
Package ‘HDTSA’
January 28, 2025

Type Package

Title High Dimensional Time Series Analysis Tools

Version 1.0.5-1

Date 2025-01-25

Author Jinyuan Chang [aut],
Jing He [aut],
Chen Lin [aut, cre],
Qiwei Yao [aut]

Maintainer Chen Lin <linchen@smail.swufe.edu.cn>

Description An implementation for high-
dimensional time series analysis methods, including factor model for vector time series
proposed by Lam and Yao (2012) <doi:10.1214/12-AOS970> and Chang, Guo and Yao (2015)
<doi:10.1016/j.jeconom.2015.03.024>, martingale difference test proposed by
Chang, Jiang and Shao (2023) <doi:10.1016/j.jeconom.2022.09.001>, principal
component analysis for vector time series pro-
posed by Chang, Guo and Yao (2018) <doi:10.1214/17-AOS1613>,
cointegration analysis proposed by Zhang, Robinson and Yao (2019)
<doi:10.1080/01621459.2018.1458620>, unit root test proposed by Chang, Cheng and Yao (2022)
<doi:10.1093/biomet/asab034>, white noise test proposed by Chang, Yao and Zhou (2017)
<doi:10.1093/biomet/asw066>, CP-decomposition for matrix time
series proposed by Chang et al. (2023) <doi:10.1093/jrsssb/qkac011> and
Chang et al. (2024) <doi:10.48550/arXiv.2410.05634>, and statistical inference for
spectral density matrix proposed by Chang et al. (2022)
<doi:10.48550/arXiv.2212.13686>.

License GPL-3

Depends R (>= 3.5.0)

Imports stats, Rcpp, clime, sandwich, methods, MASS, geigen,
jointDiag, vars, forecast

LinkingTo RcppEigen, Rcpp

Suggests knitr

NeedsCompilation yes

RoxygenNote 7.3.2

1

https://doi.org/10.1214/12-AOS970
https://doi.org/10.1016/j.jeconom.2015.03.024
https://doi.org/10.1016/j.jeconom.2022.09.001
https://doi.org/10.1214/17-AOS1613
https://doi.org/10.1080/01621459.2018.1458620
https://doi.org/10.1093/biomet/asab034
https://doi.org/10.1093/biomet/asw066
https://doi.org/10.1093/jrsssb/qkac011
https://doi.org/10.48550/arXiv.2410.05634
https://doi.org/10.48550/arXiv.2212.13686

2 Coint

Encoding UTF-8

URL https://github.com/Linc2021/HDTSA

BugReports https://github.com/Linc2021/HDTSA/issues

Repository CRAN

Date/Publication 2025-01-28 04:00:06 UTC

Contents

Coint . 2
CP_MTS . 5
DGP.CP . 8
Factors . 9
FamaFrench . 11
HDSReg . 12
IPindices . 14
MartG_test . 15
PCA_TS . 17
predict.factors . 20
predict.mtscp . 21
predict.tspca . 23
QWIdata . 24
SpecMulTest . 25
SpecTest . 27
UR_test . 28
WN_test . 29

Index 32

Coint Identifying the cointegration rank of nonstationary vector time series

Description

Coint() deals with cointegration analysis for high-dimensional vector time series proposed in
Zhang, Robinson and Yao (2019). Consider the model:

yt = Axt ,

where A is a p × p unknown and invertible constant matrix, xt = (x′
t,1,x

′
t,2)

′ is a latent p × 1
process, xt,2 is an r × 1 I(0) process, xt,1 is a process with nonstationary components, and no
linear combination of xt,1 is I(0). This function aims to estimate the cointegration rank r and the
invertible constant matrix A.

https://github.com/Linc2021/HDTSA
https://github.com/Linc2021/HDTSA/issues

Coint 3

Usage

Coint(
Y,
lag.k = 5,
type = c("acf", "urtest", "both"),
c0 = 0.3,
m = 20,
alpha = 0.01

)

Arguments

Y An n × p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the obser-

vations of the p× 1 time series {yt}nt=1.

lag.k The time lag K used to calculate the nonnegative definte matrix Ŵy:

Ŵy =

K∑
k=0

Σ̂y(k)Σ̂y(k)
′ ,

where Σ̂y(k) is the sample autocovariance of yt at lag k. The default is 5.

type The method used to identify the cointegration rank. Available options include:
"acf" (the default) for the method based on the sample autocorrelations, "urtest"
for the method based on the unit root tests, and "both" to apply these two meth-
ods. See Section 2.3 of Zhang, Robinson and Yao (2019) and ’Details’ for more
information.

c0 The prescribed constant c0 involved in the method based on the sample corre-
lations, which is used when type = "acf" or type = "both". See Section 2.3
of Zhang, Robinson and Yao (2019) and ’Details’ for more information. The
default is 0.3.

m The prescribed constant m involved in the method based on the sample corre-
lations, which is used when type = "acf" or type = "both". See Section 2.3
of Zhang, Robinson and Yao (2019) and ’Details’ for more information. The
default is 20.

alpha The significance level α of the unit root tests, which is used when type = "urtest"
or type = "both". See ’Details’. The default is 0.01.

