Usage

Arguments

ice_obj	Object of class ice or dice to cluster.	
nClusters	Number of clusters to find.	
plot	If TRUE, plots the clusters.	
plot_margin	Extra margin to pass to ylim as a fraction of the range of cluster centers.	
colorvec	Optional vector of colors to use for each cluster.	
plot_pdp	If TRUE, the PDP (ice object) or d-PDP (dice object) is plotted with a dotted black line and highlighted in yellow.	
x_quantile	If TRUE, the plot is drawn with the x-axis taken to be quantile(gridpts). If FALSE, the predictor's original scale is used.	
avg_lwd	Average line width to use when plotting the cluster means. Line width is pro- portional to the cluster's size.	
centered	If TRUE, all cluster means are shifted to be to be 0 at the minimum value of the predictor. If FALSE, the original cluster means are used.	
plot_legend	If TRUE a legend mapping line colors to the proportion of the data in each cluster is added to the plot.	
	Additional arguments for plotting.	

Value

The ouput of the kmeans call (a list of class kmeans).

See Also

ice, dice

dice

Examples

```
## Not run:
require(ICEbox)
require(randomForest)
require(MASS) #has Boston Housing data, Pima
data(Boston) #Boston Housing data
X = Boston
y = X 
X = NULL
## build a RF:
bh_rf = randomForest(X, y)
## Create an 'ice' object for the predictor "age":
bh.ice = ice(object = bh_rf, X = X, y = y, predictor = "age",
            frac_to_build = .1)
## cluster the curves into 2 groups.
clusterICE(bh.ice, nClusters = 2, plot_legend = TRUE)
## cluster the curves into 3 groups, start all at 0.
clusterICE(bh.ice, nClusters = 3, plot_legend = TRUE, center = TRUE)
## End(Not run)
```

dice

Creates an object of class dice.

Description

Estimates the partial derivative function for each curve in an ice object. See Goldstein et al (2013) for further details.

Usage

```
dice(ice_obj, DerivEstimator)
```

Arguments

ice_obj	Object of class ice. This function generates partial derivative estimates for each row in ice_obj\$ice_curves.
DerivEstimator	Optional function with a single argument y. Returns the estimated partial deriva- tive of a function sampled at the points (ice_obj\$gridpts,y). If omitted, the default (a) smooths (ice_obj\$gridpts,y) using supsmu and then (b) uses the D1tr function ("discrete first derivative using simple difference ratios") found in the sfsmisc package to estimate the derivative.

Value

A list of class dice with the following elements. Most are passed directly through from ice_object and exist to enable various plotting facilities.

d_ice_curves	Matrix of dimension nrow(Xice) by length(gridpts). Each row corresponds to an observation's d-ICE curve, estimated at the values of predictor in gridpts.
хj	The actual values of predictor observed in the data in the order of Xice.
actual_deriv	Vector of length nrow(Xice) containing the estimated partial derivatives at the value of the predictor actually found in Xice.
sd_deriv	Vector of length length(gridpts) with the cross-observation sd of partial deriva- tive estimates. For instance sd_deriv[1] equals sd(d_ice_curves[,1]).
logodds	Passed from ice_object. If TRUE, d_ice_curves are estimated derivatives of the centered log-odds.
gridpts	Passed from ice_object.
predictor	Passed from ice_object.
xlab	Passed from ice_object.
nominal_axis	Passed from ice_object.
range_y	Passed from ice_object.
Xice	Passed from ice_object.
dpdp	The estimated partial derivative of the PDP.

References

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E., Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. (2014) Journal of Computational and Graphical Statistics, in press

Martin Maechler et al. sfsmisc: Utilities from Seminar fuer Statistik ETH Zurich. R package version 1.0-24.

