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CHAPTER 6

Logistic Regression and Generalised Linear
Models: Blood Screening, Women’s Role in
Society,
and Colonic Polyps

6.1 Introduction

6.2 Logistic Regression and Generalised Linear Models
6.3 Analysis Using R

6.3.1 ESR and Plasma Proteins

We can now fit a logistic regression model to the data using the glm func-
tion. We start with a model that includes only a single explanatory variable,
fibrinogen. The code to fit the model is

R> plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma,

+ family = binomial())

The formula implicitly defines a parameter for the global mean (the intercept
term) as discussed in Chapters ?? and ??. The distribution of the response
is defined by the family argument, a binomial distribution in our case. (The
default link function when the binomial family is requested is the logistic
function.)

From the results in Figure 6.2 we see that the regression coefficient for
fibrinogen is significant at the 5% level. An increase of one unit in this vari-
able increases the log-odds in favour of an ESR value greater than 20 by an
estimated 1.83 with 95% confidence interval

R> confint(plasma_glm_1, parm = "fibrinogen")

2.5 % 97.5 %
0.3387619 3.9984921

These values are more helpful if converted to the corresponding values for the
odds themselves by exponentiating the estimate

R> exp(coef(plasma_glm_1) ["fibrinogen"])

fibrinogen
6.215715

and the confidence interval

R> exp(confint(plasma_glm_1, parm = "fibrinogen"))
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R> data("plasma", package = "HSAUR")

R> layout(matrix(1:2, ncol = 2))

R> cdplot(ESR ~ fibrinogen, data = plasma)
R> cdplot(ESR ~ globulin, data = plasma)
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Figure 6.1 Conditional density plots of the erythrocyte sedimentation rate (ESR)
given fibrinogen and globulin.

2.5 % 97.5 %
1.403209 54.515884

The confidence interval is very wide because there are few observations overall
and very few where the ESR value is greater than 20. Nevertheless it seems
likely that increased values of fibrinogen lead to a greater probability of an
ESR value greater than 20.

We can now fit a logistic regression model that includes both explanatory
variables using the code
R> plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma,
+ family = binomial())
and the output of the summary method is shown in Figure 6.3.

The coefficient for gamma globulin is not significantly different from zero.
Subtracting the residual deviance of the second model from the corresponding
value for the first model we get a value of 1.87. Tested using a x2-distribution
with a single degree of freedom this is not significant at the 5% level and so
we conclude that gamma globulin is not associated with ESR level. In R, the
task of comparing the two nested models can be performed using the anova
function
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R> summary(plasma_glm_1)

Call:
glm(formula = ESR ~ fibrinogen, family = binomial (), data = plasma)

Coefficients:
Estimate Std. Error z value Pr(>|z/)
(Intercept) -6.8451 2.7703 -2.471 0.0135 =
fibrinogen 1.8271 0.9009 2.028 0.0425 =
Signif. codes: 0 "#xx' 0.001 "xx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 30.885 on 31 degrees of freedom
Residual deviance: 24.840 on 30 degrees of freedom

AIC: 28.84

Number of Fisher Scoring iterations: 5

Figure 6.2 R output of the summary method for the logistic regression model fitted
to the plasma data.

R> summary(plasma_glm_2)

Call:
glm(formula = ESR ~ fibrinogen + globulin, family = binomial (),
data = plasma)

Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -12.7921 5.7963 -2.207 0.0273 *
fibrinogen 1.9104 0.9710 1.967 0.0491 =
globulin 0.1558 0.1195 1.303 0.1925
Signif. codes: 0 'xx%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 30.885 on 31 degrees of freedom
Residual deviance: 22.971 on 29 degrees of freedom

AIC: 28.971

Number of Fisher Scoring iterations: 5

Figure 6.3 R output of the summary method for the logistic regression model fitted
to the plasma data.

R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq")

Analysis of Deviance Table

Model 1: ESR ~ fibrinogen
Model 2: ESR ~ fibrinogen + globulin
Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 30 24.840
2 29 22.971 1 1.8692 0.1716

Nevertheless we shall use the predicted values from the second model and plot
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R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6),

+ ylim = c(25, 65), pch = ".")