Details

Write x̂t = Â′yt ≡ (x̂1
t , . . . , x̂

p
t)

′. When type = "acf", Coint() estimates r by

r̂ =

p∑
i=1

1

{
Si(m)

m
< c0

}
for some constant c0 ∈ (0, 1) and some large constant m, where Si(m) is the sum of the sample
autocorrelations of x̂i

t over lags 1 to m, which is specified in Section 2.3 of Zhang, Robinson and
Yao (2019).

4 Coint

When type = "urtest", Coint() estimates r by unit root tests. For i = 1, . . . , p, consider the null
hypothesis

H0,i : x̂
p−i+1
t ∼ I(0) .

The estimation procedure for r can be implemented as follows:

Step 1. Start with i = 1. Perform the unit root test proposed in Chang, Cheng and Yao (2021) for
H0,i.

Step 2. If the null hypothesis is not rejected at the significance level α, increment i by 1 and
repeat Step 1. Otherwise, stop the procedure and denote the value of i at termination as i0. The
cointegration rank is then estimated as r̂ = i0 − 1.

Value

An object of class "coint", which contains the following components:

A The estimated Â.

coint_rank The estimated cointegration rank r̂.

lag.k The time lag used in function.

method A string indicating which method is used to identify the cointegration rank.

References

Chang, J., Cheng, G., & Yao, Q. (2022). Testing for unit roots based on sample autocovariances.
Biometrika, 109, 543–550. doi:10.1093/biomet/asab034.

Zhang, R., Robinson, P., & Yao, Q. (2019). Identifying cointegration by eigenanalysis. Journal of
the American Statistical Association, 114, 916–927. doi:10.1080/01621459.2018.1458620.

Examples

Example 1 (Example 1 in Zhang, Robinson and Yao (2019))
Generate yt
p <- 10
n <- 1000
r <- 3
d <- 1
X <- mat.or.vec(p, n)
X[1,] <- arima.sim(n-d, model = list(order=c(0, d, 0)))
for(i in 2:3)X[i,] <- rnorm(n)
for(i in 4:(r+1)) X[i,] <- arima.sim(model = list(ar = 0.5), n)
for(i in (r+2):p) X[i,] <- arima.sim(n = (n-d), model = list(order=c(1, d, 1), ar=0.6, ma=0.8))
M1 <- matrix(c(1, 1, 0, 1/2, 0, 1, 0, 1, 0), ncol = 3, byrow = TRUE)
A <- matrix(runif(p*p, -3, 3), ncol = p)
A[1:3,1:3] <- M1
Y <- t(A%*%X)

Coint(Y, type = "both")

https://doi.org/10.1093/biomet/asab034
https://doi.org/10.1080/01621459.2018.1458620

CP_MTS 5

CP_MTS Estimating the matrix time series CP-factor model

Description

CP_MTS() deals with the estimation of the CP-factor model for matrix time series:

Yt = AXtB
′ + ϵt,

where Xt = diag(xt,1, . . . , xt,d) is a d × d unobservable diagonal matrix, ϵt is a p × q matrix
white noise, A and B are, respectively, p × d and q × d unknown constant matrices with their
columns being unit vectors, and 1 ≤ d < min(p, q) is an unknown integer. Let rank(A) = d1
and rank(B) = d2 with some unknown d1, d2 ≤ d. This function aims to estimate d, d1, d2 and
the loading matrices A and B using the methods proposed in Chang et al. (2023) and Chang et al.
(2024).

Usage

CP_MTS(
Y,
xi = NULL,
Rank = NULL,
lag.k = 20,
lag.ktilde = 10,
method = c("CP.Direct", "CP.Refined", "CP.Unified"),
thresh1 = FALSE,
thresh2 = FALSE,
thresh3 = FALSE,
delta1 = 2 * sqrt(log(dim(Y)[2] * dim(Y)[3])/dim(Y)[1]),
delta2 = delta1,
delta3 = delta1

)

Arguments

Y An n × p × q array, where n is the number of observations of the p × q matrix
time series {Yt}nt=1.

xi An n× 1 vector ξ = (ξ1, . . . , ξn)
′, where ξt represents a linear combination of

Yt. If xi = NULL (the default), ξt is determined by the PCA method introduced
in Section 5.1 of Chang et al. (2023). Otherwise, xi can be given by the users.

