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CHAPTER 4

Analysis of Variance: Weight Gain, Foster
Feeding in Rats, Water Hardness and Male

Egyptian Skulls

4.1 Introduction

4.2 Analysis of Variance

4.3 Analysis Using R

4.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table ?? we should try to
summarise the main features of the data by calculating means and standard
deviations and by producing some hopefully informative graphs. The data is
available in the data.frame weightgain. The following R code produces the
required summary statistics

R> data("weightgain", package = "HSAUR")

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), mean)

High Low

Beef 100.0 79.2

Cereal 85.9 83.9

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), sd)

High Low

Beef 15.13642 13.88684

Cereal 15.02184 15.70881

To apply analysis of variance to the data we can use the aov function in R

and then the summary method to give us the usual analysis of variance table.
The model formula specifies a two-way layout with interaction terms, where
the first factor is source, and the second factor is type.

R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)

The estimates of the intercept and the main and interaction effects can be
extracted from the model fit by

R> coef(wg_aov)

(Intercept) sourceCereal typeLow

100.0 -14.1 -20.8

sourceCereal:typeLow

18.8
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R> plot.design(weightgain)
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Figure 4.1 Plot of mean weight gain for each level of the two factors.

Note that the model was fitted with the restrictions γ1 = 0 (corresponding to
Beef) and β1 = 0 (corresponding to High) because treatment contrasts were
used as default as can be seen from

R> options("contrasts")

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

Thus, the coefficient for source of −14.1 can be interpreted as an estimate of
the difference γ2 − γ1. Alternatively, we can use the restriction

∑
i
γi = 0 by

R> coef(aov(weightgain ~ source + type + source:type,

+ data = weightgain, contrasts = list(source = contr.sum)))

(Intercept) source1 typeLow
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R> summary(wg_aov)

Df Sum Sq Mean Sq F value Pr(>F)

source 1 221 220.9 0.988 0.3269

type 1 1300 1299.6 5.812 0.0211 *
source:type 1 884 883.6 3.952 0.0545 .

Residuals 36 8049 223.6

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 4.2 R output of the ANOVA fit for the weightgain data.

92.95 7.05 -11.40

source1:typeLow

-9.40

4.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding
data in Table ?? with a plot of the mean litter weight for the different genotypes
of mother and litter (see Figure 4.4). The data are in the data.frame foster

R> data("foster", package = "HSAUR")

We can derive the two analyses of variance tables for the foster feeding
example by applying the R code

R> summary(aov(weight ~ litgen * motgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)

litgen 3 60.2 20.05 0.370 0.77522

motgen 3 775.1 258.36 4.763 0.00574 **
litgen:motgen 9 824.1 91.56 1.688 0.12005

Residuals 45 2440.8 54.24

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and then the code

R> summary(aov(weight ~ motgen * litgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)

motgen 3 771.6 257.20 4.742 0.00587 **
litgen 3 63.6 21.21 0.391 0.76000

motgen:litgen 9 824.1 91.56 1.688 0.12005

Residuals 45 2440.8 54.24

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are (small) differences in the sum of squares for the two main effects
and, consequently, in the associated F -tests and p-values. This would not be
true if in the previous example in Subsection 4.3.1 we had used the code
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R> interaction.plot(weightgain$type, weightgain$source,

+ weightgain$weightgain)
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Figure 4.3 Interaction plot of type × source.

R> summary(aov(weightgain ~ type * source, data = weightgain))

instead of the code which produced Figure 4.2 (readers should confirm that
this is the case).
We can investigate the effect of genotype B on litter weight in more detail

by the use of multiple comparison procedures (see Everitt, 1996). Such proce-
dures allow a comparison of all pairs of levels of a factor whilst maintaining
the nominal significance level at its selected value and producing adjusted
confidence intervals for mean differences. One such procedure is called Tukey

honest significant differences suggested by Tukey (1953), see Hochberg and
Tamhane (1987) also. Here, we are interested in simultaneous confidence in-
tervals for the weight differences between all four genotypes of the mother.
First, an ANOVA model is fitted
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R> plot.design(foster)
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Figure 4.4 Plot of mean litter weight for each level of the two factors for the foster

data.

R> foster_aov <- aov(weight ~ litgen * motgen, data = foster)

which serves as the basis of the multiple comparisons, here with allpair differ-
ences by

R> foster_hsd <- TukeyHSD(foster_aov, "motgen")

R> foster_hsd

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight ~ litgen * motgen, data = foster)

$motgen

diff lwr upr p adj

B-A 3.330369 -3.859729 10.5204672 0.6078581
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R> plot(foster_hsd)
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Figure 4.5 Graphical presentation of multiple comparison results for the foster

feeding data.

I-A -1.895574 -8.841869 5.0507207 0.8853702

J-A -6.566168 -13.627285 0.4949498 0.0767540

I-B -5.225943 -12.416041 1.9641552 0.2266493

J-B -9.896537 -17.197624 -2.5954489 0.0040509

J-I -4.670593 -11.731711 2.3905240 0.3035490

A convenient plot method exists for this object and we can get a graphical
representation of the multiple confidence intervals as shown in Figure 4.5. It
appears that there is only evidence for a difference in the B and J genotypes.