R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob,
+ add = TRUE)
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Figure 6.4 Bubble plot of fitted values for a logistic regression model fitted to the
ESR data.

them against the values of both explanatory variables using a bubble plot to
illustrate the use of the symbols function. The estimated conditional proba-
bility of a ESR value larger 20 for all observations can be computed, following
formula (??), by

R> prob <- predict(plasma_glm_2, type = "response")

and now we can assign a larger circle to observations with larger probability
as shown in Figure 6.4. The plot clearly shows the increasing probability of
an ESR value above 20 (larger circles) as the values of fibrinogen, and to a
lesser extent, gamma globulin, increase.
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6.3.2 Women’s Role in Society

Originally the data in Table ?? would have been in a completely equivalent
form to the data in Table ?? data, but here the individual observations have
been grouped into counts of numbers of agreements and disagreements for
the two explanatory variables, sex and education. To fit a logistic regression
model to such grouped data using the glm function we need to specify the
number of agreements and disagreements as a two-column matrix on the left
hand side of the model formula. We first fit a model that includes the two
explanatory variables using the code

R> data("womensrole", package = "HSAUR")

R> fml <- cbind(agree, disagree) ~ sex + education
R> womensrole_glm_1 <- glm(fml, data = womensrole,
+ family = binomial())

R> summary(womensrole_glm_1)

Call:
glm(formula = fml, family = binomial (), data = womensrole)
Coefficients:
Estimate Std. Error z value Pr(>[z])
(Intercept) 2.50937 0.18389 13.646 <2e-16 ***
sexFemale -0.01145 0.08415 -0.136 0.892
education -0.27062 0.01541 -17.560 <2e-16 **x*
Signif. codes: 0 '#*#x' 0.001 'x#' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 451.722 on 40 degrees of freedom
Residual deviance: 64.007 on 38 degrees of freedom

AIC: 208.07

Number of Fisher Scoring iterations: 4

Figure 6.5 R output of the summary method for the logistic regression model fitted
to the womensrole data.

From the summary output in Figure 6.5 it appears that education has a
highly significant part to play in predicting whether a respondent will agree
with the statement read to them, but the respondent’s sex is apparently unim-
portant. As years of education increase the probability of agreeing with the
statement declines. We now are going to construct a plot comparing the ob-
served proportions of agreeing with those fitted by our fitted model. Because
we will reuse this plot for another fitted object later on, we define a function
which plots years of education against some fitted probabilities, e.g.,

R> role.fittedl <- predict(womensrole_glm_1, type = "response")
and labels each observation with the person’s sex:

R> myplot <- function(role.fitted) {
+ f <- womensrole$sex == "Female"
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R> myplot(role.fittedl)
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Figure 6.6 Fitted (from womensrole_glm_1) and observed probabilities of agreeing

+ + + + + + + + + + + o+

for the womensrole data.

plot (womensrole$education, role.fitted, type = "n",
ylab = "Probability of agreeing",
xlab = "Education", ylim = c(0,1))
lines(womensrole$education[!f], role.fitted[!f], 1ty
lines(womensrole$education[f], role.fitted[f], 1ty =
lgtxt <- c("Fitted (Males)", "Fitted (Females)")
legend ("topright", lgtxt, lty = 1:2, bty = "n")
y <- womensrole$agree / (womensrole$agree +
womensrole$disagree)
text (womensrole$education, y, ifelse(f, "\\VE", "\\MA"),
family = "HersheySerif", cex = 1.25)

=1)
2)
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The two curves for males and females in Figure 6.6 are almost the same
reflecting the non-significant value of the regression coefficient for sex in wom-
ensrole_glm_1. But the observed values plotted on Figure 6.6 suggest that
there might be an interaction of education and sex, a possibility that can be
investigated by applying a further logistic regression model using
R> fm2 <- cbind(agree,disagree) ~ sex * education
R> womensrole_glm_2 <- glm(fm2, data = womensrole,

+ family = binomial())

The sex and education interaction term is seen to be highly significant, as
can be seen from the summary output in Figure 6.7.

