A Handbook of Statistical Analyses Using R

Brian S. Everitt and Torsten Hothorn

____| |____

CHAPTER 9

Survival Analysis: Glioma Treatment and Breast Cancer Survival

9.1 Introduction

9.2 Survival Analysis

9.3 Analysis Using R

9.3.1 Glioma Radioimmunotherapy

Figure 9.1 leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via

```
R> survdiff(Surv(time, event) ~ group, data = g3)
```

Call: survdiff(formula = Surv(time, event) ~ group, data = g3) N Observed Expected (O-E)^2/E (O-E)^2/V group=Control 6 4 1.49 4.23 6.06 group=RIT 11 2 4.51 1.40 6.06

```
Chisq= 6.1 on 1 degrees of freedom, p= 0.01
```

which indicates that the survival times are indeed different in both groups. However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. As shown in Chapter 3, conditioning on the data and computing the distribution of the test statistics without additional assumptions is one alternative. The function surv_test from package *coin* (Hothorn et al., 2006b,a) can be used to compute an exact conditional test answering the question whether the survival times differ for grade III patients:

Exact Two-Sample Logrank Test

data: Surv(time, event) by group (Control, RIT) Z = -2.1711, p-value = 0.02877 alternative hypothesis: true theta is not equal to 1

which, in this case, confirms the above results. The same exercise can be performed for patients with grade IV glioma

```
4
                                            SURVIVAL ANALYSIS
R> data("glioma", package = "coin")
R> library("survival")
R> layout(matrix(1:2, ncol = 2))
R> g3 <- subset(glioma, histology == "Grade3")
R> plot(survfit(Surv(time, event) ~ group, data = g3),
        main = "Grade III Glioma", lty = c(2, 1),
+
        ylab = "Probability", xlab = "Survival Time in Month",
+
        legend.bty = "n", legend.text = c("Control", "Treated")
+
+
   )
R> g4 <- subset(glioma, histology == "GBM")
R> plot(survfit(Surv(time, event) ~ group, data = g4),
        main = "Grade IV Glioma", ylab = "Probability",
+
        lty = c(2, 1), xlab = "Survival Time in Month",
+
        xlim = c(0, max(glioma$time) * 1.05))
+
```


Figure 9.1 Survival times comparing treated and control patients.

R> logrank_test(Surv(time, event) ~ group, data = g4, + distribution = "exact")

Exact Two-Sample Logrank Test

```
data: Surv(time, event) by group (Control, RIT)

Z = -3.2215, p-value = 0.0001588

alternative hypothesis: true theta is not equal to 1
```

which shows a difference as well. However, it might be more appropriate to answer the question whether the novel therapy is superior for both groups of

ANALYSIS USING R

tumors simultaneously. This can be implemented by *stratifying*, or *blocking*, with respect tumor grading:

```
R> logrank_test(Surv(time, event) ~ group | histology, data = glioma,
+ distribution = approximate(B = 10000))
```

```
Approximative Two-Sample Logrank Test
```

```
data: Surv(time, event) by
    group (Control, RIT)
    stratified by histology
Z = -3.6704, p-value = 1e-04
alternative hypothesis: true theta is not equal to 1
```

Here, we need to approximate the exact conditional distribution since the exact distribution is hard to compute. The result supports the initial impression implied by Figure 9.1

9.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier estimate of the survival function of the data, here stratified with respect to whether a patient received a hormonal therapy or not (see Figure 9.2).

Fitting a Cox model follows roughly the same rules are shown for linear models in Chapters 4, 5 or 6 with the exception that the response variable is again coded as a *Surv* object. For the GBSG2 data, the model is fitted via

```
R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)</pre>
```

and the results as given by the **summary** method are given in Figure 9.3. Since we are especially interested in the relative risk for patients who underwent a hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via

This result implies that patients treated with a hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way.