Rank A list containing the following components: d representing the number of columns
of A and B, d1 representing the rank of A, and d2 representing the rank of B.
If set to NULL (default), d, d1, and d2 will be estimated. Otherwise, they can be
given by the users.

6 CP_MTS

lag.k The time lag K used to calculate the nonnegative definite matrices M̂1 and M̂2

when method = "CP.Refined" or method = "CP.Unified":

M̂1 =

K∑
k=1

Σ̂kΣ̂
′
k and M̂2 =

K∑
k=1

Σ̂′
kΣ̂k ,

where Σ̂k is an estimate of the cross-covariance between Yt and ξt at lag k. See
’Details’. The default is 20.

lag.ktilde The time lag K̃ involved in the unified estimation method [See (16) in Chang et
al. (2024)], which is used when method = "CP.Unified". The default is 10.

method A string indicating which CP-decomposition method is used. Available op-
tions include: "CP.Direct" (the default) for the direct estimation method [See
Section 3.1 of Chang et al. (2023)], "CP.Refined" for the refined estimation
method [See Section 3.2 of Chang et al. (2023)], and "CP.Unified" for the
unified estimation method [See Section 4 of Chang et al. (2024)]. The va-
lidity of methods "CP.Direct" and "CP.Refined" depends on the assumption
d1 = d2 = d. When d1, d2 ≤ d, the method "CP.Unified" can be applied. See
Chang et al. (2024) for details.

thresh1 Logical. If FALSE (the default), no thresholding will be applied in Σ̂k, which
indicates that the threshold level δ1 = 0. If TRUE, δ1 will be set through delta1.
thresh1 is used for all three methods. See ’Details’.

thresh2 Logical. If FALSE (the default), no thresholding will be applied in Σ̌k, which
indicates that the threshold level δ2 = 0. If TRUE, δ2 will be set through delta2.
thresh2 is used only when method = "CP.Refined". See ’Details’.

thresh3 Logical. If FALSE (the default), no thresholding will be applied in Σ⃗k, which
indicates that the threshold level δ3 = 0. If TRUE, δ3 will be set through delta3.
thresh3 is used only when method = "CP.Unified". See ’Details’.

delta1 The value of the threshold level δ1. The default is δ1 = 2
√
n−1 log(pq).

delta2 The value of the threshold level δ2. The default is δ2 = 2
√
n−1 log(pq).

delta3 The value of the threshold level δ3. The default is δ3 = 2
√
n−1 log(pq).

Details

All three CP-decomposition methods involve the estimation of the autocovariance of Yt and ξt at
lag k, which is defined as follows:

Σ̂k = Tδ1{Σ̂Y,ξ(k)} with Σ̂Y,ξ(k) =
1

n− k

n∑
t=k+1

(Yt − Ȳ)(ξt−k − ξ̄) ,

where Ȳ = n−1
∑n

t=1 Yt, ξ̄ = n−1
∑n

t=1 ξt and Tδ1(·) is a threshold operator defined as Tδ1(W) =
{wi,j1(|wi,j | ≥ δ1)} for any matrix W = (wi,j), with the threshold level δ1 ≥ 0 and 1(·) rep-
resenting the indicator function. Chang et al. (2023) and Chang et al. (2024) suggest to choose
δ1 = 0 when p, q are fixed and δ1 > 0 when pq ≫ n.

The refined estimation method involves

Σ̌k = Tδ2{Σ̂Y̌(k)} with Σ̂Y̌(k) =
1

n− k

n∑
t=k+1

(Yt − Ȳ)⊗ vec(Yt−k − Ȳ) ,

CP_MTS 7

where Tδ2(·) is a threshold operator with the threshold level δ2 ≥ 0, and vec(·) is a vecterization
operator with vec(H) being the (m1m2)×1 vector obtained by stacking the columns of the m1×m2

matrix H. See Section 3.2.2 of Chang et al. (2023) for details.

The unified estimation method involves

Σ⃗k = Tδ3{Σ̂Y⃗(k)} with Σ̂Y⃗(k) =
1

n− k

n∑
t=k+1

vec(Yt − Ȳ){vec(Yt−k − Ȳ)}′ ,

where Tδ3(·) is a threshold operator with the threshold level δ3 ≥ 0. See Section 4.2 of Chang et al.
(2024) for details.

Value

An object of class "mtscp", which contains the following components:

A The estimated p× d̂ left loading matrix Â.

B The estimated q × d̂ right loading matrix B̂.

f The estimated latent process x̂t,1, . . . , x̂t,d̂.

Rank The estimated d̂1, d̂2, and d̂.

method A string indicating which CP-decomposition method is used.