See Also

plot.dice, print.dice, summary.dice

Examples

```
## Not run:
# same examples as for 'ice', but now create a derivative estimate as well.
require(ICEbox)
require(randomForest)
require(MASS) #has Boston Housing data, Pima
######### regression example
data(Boston) #Boston Housing data
X = Boston
y = X$medv
```

```
X = NULL
## build a RF:
bhd_rf_mod = randomForest(X, y)
## Create an 'ice' object for the predictor "age":
bhd.ice = ice(object = bhd_rf_mod, X = X, y = y, predictor = "age", frac_to_build = .1)
# make a dice object:
bhd.dice = dice(bhd.ice)
#### classification example
data(Pima.te) #Pima Indians diabetes classification
y = Pima.te$type
X = Pima.te
X$type = NULL
## build a RF:
pima_rf = randomForest(x = X, y = y)
## Create an 'ice' object for the predictor "skin":
# For classification we plot the centered log-odds. If we pass a predict
# function that returns fitted probabilities, setting logodds = TRUE instructs
# the function to set each ice curve to the centered log-odds of the fitted
# probability.
pima.ice = ice(object = pima_rf, X = X, predictor = "skin", logodds = TRUE,
                    predictfcn = function(object, newdata){
                         predict(object, newdata, type = "prob")[, 2]
                    }
              )
# make a dice object:
pima.dice = dice(pima.ice)
## End(Not run)
```

ice

```
Creates an object of class ice.
```

Description

Creates an ice object with individual conditional expectation curves for the passed model object, X matrix, predictor, and response. See Goldstein et al (2013) for further details.

Usage

ice

Arguments

object	The fitted model to estimate ICE curves for.
Х	The design matrix we wish to estimate ICE curves for. Rows are observations, columns are predictors. Typically this is taken to be object's training data, but this is not strictly necessary.
У	Optional vector of the response values object was trained on. It is used to compute y-axis ranges that are useful for plotting. If not passed, the range of predicted values is used and a warning is printed.
predictor	The column number or variable name in X of the predictor of interest, $(x_S = X[, j])$.
predictfcn	Optional function that accepts two arguments, object and newdata, and returns an N vector of object's predicted response for data newdata. If this argument is not passed, the procedure attempts to find a generic predict function corre- sponding to class(object).
verbose	If TRUE, prints messages about the procedure's progress.
frac_to_build	Number between 0 and 1, with 1 as default. For large X matrices or fitted models that are slow to make predictions, specifying frac_to_build less than 1 will choose a subset of the observations to build curves for. The subset is chosen such that the remaining observations' values of predictor are evenly spaced throughout the quantiles of the full X[,predictor] vector.
indices_to_bui	ld
	Vector of indices, $\subset \{1, \ldots, nrow(X)\}$ specifying which observations to build ICE curves for. As this is an alternative to setting frac_to_build, both cannot be specified.
num_grid_pts	Optional number of values in the range of predictor at which to estimate each curve. If missing, the curves are estimated at each unique value of predictor in the X observations we estimate ICE curves for.
logodds	If TRUE, for classification creates PDPs by plotting the centered log-odds implied by the fitted probabilities. We assume that the generic or passed predict function returns probabilities, and so the flag tells us to transform these to centered logits after the predictions are generated. Note: probit cannot be TRUE.
probit	If TRUE, for classification creates PDPs by plotting the probit implied by the fitted probabilities. We assume that the generic or passed predict function re- turns probabilities, and so the flag tells us to transform these to probits after the predictions are generated. Note: logodds cannot be TRUE.
	Other arguments to be passed to object's generic predict function.

Value

A list of class ice with the following elements.

gridpts	Sorted values of predictor at which each curve is estimated. Duplicates are removed – by definition, elements of gridpts are unique.
ice_curves	Matrix of dimension nrow(X) by length(gridpts). Each row corresponds to an observation's ICE curve, estimated at the values of predictor in gridpts.