4.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and
Wales (see Table 2.3) was analysed in Chapter 2 and here we will extend the
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analysis by an assessment of the differences of both hardness and mortality
in the North or South. The hypothesis that the two-dimensional mean-vector
of water hardness and mortality is the same for cities in the North and the
South can be tested by Hotelling-Lawley test in a multivariate analysis of
variance framework. The R function manova can be used to fit such a model
and the corresponding summary method performs the test specified by the
test argument

R> data("water", package = "HSAUR")

R> summary(manova(cbind(hardness, mortality) ~ location,

+ data = water), test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

location 1 0.90021 26.106 2 58 8.217e-09

Residuals 59

location ***
Residuals

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The cbind statement in the left hand side of the formula indicates that a
multivariate response variable is to be modelled. The p-value associated with
the Hotelling-Lawley statistic is very small and there is strong evidence that
the mean vectors of the two variables are not the same in the two regions.
Looking at the sample means

R> tapply(water$hardness, water$location, mean)

North South

30.40000 69.76923

R> tapply(water$mortality, water$location, mean)

North South

1633.600 1376.808

we see large differences in the two regions both in water hardness and mortal-
ity, where low mortality is associated with hard water in the South and high
mortality with soft water in the North (see Figure ?? also).

4.3.4 Male Egyptian Skulls

We can begin by looking at a table of mean values for the four measure-
ments within each of the five epochs. The measurements are available in the
data.frame skulls and we can compute the means over all epochs by

R> data("skulls", package = "HSAUR")

R> means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")],

+ list(epoch = skulls$epoch), mean)

R> means
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R> pairs(means[,-1],

+ panel = function(x, y) {

+ text(x, y, abbreviate(levels(skulls$epoch)))

+ })
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Figure 4.6 Scatterplot matrix of epoch means for Egyptian skulls data.

epoch mb bh bl nh

1 c4000BC 131.3667 133.6000 99.16667 50.53333

2 c3300BC 132.3667 132.7000 99.06667 50.23333

3 c1850BC 134.4667 133.8000 96.03333 50.56667

4 c200BC 135.5000 132.3000 94.53333 51.96667

5 cAD150 136.1667 130.3333 93.50000 51.36667

It may also be useful to look at these means graphically and this could be
done in a variety of ways. Here we construct a scatterplot matrix of the means
using the code attached to Figure 4.6.

There appear to be quite large differences between the epoch means, at
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least on some of the four measurements. We can now test for a difference
more formally by using MANOVA with the following R code to apply each of
the four possible test criteria mentioned earlier;

R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,

+ data = skulls)

R> summary(skulls_manova, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)

epoch 4 0.35331 3.512 16 580 4.675e-06 ***
Residuals 145

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)

epoch 4 0.66359 3.9009 16 434.45 7.01e-07 ***
Residuals 145

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df

epoch 4 0.48182 4.231 16 562

Residuals 145

Pr(>F)

epoch 8.278e-08 ***
Residuals

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Roy")

Df Roy approx F num Df den Df Pr(>F)

epoch 4 0.4251 15.41 4 145 1.588e-10 ***
Residuals 145

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value associated with each four test criteria is very small and there is
strong evidence that the skull measurements differ between the five epochs. We
might now move on to investigate which epochs differ and on which variables.
We can look at the univariate F -tests for each of the four variables by using
the code

R> summary.aov(skulls_manova)

Response mb :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 502.83 125.707 5.9546 0.0001826 ***
Residuals 145 3061.07 21.111

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Response bh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 229.9 57.477 2.4474 0.04897 *
Residuals 145 3405.3 23.485

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response bl :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 803.3 200.823 8.3057 4.636e-06 ***
Residuals 145 3506.0 24.179

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response nh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 61.2 15.300 1.507 0.2032

Residuals 145 1472.1 10.153

We see that the results for the maximum breadths (mb) and basialiveolar length
(bl) are highly significant, with those for the other two variables, in particular
for nasal heights (nh), suggesting little evidence of a difference. To look at the
pairwise multivariate tests (any of the four test criteria are equivalent in the
case of a one-way layout with two levels only) we can use the summary method
and manova function as follows:

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c3300BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.027674 0.39135 4 55 0.8139

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c1850BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.18757 3.1744 4 55 0.02035 *
Residuals 58

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c200BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.30297 5.9766 4 55 0.0004564 ***
Residuals 58

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "cAD150")))
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Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.36182 7.7956 4 55 4.736e-05 ***
Residuals 58

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To keep the overall significance level for the set of all pairwise multivariate
tests under some control (and still maintain a reasonable power), Stevens
(2001) recommends setting the nominal level α = 0.15 and carrying out each
test at the α/m level where m s the number of tests performed. The results
of the four pairwise tests suggest that as the epochs become further separated
in time the four skull measurements become increasingly distinct.
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