References

Chang, J., Du, Y., Huang, G., & Yao, Q. (2024). Identification and estimation for matrix time series
CP-factor models. arXiv preprint. doi:10.48550/arXiv.2410.05634.

Chang, J., He, J., Yang, L., & Yao, Q. (2023). Modelling matrix time series via a tensor CP-
decomposition. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85, 127–
148. doi:10.1093/jrsssb/qkac011.

Examples

Example 1.
p <- 10
q <- 10
n <- 400
d = d1 = d2 <- 3
DGP.CP() generates simulated data for the example in Chang et al. (2024).
data <- DGP.CP(n, p, q, d, d1, d2)
Y <- data$Y

d is unknown
res1 <- CP_MTS(Y, method = "CP.Direct")
res2 <- CP_MTS(Y, method = "CP.Refined")
res3 <- CP_MTS(Y, method = "CP.Unified")

d is known
res4 <- CP_MTS(Y, Rank = list(d = 3), method = "CP.Direct")
res5 <- CP_MTS(Y, Rank = list(d = 3), method = "CP.Refined")

https://doi.org/10.48550/arXiv.2410.05634
https://doi.org/10.1093/jrsssb/qkac011

8 DGP.CP

Example 2.
p <- 10
q <- 10
n <- 400
d1 = d2 <- 2
d <-3
data <- DGP.CP(n, p, q, d, d1, d2)
Y1 <- data$Y

d, d1 and d2 are unknown
res6 <- CP_MTS(Y1, method = "CP.Unified")
d, d1 and d2 are known
res7 <- CP_MTS(Y1, Rank = list(d = 3, d1 = 2, d2 = 2), method = "CP.Unified")

DGP.CP Generating simulated data for the example in Chang et al. (2024)

Description

DGP.CP() function generates simulated data following the data generating process described in
Section 7.1 of Chang et al. (2024).

Usage

DGP.CP(n, p, q, d, d1, d2)

Arguments

n Integer. The number of observations of the p× q matrix time series Yt.

p Integer. The number of rows of Yt.

q Integer. The number of columns of Yt.

d Integer. The number of columns of the factor loading matrices A and B.

d1 Integer. The rank of the p× d matrix A.

d2 Integer. The rank of the q × d matrix B.

Details

We generate
Yt = AXtB

′ + ϵt

for any t = 1, . . . , n, where Xt = diag(xt) with xt = (xt,1, . . . , xt,d)
′ being a d × 1 time series,

ϵt is a p × q matrix white noise, and A and B are, respectively, p × d and q × d factor loading
matrices. A, Xt, and B are generated based on the data generating process described in Section 7.1
of Chang et al. (2024) and satisfy rank(A) = d1 and rank(B) = d2, 1 ≤ d1, d2 ≤ d.

Factors 9

Value

A list containing the following components:

Y An n× p× q array.

A The p× d left loading matrix A.

B The q × d right loading matrix B.

X An n× d× d array.

References

Chang, J., Du, Y., Huang, G., & Yao, Q. (2024). Identification and estimation for matrix time series
CP-factor models. arXiv preprint. doi:10.48550/arXiv.2410.05634.

See Also

CP_MTS.

Examples

p <- 10
q <- 10
n <- 400
d = d1 = d2 <- 3
data <- DGP.CP(n,p,q,d1,d2,d)
Y <- data$Y

The first observation: Y_1
Y[1, ,]

Factors Factor analysis for vector time series

Description

Factors() deals with factor modeling for high-dimensional time series proposed in Lam and Yao
(2012):

yt = Axt + ϵt,

where xt is an r × 1 latent process with (unknown) r ≤ p, A is a p× r unknown constant matrix,
and ϵt is a vector white noise process. The number of factors r and the factor loadings A can be
estimated in terms of an eigenanalysis for a nonnegative definite matrix, and is therefore applicable
when the dimension of yt is on the order of a few thousands. This function aims to estimate the
number of factors r and the factor loading matrix A.

https://doi.org/10.48550/arXiv.2410.05634

10 Factors

Usage

Factors(
Y,
lag.k = 5,
thresh = FALSE,
delta = 2 * sqrt(log(ncol(Y))/nrow(Y)),
twostep = FALSE

)

Arguments

Y An n × p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the obser-

vations of the p× 1 time series {yt}nt=1.

lag.k The time lag K used to calculate the nonnegative definite matrix M̂:

M̂ =

K∑
k=1

Tδ{Σ̂y(k)}Tδ{Σ̂y(k)}′ ,

where Σ̂y(k) is the sample autocovariance of yt at lag k and Tδ(·) is a threshold
operator with the threshold level δ ≥ 0. See ’Details’. The default is 5.

thresh Logical. If thresh = FALSE (the default), no thresholding will be applied to
estimate M̂. If thresh = TRUE, δ will be set through delta.

delta The value of the threshold level δ. The default is δ = 2
√

n−1 log p.

twostep Logical. If twostep = FALSE (the default), the standard procedure [See Section
2.2 in Lam and Yao (2012)] for estimating r and A will be implemented. If
twostep = TRUE, the two-step estimation procedure [See Section 4 in Lam and
Yao (2012)] for estimating r and A will be implemented.