хj	The actual values of predictor observed in the data in the order of Xice.	
actual_predicti	lons	
	Vector of length nrow(X) containing the model's predictions at the actual value of the predictors in the order of Xice.	
xlab	String with the predictor name corresponding to predictor. If predictor is a column number, xlab is set to colnames(X)[, predictor].	
nominal_axis	If TRUE, length(gridpts) is 5 or fewer; otherwise FALSE. When TRUE the plot function treats the x-axis as if x is nominal.	
range_y	If y was passed, the range of the response. Otherwise it defaults to be max(ice_curves) - min(ice_curves) and a message is printed to the console.	
sd_y	If y was passed, the standard deviation of the response. Otherwise it is defaults to sd(actual_predictions) and a message is printed to the console.	
Xice	A matrix containing the subset of X for which ICE curves are estimated. Observations are ordered to be increasing in predictor. This ordering is the same one as in ice_curves, xj and actual_predictions, meaning for all these objects the i-th element refers to the same observation in X.	
pdp	A vector of size length(gridpts) which is a numerical approximation to the partial dependence function (PDP) corresponding to the estimated ICE curves. See Goldstein et al (2013) for a discussion of how the PDP is a form of post-processing. See Friedman (2001) for a description of PDPs.	
predictor	Same as the argument, see argument description.	
logodds	Same as the argument, see argument description.	
indices_to_buil	ld	
	Same as the argument, see argument description.	
frac_to_build	Same as the argument, see argument description.	
predictfcn	Same as the argument, see argument description.	

References

Jerome Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5): 1189-1232, 2001.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E., Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. (2014) Journal of Computational and Graphical Statistics, in press

See Also

plot.ice, print.ice, summary.ice

Examples

```
## Not run:
require(ICEbox)
require(randomForest)
require(MASS) #has Boston Housing data, Pima
```

```
######### regression example
data(Boston) #Boston Housing data
X = Boston
y = X 
X = NULL
## build a RF:
bhd_rf_mod = randomForest(X, y)
## Create an 'ice' object for the predictor "age":
bhd.ice = ice(object = bhd_rf_mod, X = X, y = y, predictor = "age", frac_to_build = .1)
#### classification example
data(Pima.te) #Pima Indians diabetes classification
y = Pima.te$type
X = Pima.te
X$type = NULL
## build a RF:
pima_rf_mod = randomForest(x = X, y = y)
## Create an 'ice' object for the predictor "skin":
# For classification we plot the centered log-odds. If we pass a predict
# function that returns fitted probabilities, setting logodds = TRUE instructs
# the function to set each ice curve to the centered log-odds of the fitted
# probability.
pima.ice = ice(object = pima_rf_mod, X = X, predictor = "skin", logodds = TRUE,
                    predictfcn = function(object, newdata){
                         predict(object, newdata, type = "prob")[, 2]
                    }
              )
```

End(Not run)

plot.dice

Create a plot of a dice object.

Description

Plotting of dice objects.

Usage

8

plot.dice

Arguments

x	Object of class dice to plot.
plot_margin	Extra margin to pass to ylim as a fraction of the range of x\$d_ice_curves.
frac_to_plot	If frac_to_plot is less than 1, randomly plot frac_to_plot fraction of the curves in x\$d_ice_curves.
plot_sd	If TRUE, plot the cross-observation sd of partial derivatives below the derivative plots.
plot_orig_pts_	deriv
	If TRUE, marks each curve at the location of the derivative estimate at the location of predictor actually occurring in the data. If FALSE no mark is drawn.
pts_preds_size	Size of points to make if plot_orig_pts_deriv is TRUE.
colorvec	Optional vector of colors to use for each curve.
color_by	Optional variable name (or column number) in Xice to color curves by. If the color_by variable has 10 or fewer unique values, a discrete set of colors is used for each value and a legend is printed and returned. If there are more values, curves are colored from light to dark corresponding to low to high values of the variable specified by color_by.
color_by x_quantile	color_by variable has 10 or fewer unique values, a discrete set of colors is used for each value and a legend is printed and returned. If there are more values, curves are colored from light to dark corresponding to low to high values of the
-	<pre>color_by variable has 10 or fewer unique values, a discrete set of colors is used for each value and a legend is printed and returned. If there are more values, curves are colored from light to dark corresponding to low to high values of the variable specified by color_by. If TRUE, the plot is drawn with the x-axis taken to be quantile(gridpts). If</pre>
x_quantile	color_by variable has 10 or fewer unique values, a discrete set of colors is used for each value and a legend is printed and returned. If there are more values, curves are colored from light to dark corresponding to low to high values of the variable specified by color_by.If TRUE, the plot is drawn with the x-axis taken to be quantile(gridpts). If FALSE, the predictor's original scale is used.

