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CHAPTER 9

Survival Analysis:
Glioma Treatment and Breast Cancer

Survival

9.1 Introduction

9.2 Survival Analysis

9.3 Analysis Using R

9.3.1 Glioma Radioimmunotherapy

Figure 9.1 leads to the impression that patients treated with the novel ra-
dioimmunotherapy survive longer, regardless of the tumor type. In order to
assess if this informal finding is reliable, we may perform a log-rank test via

R> survdiff(Surv(time, event) ~ group, data = g3)

Call:

survdiff(formula = Surv(time, event) ~ group, data = g3)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=Control 6 4 1.49 4.23 6.06

group=RIT 11 2 4.51 1.40 6.06

Chisq= 6.1 on 1 degrees of freedom, p= 0.01

which indicates that the survival times are indeed different in both groups.
However, the number of patients is rather limited and so it might be danger-
ous to rely on asymptotic tests. As shown in Chapter 3, conditioning on the
data and computing the distribution of the test statistics without additional
assumptions is one alternative. The function surv_test from package coin

(Hothorn et al., 2006b,a) can be used to compute an exact conditional test
answering the question whether the survival times differ for grade III patients:

R> library("coin")

R> logrank_test(Surv(time, event) ~ group, data = g3,

+ distribution = "exact")

Exact Two-Sample Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = -2.1711, p-value = 0.02877

alternative hypothesis: true theta is not equal to 1

which, in this case, confirms the above results. The same exercise can be
performed for patients with grade IV glioma
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4 SURVIVAL ANALYSIS

R> data("glioma", package = "coin")

R> library("survival")

R> layout(matrix(1:2, ncol = 2))

R> g3 <- subset(glioma, histology == "Grade3")

R> plot(survfit(Surv(time, event) ~ group, data = g3),

+ main = "Grade III Glioma", lty = c(2, 1),

+ ylab = "Probability", xlab = "Survival Time in Month",

+ legend.bty = "n", legend.text = c("Control", "Treated")

+ )

R> g4 <- subset(glioma, histology == "GBM")

R> plot(survfit(Surv(time, event) ~ group, data = g4),

+ main = "Grade IV Glioma", ylab = "Probability",

+ lty = c(2, 1), xlab = "Survival Time in Month",

+ xlim = c(0, max(glioma$time) * 1.05))
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Figure 9.1 Survival times comparing treated and control patients.

R> logrank_test(Surv(time, event) ~ group, data = g4,

+ distribution = "exact")

Exact Two-Sample Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = -3.2215, p-value = 0.0001588

alternative hypothesis: true theta is not equal to 1

which shows a difference as well. However, it might be more appropriate to
answer the question whether the novel therapy is superior for both groups of
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tumors simultaneously. This can be implemented by stratifying, or blocking,
with respect tumor grading:

R> logrank_test(Surv(time, event) ~ group | histology, data = glioma,

+ distribution = approximate(B = 10000))

Approximative Two-Sample Logrank Test

data: Surv(time, event) by

group (Control, RIT)

stratified by histology

Z = -3.6704, p-value = 1e-04

alternative hypothesis: true theta is not equal to 1

Here, we need to approximate the exact conditional distribution since the exact
distribution is hard to compute. The result supports the initial impression
implied by Figure 9.1

9.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier
estimate of the survival function of the data, here stratified with respect to
whether a patient received a hormonal therapy or not (see Figure 9.2).

Fitting a Cox model follows roughly the same rules are shown for linear
models in Chapters 4, 5 or 6 with the exception that the response variable is
again coded as a Surv object. For the GBSG2 data, the model is fitted via

R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)

and the results as given by the summary method are given in Figure 9.3. Since
we are especially interested in the relative risk for patients who underwent
a hormonal therapy, we can compute an estimate of the relative risk and a
corresponding confidence interval via

R> ci <- confint(GBSG2_coxph)

R> exp(cbind(coef(GBSG2_coxph), ci))["horThyes",]

2.5 % 97.5 %

0.7073155 0.5492178 0.9109233

This result implies that patients treated with a hormonal therapy had a lower
risk and thus survived longer compared to women who were not treated this
way.