Details

The threshold operator Tδ(·) is defined as Tδ(W) = {wi,j1(|wi,j | ≥ δ)} for any matrix W =
(wi,j), with the threshold level δ ≥ 0 and 1(·) representing the indicator function. We recommend
to choose δ = 0 when p is fixed and δ > 0 when p ≫ n.

Value

An object of class "factors", which contains the following components:

factor_num The estimated number of factors r̂.

loading.mat The estimated p× r̂ factor loading matrix Â.

X The n× r̂ matrix X̂ = (x̂1, . . . , x̂n)
′ with x̂t = Â′ŷt.

lag.k The time lag used in function.

References

Lam, C., & Yao, Q. (2012). Factor modelling for high-dimensional time series: Inference for the
number of factors. The Annals of Statistics, 40, 694–726. doi:10.1214/12AOS970.

https://doi.org/10.1214/12-AOS970

FamaFrench 11

Examples

Example 1 (Example in Section 3.3 of lam and Yao 2012)
Generate y_t
p <- 200
n <- 400
r <- 3
X <- mat.or.vec(n, r)
A <- matrix(runif(p*r, -1, 1), ncol=r)
x1 <- arima.sim(model=list(ar=c(0.6)), n=n)
x2 <- arima.sim(model=list(ar=c(-0.5)), n=n)
x3 <- arima.sim(model=list(ar=c(0.3)), n=n)
eps <- matrix(rnorm(n*p), p, n)
X <- t(cbind(x1, x2, x3))
Y <- A %*% X + eps
Y <- t(Y)

fac <- Factors(Y,lag.k=2)
r_hat <- fac$factor_num
loading_Mat <- fac$loading.mat

FamaFrench Fama-French 10*10 return series

Description

The portfolios are constructed by the intersections of 10 levels of size, denoted by S1, . . . ,S10,
and 10 levels of the book equity to market equity ratio (BE), denoted by BE1, . . . ,BE10. The
dataset consists of monthly returns from January 1964 to December 2021, which contains 69600
observations for 696 total months.

Usage

data(FamaFrench)

Format

A data frame with 696 rows and 102 columns. The first column represents the month, and the
second column named MKT.RF represents the monthly market returns. The rest of the columns
represent the return series for different sizes and BE-ratios.

Source

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

12 HDSReg

HDSReg Factor analysis with observed regressors for vector time series

Description

HDSReg() considers a multivariate time series model which represents a high-dimensional vector
process as a sum of three terms: a linear regression of some observed regressors, a linear combina-
tion of some latent and serially correlated factors, and a vector white noise:

yt = Dzt +Axt + ϵt,

where yt and zt are, respectively, observable p×1 and m×1 time series, xt is an r×1 latent factor
process, ϵt is a vector white noise process, D is an unknown regression coefficient matrix, and A is
an unknown factor loading matrix. This procedure proposed in Chang, Guo and Yao (2015) aims to
estimate the regression coefficient matrix D, the number of factors r and the factor loading matrix
A.

Usage

HDSReg(
Y,
Z,
D = NULL,
lag.k = 5,
thresh = FALSE,
delta = 2 * sqrt(log(ncol(Y))/nrow(Y)),
twostep = FALSE

)

Arguments

Y An n × p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the obser-

vations of the p× 1 time series {yt}nt=1.

Z An n×m data matrix Z = (z1, . . . , zn)
′ consisting of the observed regressors.

D A p×m regression coefficient matrix D̃. If D = NULL (the default), our procedure
will estimate D first and let D̃ be the estimate of D. If D is given by the users,
then D̃ = D.

lag.k The time lag K used to calculate the nonnegative definte matrix M̂η:

M̂η =

K∑
k=1

Tδ{Σ̂η(k)}Tδ{Σ̂η(k)}′,

where Σ̂η(k) is the sample autocovariance of ηt = yt − D̃zt at lag k and Tδ(·)
is a threshold operator with the threshold level δ ≥ 0. See ’Details’. The default
is 5.

HDSReg 13

thresh Logical. If thresh = FALSE (the default), no thresholding will be applied to
estimate M̂η . If thresh = TRUE, δ will be set through delta. See ’Details’.

delta The value of the threshold level δ. The default is δ = 2
√

n−1 log p.

twostep Logical. The same as the argument twostep in Factors.