R> summary(womensrole_glm_2)

Call:
glm(formula = fm2, family = binomial (), data = womensrole)
Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 2.09820 0.23550 8.910 < 2e-16 ##*#
sexFemale 0.90474 0.36007 2.513 0.01198 =
education -0.23403 0.02019 -11.592 < 2e-16 #*x%
sexFemale:education —0.08138 0.03109 -2.617 0.00886 x*x*
Signif. codes: 0 "#xxx' 0.001 "xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 451.722 on 40 degrees of freedom
Residual deviance: 57.103 on 37 degrees of freedom

AIC: 203.16

Number of Fisher Scoring iterations: 4

Figure 6.7 R output of the summary method for the logistic regression model fitted
to the womensrole data.

We can obtain a plot of deviance residuals plotted against fitted values using
the following code above Figure 6.9. The residuals fall into a horizontal band
between —2 and 2. This pattern does not suggest a poor fit for any particular
observation or subset of observations.

6.3.3 Colonic Polyps

The data on colonic polyps in Table ?? involves count data. We could try to
model this using multiple regression but there are two problems. The first is
that a response that is a count can only take positive values, and secondly
such a variable is unlikely to have a normal distribution. Instead we will apply
a GLM with a log link function, ensuring that fitted values are positive, and
a Poisson error distribution, i.e.,

e~ MY

P(y) = y!
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R> role.fitted2 <- predict(womensrole_glm_2, type = "response")
R> myplot(role.fitted2)
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Figure 6.8 Fitted (from womensrole_glm_2) and observed probabilities of agreeing
for the womensrole data.

This type of GLM is often known as Poisson regression. We can apply the
model using

R> data("polyps", package = "HSAUR")
R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps,
+ family = poisson())

(The default link function when the Poisson family is requested is the log
function.)

We can deal with overdispersion by using a procedure known as quasi-
likelihood, which allows the estimation of model parameters without fully
knowing the error distribution of the response variable. McCullagh and Nelder
(1989) give full details of the quasi-likelihood approach. In many respects it
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R> res <- residuals(womensrole_glm_2, type = "deviance")
R> plot(predict(womensrole_glm_2), res,

+ xlab="Fitted values", ylab = "Residuals",

+ ylim = max(abs(res)) * c(-1,1))

R> abline(h = 0, 1ty = 2)
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Figure 6.9 Plot of deviance residuals from logistic regression model fitted to the
womensrole data

simply allows for the estimation of ¢ from the data rather than defining it
to be unity for the binomial and Poisson distributions. We can apply quasi-
likelihood estimation to the colonic polyps data using the following R code

R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps,
+ family = quasipoisson())
R> summary (polyps_glm_2)

Call:
glm(formula = number ~ treat + age, family = quasipoisson(),
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R> summary (polyps_glm_1)

Call:
glm(formula = number ~ treat + age, family = poisson(), data = polyps)

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 4.529024 0.146872 30.84 < 2e-16 **x*
treatdrug -1.359083 0.117643 -11.55 < 2e-16 ##%
age -0.038830 0.005955 —-6.52 7.02e-11 #*#%*

Signif. codes: 0 '"xx%' 0.001 "xx' 0.01 'x' 0.05 '.'" 0.1 ' "1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.54 on 17 degrees of freedom

AIC: 273.88

Number of Fisher Scoring iterations: 5

Figure 6.10 R output of the summary method for the Poisson regression model fitted
to the polyps data.

data = polyps)

Coefficients:
Estimate Std. Error t value Pr(>[t])
(Intercept) 4.52902 0.48106 9.415 3.72e-08 #*x*
treatdrug -1.35908 0.38533 -3.527 0.00259 xx*
age -0.03883 0.01951 -1.991 0.06284
Signif. codes: 0 '"xxx' 0.001 'xx' 0.01 '+' 0.05 '".'" 0.1 " ' 1

(Dispersion parameter for quasipoisson family taken to be 10.72805)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.54 on 17 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

The regression coefficients for both explanatory variables remain significant
but their estimated standard errors are now much greater than the values
given in Figure 6.10. A possible reason for overdispersion in these data is that
polyps do not occur independently of one another, but instead may ‘cluster’
together.
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