Model checking and model selection for proportional hazards models are
complicated by the fact that easy to use residuals, such as those discussed in
Chapter 5 for linear regression model are not available, but several possibilities
do exist. A check of the proportional hazards assumption can be done by
looking at the parameter estimates β1, . . . , βq over time. We can safely assume
proportional hazards when the estimates don’t vary much over time. The null
hypothesis of constant regression coefficients can be tested, both globally as
well as for each covariate, by using the cox.zph function

R> GBSG2_zph <- cox.zph(GBSG2_coxph)

R> GBSG2_zph
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R> data("GBSG2", package = "TH.data")

R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2),

+ lty = 1:2, mark.time = FALSE, ylab = "Probability",

+ xlab = "Survival Time in Days")

R> legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1),

+ title = "Hormonal Therapy", bty = "n")
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Figure 9.2 Kaplan-Meier estimates for breast cancer patients who either received

a hormonal therapy or not.

chisq df p

horTh 0.239 1 0.6253

age 10.438 1 0.0012

menostat 5.406 1 0.0201

tsize 0.191 1 0.6620

tgrade 10.712 2 0.0047

pnodes 0.808 1 0.3688

progrec 4.386 1 0.0362



ANALYSIS USING R 7

R> summary(GBSG2_coxph)

Call:

coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686, number of events= 299

coef exp(coef) se(coef) z Pr(>|z|)

horThyes -0.3462784 0.7073155 0.1290747 -2.683 0.007301

age -0.0094592 0.9905854 0.0093006 -1.017 0.309126

menostatPost 0.2584448 1.2949147 0.1834765 1.409 0.158954

tsize 0.0077961 1.0078266 0.0039390 1.979 0.047794

tgrade.L 0.5512988 1.7355056 0.1898441 2.904 0.003685

tgrade.Q -0.2010905 0.8178384 0.1219654 -1.649 0.099199

pnodes 0.0487886 1.0499984 0.0074471 6.551 5.7e-11

progrec -0.0022172 0.9977852 0.0005735 -3.866 0.000111

estrec 0.0001973 1.0001973 0.0004504 0.438 0.661307

horThyes **
age

menostatPost

tsize *
tgrade.L **
tgrade.Q .

pnodes ***
progrec ***
estrec

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95

horThyes 0.7073 1.4138 0.5492 0.9109

age 0.9906 1.0095 0.9727 1.0088

menostatPost 1.2949 0.7723 0.9038 1.8553

tsize 1.0078 0.9922 1.0001 1.0156

tgrade.L 1.7355 0.5762 1.1963 2.5178

tgrade.Q 0.8178 1.2227 0.6439 1.0387

pnodes 1.0500 0.9524 1.0348 1.0654

progrec 0.9978 1.0022 0.9967 0.9989

estrec 1.0002 0.9998 0.9993 1.0011

Concordance= 0.692 (se = 0.015 )

Likelihood ratio test= 104.8 on 9 df, p=<2e-16

Wald test = 114.8 on 9 df, p=<2e-16

Score (logrank) test = 120.7 on 9 df, p=<2e-16

Figure 9.3 R output of the summary method for GBSG2_coxph.

estrec 5.893 1 0.0152

GLOBAL 24.421 9 0.0037

There seems to be some evidence of time-varying effects, especially for age and
tumor grading. A graphical representation of the estimated regression coeffi-
cient over time is shown in Figure 9.4. We refer to Therneau and Grambsch
(2000) for a detailed theoretical description of these topics.
The tree-structured regression models applied to continuous and binary

responses in Chapter 8 are applicable to censored responses in survival analysis
as well. Such a simple prognostic model with only a few terminal nodes might
be helpful for relating the risk to certain subgroups of patients. Both rpart

and the ctree function from package party can be applied to the GBSG2 data,
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R> plot(GBSG2_zph, var = "age")
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Figure 9.4 Estimated regression coefficient for age depending on time for the GBSG2

data.

where the conditional trees of the latter selects cutpoints based on log-rank
statistics;

R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

and the plotmethod applied to this tree produces the graphical representation
in Figure 9.6. The number of positive lymph nodes (pnodes) is the most
important variable in the tree, this corresponds to the p-value associated with
this variable in Cox’s regression, see Figure 9.3. Women with not more than
three positive lymph nodes who have undergone a hormonal therapy seem to
have the best prognosis whereas a large number of positive lymph nodes and
a small value of the progesterone receptor indicates a bad prognosis.
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R> layout(matrix(1:3, ncol = 3))

R> res <- residuals(GBSG2_coxph)

R> plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "Martingale Residuals")

R> abline(h = 0, lty = 3)

R> plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)

R> plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)
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Figure 9.5 Martingale residuals for the GBSG2 data.
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R> plot(GBSG2_ctree)
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Figure 9.6 GBSG2 data: Conditonal inference tree with the survival function, esti-

mated by Kaplan-Meier, shown for every subgroup of patients identified

by the tree.
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