Details

The threshold operator Tδ(·) is defined as Tδ(W) = {wi,j1(|wi,j | ≥ δ)} for any matrix W =
(wi,j), with the threshold level δ ≥ 0 and 1(·) representing the indicator function. We recommend
to choose δ = 0 when p is fixed and δ > 0 when p ≫ n.

Value

An object of class "factors", which contains the following components:

factor_num The estimated number of factors r̂.

reg.coff.mat The estimated p×m regression coefficient matrix D̃.

loading.mat The estimated p× r̂ factor loading matrix Â.

X The n× r̂ matrix X̂ = (x̂1, . . . , x̂n)
′ with x̂t = Â′(yt − D̃zt).

lag.k The time lag used in function.

References

Chang, J., Guo, B., & Yao, Q. (2015). High dimensional stochastic regression with latent factors,
endogeneity and nonlinearity. Journal of Econometrics, 189, 297–312. doi:10.1016/j.jeconom.2015.03.024.

See Also

Factors.

Examples

Example 1 (Example 1 in Chang, Guo and Yao (2015)).
Generate xt
n <- 400
p <- 200
m <- 2
r <- 3
X <- mat.or.vec(n,r)
x1 <- arima.sim(model = list(ar = c(0.6)), n = n)
x2 <- arima.sim(model = list(ar = c(-0.5)), n = n)
x3 <- arima.sim(model = list(ar = c(0.3)), n = n)
X <- cbind(x1, x2, x3)
X <- t(X)

Generate yt
Z <- mat.or.vec(m,n)
S1 <- matrix(c(5/8, 1/8, 1/8, 5/8), 2, 2)
Z[,1] <- c(rnorm(m))

https://doi.org/10.1016/j.jeconom.2015.03.024

14 IPindices

for(i in c(2:n)){
Z[,i] <- S1%*%Z[, i-1] + c(rnorm(m))

}
D <- matrix(runif(p*m, -2, 2), ncol = m)
A <- matrix(runif(p*r, -2, 2), ncol = r)
eps <- mat.or.vec(n, p)
eps <- matrix(rnorm(n*p), p, n)
Y <- D %*% Z + A %*% X + eps
Y <- t(Y)
Z <- t(Z)

D is known
res1 <- HDSReg(Y, Z, D, lag.k = 2)
D is unknown
res2 <- HDSReg(Y, Z, lag.k = 2)

IPindices U.S. Industrial Production indices

Description

The dataset consists of 7 monthly U.S. Industrial Production indices, namely the total index, nonin-
dustrial supplies, final products, manufacturing, materials, mining, and utilities, from January 1947
to December 2023 published by the U.S. Federal Reserve.

Usage

data(IPindices)

Format

A data frame with 924 rows and 8 variables:

DATE The observation date

INDPRO The total index

IPB54000S Nonindustrial supplies

IPFINAL Final products

IPMANSICS Manufacturing

IPMAT Materials

IPMINE Mining

IPUTIL Utilities

Source

https://fred.stlouisfed.org/release/tables?rid=13&eid=49670

https://fred.stlouisfed.org/release/tables?rid=13&eid=49670

MartG_test 15

MartG_test Testing for martingale difference hypothesis in high dimension

Description

MartG_test() implements a new test proposed in Chang, Jiang and Shao (2023) for the following
hypothesis testing problem:

H0 : {yt}nt=1 is a MDS versus H1 : {yt}nt=1 is not a MDS ,

where MDS is the abbreviation of "martingale difference sequence".

Usage

MartG_test(
Y,
lag.k = 2,
B = 1000,
type = c("Linear", "Quad"),
alpha = 0.05,
kernel.type = c("QS", "Par", "Bart")

)

Arguments

Y An n × p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the obser-

vations of the p× 1 time series {yt}nt=1.

lag.k The time lag K used to calculate the test statistic [See (3) in Chang, Jiang and
Shao (2023)]. The default is 2.

B The number of bootstrap replications for generating multivariate normally dis-
tributed random vectors when calculating the critical value. The default is 1000.

type The map used for constructing the test statistic. Available options include:
"Linear" (the default) for the linear identity map and "Quad" for the map in-
cluding both linear and quadratic terms. type can also be set by the users. See
’Details’ and Section 2.1 of Chang, Jiang and Shao (2023) for more information.

alpha The significance level of the test. The default is 0.05.

kernel.type The option for choosing the symmetric kernel used in the estimation of long-
run covariance matrix. Available options include: "QS" (the default) for the
Quadratic spectral kernel, "Par" for the Parzen kernel, and "Bart" for the
Bartlett kernel. See Chang, Jiang and Shao (2023) for more information.