Model checking and model selection for proportional hazards models are complicated by the fact that easy to use residuals, such as those discussed in Chapter 5 for linear regression model are not available, but several possibilities do exist. A check of the proportional hazards assumption can be done by looking at the parameter estimates β_1, \ldots, β_q over time. We can safely assume proportional hazards when the estimates don't vary much over time. The null hypothesis of constant regression coefficients can be tested, both globally as well as for each covariate, by using the **cox.zph** function

```
R> GBSG2_zph <- cox.zph(GBSG2_coxph)
R> GBSG2_zph
```


Figure 9.2 Kaplan-Meier estimates for breast cancer patients who either received a hormonal therapy or not.

	chisq	df	р
horTh	0.239	1	0.6253
age	10.438	1	0.0012
menostat	5.406	1	0.0201
tsize	0.191	1	0.6620
tgrade	10.712	2	0.0047
pnodes	0.808	1	0.3688
progrec	4.386	1	0.0362

ANALYSIS USING R

R> summary(GBSG2_coxph)

Call: coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686, number of events= 299

horThyes age menostatPost tsize tgrade.L tgrade.Q pnodes progrec estrec	0.0077961 0.5512988 -0.2010905 0.0487886 -0.0022172	exp(coef) 0.7073155 0.9905854 1.2949147 1.0078266 0.8178384 1.0499984 0.9977852 1.0001973	0.0005735	-2.683 0. -1.017 0. 1.409 0. 1.979 0. 2.904 0. -1.649 0. 6.551 5 -3.866 0.	309126 158954 047794 003685 099199 .7e-11 000111
horThyes age menostatPost tsize tgrade.L tgrade.Q pnodes progrec estrec 	** * * * * * * * *				
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
horThyes age menostatPost tsize tgrade.L tgrade.Q pnodes progrec estrec	exp(coef) e 0.7073 0.9906 1.2949 1.0078 1.7355 0.8178 1.0500 0.9978 1.0002	xp(-coef) 1 1.4138 1.0095 0.7723 0.9922 0.5762 1.2227 0.9524 1.0022 0.9998	ower .95 up 0.5492 0.9727 0.9038 1.0001 1.1963 0.6439 1.0348 0.9967 0.9993	0.9109 1.0088 1.8553 1.0156 2.5178 1.0387 1.0654 0.9989 1.0011	
Concordance= Likelihood r Wald test Score (logra	atio test= 1 = 1	14.8 on 9	df , $p=<2\epsilon$	e-16	

Figure 9.3 R output of the summary method for GBSG2_coxph.

estrec 5.893 1 0.0152 GLOBAL 24.421 9 0.0037

There seems to be some evidence of time-varying effects, especially for age and tumor grading. A graphical representation of the estimated regression coefficient over time is shown in Figure 9.4. We refer to Therneau and Grambsch (2000) for a detailed theoretical description of these topics.

The tree-structured regression models applied to continuous and binary responses in Chapter 8 are applicable to censored responses in survival analysis as well. Such a simple prognostic model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients. Both **rpart** and the **ctree** function from package *party* can be applied to the GBSG2 data,

R> plot(GBSG2_zph, var = "age")

Figure 9.4 Estimated regression coefficient for age depending on time for the GBSG2 data.

where the conditional trees of the latter selects cutpoints based on log-rank statistics;

R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)</pre>

and the **plot** method applied to this tree produces the graphical representation in Figure 9.6. The number of positive lymph nodes (**pnodes**) is the most important variable in the tree, this corresponds to the *p*-value associated with this variable in Cox's regression, see Figure 9.3. Women with not more than three positive lymph nodes who have undergone a hormonal therapy seem to have the best prognosis whereas a large number of positive lymph nodes and a small value of the progesterone receptor indicates a bad prognosis.

ANALYSIS USING R

Figure 9.5 Martingale residuals for the GBSG2 data.

R> plot(GBSG2_ctree)

Figure 9.6 GBSG2 data: Conditonal inference tree with the survival function, estimated by Kaplan-Meier, shown for every subgroup of patients identified by the tree.

Bibliography

- Hothorn, T., Hornik, K., van de Wiel, M., and Zeileis, A. (2006a), coin: Conditional Inference Procedures in a Permutation Test Framework, URL http://CRAN.R-project.org, R package version 0.6-6.
- Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. (2006b), "A Lego system for conditional inference," *The American Statistician*, 60, 257-263, URL http://statmath.wu-wien.ac.at/~zeileis/papers/ Hothorn+Hornik+VanDeWiel-2006.pdf.
- Therneau, T. M. and Grambsch, P. M. (2000), *Modeling Survival Data: Extending the Cox Model*, New York, USA: Springer.