Value

A list with the following elements.

plot_points_in	dices
	Row numbers of Xice of those observations presented in the plot.
legend_text	If the color_by argument was used, a legend describing the map between the color_by predictor and curve colors.

See Also

dice

Examples

Not run: require(ICEbox) require(randomForest) require(MASS) #has Boston Housing data, Pima

data(Boston) #Boston Housing data

```
X = Boston
y = X$medv
X$medv = NULL
## build a RF:
bhd_rf_mod = randomForest(X, y)
## Create an 'ice' object for the predictor "age":
bhd.ice = ice(object = bhd_rf_mod, X = X, y = y, predictor = "age", frac_to_build = .1)
# estimate derivatives, then plot.
bhd.dice = dice(bhd.ice)
plot(bhd.dice)
## End(Not run)
```

plot.ice

Plotting of ice *objects*.

Description

Plotting of ice objects.

Usage

```
## S3 method for class 'ice'
plot(x, plot_margin = 0.05, frac_to_plot = 1,
    plot_points_indices = NULL, plot_orig_pts_preds = TRUE,
    pts_preds_size = 1.5, colorvec, color_by = NULL,
    x_quantile = TRUE, plot_pdp = TRUE,
    centered = FALSE, prop_range_y = TRUE,
    rug_quantile = seq(from = 0, to = 1, by = 0.1),
    centered_percentile = 0,
    point_labels = NULL, point_labels_size = NULL,
    prop_type,...)
```

Arguments

х	Object of class ice to plot.	
plot_margin	Extra margin to pass to ylim as a fraction of the range of x\$ice_curves.	
frac_to_plot	If frac_to_plot is less than 1, randomly plot frac_to_plot fraction of the curves in x\$ice_curves.	
plot_points_indices		
	If not NULL, this plots only the indices of interest. If not NULL, frac_to_plot must be 1 otherwise an error is thrown. Default is NULL.	
plot_orig_pts_preds		
	If TRUE, marks each curve at the location of the observation's actual fitted value. If FALSE, no mark is drawn.	

10

plot.ice

pts_preds_size Size of points to make if plot_origin_pts_preds is TRUE. colorvec Optional vector of colors to use for each curve. color_by Optional variable name in Xice, column number in Xice, or data vector of the correct length to color curves by. If the color_by variable has 10 or fewer unique values, a discrete set of colors is used for each value and a legend is printed and returned. If there are more values, curves are colored from light to dark corresponding to low to high values of the variable specified by color_by. x_quantile If TRUE, the plot is drawn with the x-axis taken to be quantile(gridpts). If FALSE, the predictor's original scale is used. If TRUE, the PDP is plotted and highlighted in yellow. plot_pdp centered If TRUE, all curves are re-centered to be 0 at the quantile given by centered_percentile. See Goldstein et al (2013) for details and examples. If FALSE, the original ice_curves are plotted. When TRUE and centered=TRUE as well, the range of the right vertical axis prop_range_y displays the centered values as a fraction of the sd of the fitted values on actual observations if prop_type is missing or set to "sd". If prop_type is set to "range", the right axis displays the centered values as a fraction of the range of the fitted values over the actual observations. centered_percentile The percentile of predictor for which all ice_curves are "pinched together" and set to be 0. Default is .01. point_labels If not NULL, labels to plot next to each point. Default is NULL. point_labels_size If not NULL, size of labels to plot next to each point. Default is NULL which means it's the size of pts_preds_size. rug_quantile If not NULL, tick marks are drawn on the x-axis corresponding to the vector of quantiles specified by this parameter. Forced to NULL when x_quantile is set to TRUE. Scaling factor for the right vertical axis in centered plots if prop_range_y is prop_type TRUE. Can be one of "sd" (default) or "range". Ignored if centered and prop_range_y are not both TRUE. Other arguments to be passed to the plot function. . . .