Details

Write x = (x1, . . . , xp)
′. When type = "Linear", the linear identity map is defined as ϕ(x) = x.

When type = "Quad", ϕ(x) = {x′, (x2)′}′ includes both linear and quadratic terms, where x2 =
(x2

1, . . . , x
2
p)

′.

16 MartG_test

We can also choose ϕ(x) = cos(x) to capture certain type of nonlinear dependence, where cos(x) =
(cosx1, . . . , cosxp)

′.

See ’Examples’.

Value

An object of class "hdtstest", which contains the following components:

statistic The test statistic of the test.

p.value The p-value of the test.

lag.k The time lag used in function.

type The map used in function.

kernel.type The kernel used in function.

References

Chang, J., Jiang, Q., & Shao, X. (2023). Testing the martingale difference hypothesis in high
dimension. Journal of Econometrics, 235, 972–1000. doi:10.1016/j.jeconom.2022.09.001.

Examples

Example 1
n <- 200
p <- 10
X <- matrix(rnorm(n*p),n,p)

res <- MartG_test(X, type="Linear")
res <- MartG_test(X, type=cbind(X, X^2)) #the same as type = "Quad"

map can also be defined as an expression in R.
res <- MartG_test(X, type=quote(cbind(X, X^2))) # expr using quote()
res <- MartG_test(X, type=substitute(cbind(X, X^2))) # expr using substitute()
res <- MartG_test(X, type=expression(cbind(X, X^2))) # expr using expression()
res <- MartG_test(X, type=parse(text="cbind(X, X^2)")) # expr using parse()

map can also be defined as a function in R.
map_fun <- function(X) {X <- cbind(X, X^2); X}

res <- MartG_test(X, type=map_fun)
Pvalue <- res$p.value
rej <- res$reject

https://doi.org/10.1016/j.jeconom.2022.09.001

PCA_TS 17

PCA_TS Principal component analysis for vector time series

Description

PCA_TS() seeks for a contemporaneous linear transformation for a multivariate time series such that
the transformed series is segmented into several lower-dimensional subseries:

yt = Axt,

where xt is an unobservable p× 1 weakly stationary time series consisting of q (≥ 1) both contem-
poraneously and serially uncorrelated subseries. See Chang, Guo and Yao (2018).

Usage

PCA_TS(
Y,
lag.k = 5,
opt = 1,
permutation = c("max", "fdr"),
thresh = FALSE,
delta = 2 * sqrt(log(ncol(Y))/nrow(Y)),
prewhiten = TRUE,
m = NULL,
beta,
control = list()

)

Arguments

Y An n×p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the observa-

tions of the p× 1 time series {yt}nt=1. The procedure will first normalize yt as
V̂−1/2yt, where V̂ is an estimator for covariance of yt. See details below for
the selection of V̂−1.

lag.k The time lag K used to calculate the nonnegative definte matrix Ŵy:

Ŵy = Ip +

K∑
k=1

Tδ{Σ̂y(k)}Tδ{Σ̂y(k)}′,

where Σ̂y(k) is the sample autocovariance of V̂−1/2yt at lag k and Tδ(·) is a
threshold operator with the threshold level δ ≥ 0. See ’Details’. The default is
5.

opt An option used to choose which method will be implemented to get a consistent
estimate V̂ (or V̂−1) for the covariance (precision) matrix of yt. If opt = 1, V̂
will be defined as the sample covariance matrix. If opt = 2, the precision matrix
V̂−1 will be calculated by using the function clime() of clime (Cai, Liu and
Luo, 2011) with the arguments passed by control.

18 PCA_TS

permutation The method of permutation procedure to assign the components of ẑt to different
groups [See Section 2.2.1 in Chang, Guo and Yao (2018)]. Available options in-
clude: "max" (the default) for the maximum cross correlation method and "fdr"
for the false discovery rate procedure based on multiple tests. See Sections 2.2.2
and 2.2.3 in Chang, Guo and Yao (2018) for more information.

thresh Logical. If thresh = FALSE (the default), no thresholding will be applied to
estimate Ŵy . If thresh = TRUE, the argument delta is used to specify the
threshold level δ.

delta The value of the threshold level δ. The default is δ = 2
√
n−1 log p.

prewhiten Logical. If TRUE (the default), we prewhiten each transformed component series
of ẑt [See Section 2.2.1 in Chang, Guo and Yao (2018)] by fitting a univariate
AR model with the order between 0 and 5 determined by AIC. If FALSE, then
the prewhiten procedure will not be performed.

m A positive integer used in the permutation procedure [See (2.10) in Chang, Guo
and Yao (2018)]. The default is 10.

beta The error rate used in the permutation procedure[See (2.16) in Chang, Guo and
Yao (2018)] when permutation = "fdr".

control A list of control arguments. See ‘Details’.