Value

A list with the following elements.

plot_points_in	dices
	Row numbers of Xice of those observations presented in the plot.
legend_text	If the color_by argument was used, a legend describing the map between the color_by predictor and curve colors.

See Also

ice

Examples

```
## Not run:
require(ICEbox)
require(randomForest)
require(MASS) #has Boston Housing data, Pima
data(Boston) #Boston Housing data
X = Boston
v = X 
X = NULL
## build a RF:
bhd_rf_mod = randomForest(X, y)
## Create an 'ice' object for the predictor "age":
bhd.ice = ice(object = bhd_rf_mod, X = X, y = y, predictor = "age",
            frac_to_build = .1)
## plot
plot(bhd.ice, x_quantile = TRUE, plot_pdp = TRUE, frac_to_plot = 1)
## centered plot
plot(bhd.ice, x_quantile = TRUE, plot_pdp = TRUE, frac_to_plot = 1,
centered = TRUE)
## color the curves by high and low values of 'rm'.
# First create an indicator variable which is 1 if the number of
# rooms is greater than the median:
median_rm = median(X$rm)
bhd.ice$Xice$I_rm = ifelse(bhd.ice$Xice$rm > median_rm, 1, 0)
plot(bhd.ice, frac_to_plot = 1, centered = TRUE, prop_range_y = TRUE,
            x_quantile = T, plot_orig_pts_preds = T, color_by = "I_rm")
bhd.ice = ice(object = bhd_rf_mod, X = X, y = y, predictor = "age",
            frac_to_build = 1)
plot(bhd.ice, frac_to_plot = 1, centered = TRUE, prop_range_y = TRUE,
            x_quantile = T, plot_orig_pts_preds = T, color_by = y)
## End(Not run)
```

Print method for dice objects.

Description

print.dice

Prints a summary of a dice object.

Usage

```
## S3 method for class 'dice'
print(x, ...)
```

12

print.ice

Arguments

х	Object of class dice.
	Ignored for now.

		٠			٠		
n	r	п.	n	+	п.	^	Δ
р		т		L	т.	L	╴

Print method for ice objects.

Description

Prints a summary of an ice object.

Usage

S3 method for class 'ice'
print(x, ...)

Arguments

х	Object of class ice.
	Ignored for now.

summary.dice	Summary function for dice objects.
	2

Description

Alias of print method.

Usage

```
## S3 method for class 'dice'
summary(object, ...)
```

Arguments

object	Object of class dice.
	Ignored for now.

summary.ice

Description

Alias of print method.

Usage

S3 method for class 'ice'
summary(object, ...)

Arguments

object	Object of class ice.
	Ignored for now.

WhiteWine

Data concerning white wine.

Description

The WhiteWine data frame has 4898 rows and 12 columns and concerns white wines from a region in Portugal. The response variable, quality, is a wine quality metric, taken to be the median preference score of three blind tasters on a scale of 1-10. The 11 covariates are physicochemical metrics of wine quality such as citric acid content, sulphates, etc.

Usage

data(WhiteWine)

Format

A data frame of 4898 cases on 12 variables.

Source

K Bache and M Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml

Index

* datasets WhiteWine, 14 clusterICE, 2 dice, 3 ice, 5 plot.dice, 8 plot.ice, 10 print.dice, 12 print.ice, 13 summary.dice, 13 summary.ice, 14