Details

The threshold operator Tδ(·) is defined as Tδ(W) = {wi,j1(|wi,j | ≥ δ)} for any matrix W =
(wi,j), with the threshold level δ ≥ 0 and 1(·) representing the indicator function. We recommend
to choose δ = 0 when p is fixed and δ > 0 when p ≫ n.

For large p, since the sample covariance matrix may not be consistent, we recommend to use the
method proposed in Cai, Liu and Luo (2011) to estimate the precision matrix V̂−1 (opt = 2).

control is a list of arguments passed to the function clime(), which contains the following com-
ponents:

• nlambda: Number of values for program generated lambda. The default is 100.

• lambda.max: Maximum value of program generated lambda. The default is 0.8.

• lambda.min: Minimum value of program generated lambda. The default is 10−4 (n > p) or
10−2 (n < p).

• standardize: Logical. If standardize = TRUE, the variables will be standardized to have
mean zero and unit standard deviation. The default is FALSE.

• linsolver: An option used to choose which method should be employed. Available options
include "primaldual" (the default) and "simplex". Rule of thumb: "primaldual" for large
p, "simplex" for small p.

Value

An object of class "tspca", which contains the following components:

B The p×p transformation matrix B̂ = Γ̂′
yV̂

−1/2, where Γ̂y is a p×p orthogonal
matrix with the columns being the eigenvectors of Ŵy .

PCA_TS 19

X The n× p matrix X̂ = (x̂1, . . . , x̂n)
′ with x̂t = B̂yt.

NoGroups The number of groups.

No_of_Members The number of members in each group.

Groups The indices of the components of x̂t that belong to each group.

method A string indicating which permutation procedure is performed.

References

Cai, T., Liu, W., & Luo, X. (2011). A constrained L1 minimization approach for sparse precision
matrix estimation. Journal of the American Statistical Association, 106, 594–607. doi:10.1198/
jasa.2011.tm10155.

Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary
vector time series. The Annals of Statistics, 46, 2094–2124. doi:10.1214/17AOS1613.

Examples

Example 1 (Example 1 in the supplementary material of Chang, Guo and Yao (2018)).
p=6, x_t consists of 3 independent subseries with 3, 2 and 1 components.

Generate x_t
p <- 6;n <- 1500
X <- mat.or.vec(p,n)
x <- arima.sim(model = list(ar = c(0.5, 0.3), ma = c(-0.9, 0.3, 1.2,1.3)),
n = n+2, sd = 1)
for(i in 1:3) X[i,] <- x[i:(n+i-1)]
x <- arima.sim(model = list(ar = c(0.8,-0.5),ma = c(1,0.8,1.8)), n = n+1, sd = 1)
for(i in 4:5) X[i,] <- x[(i-3):(n+i-4)]
x <- arima.sim(model = list(ar = c(-0.7, -0.5), ma = c(-1, -0.8)), n = n, sd = 1)
X[6,] <- x

Generate y_t
A <- matrix(runif(p*p, -3, 3), ncol = p)
Y <- A%*%X
Y <- t(Y)

permutation = "max" or permutation = "fdr"
res <- PCA_TS(Y, lag.k = 5,permutation = "max")
res1 <- PCA_TS(Y, lag.k = 5,permutation = "fdr", beta = 10^(-10))
Z <- res$X

Example 2 (Example 2 in the supplementary material of Chang, Guo and Yao (2018)).
p=20, x_t consists of 5 independent subseries with 6, 5, 4, 3 and 2 components.

Generate x_t
p <- 20;n <- 3000
X <- mat.or.vec(p,n)
x <- arima.sim(model = list(ar = c(0.5, 0.3), ma = c(-0.9, 0.3, 1.2, 1.3)),
n.start = 500, n = n+5, sd = 1)
for(i in 1:6) X[i,] <- x[i:(n+i-1)]

https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1214/17-AOS1613

20 predict.factors

x <- arima.sim(model = list(ar = c(-0.4, 0.5), ma = c(1, 0.8, 1.5, 1.8)),
n.start = 500, n = n+4, sd = 1)
for(i in 7:11) X[i,] <- x[(i-6):(n+i-7)]
x <- arima.sim(model = list(ar = c(0.85,-0.3), ma=c(1, 0.5, 1.2)),
n.start = 500, n = n+3,sd = 1)
for(i in 12:15) X[i,] <- x[(i-11):(n+i-12)]
x <- arima.sim(model = list(ar = c(0.8, -0.5),ma = c(1, 0.8, 1.8)),
n.start = 500, n = n+2,sd = 1)
for(i in 16:18) X[i,] <- x[(i-15):(n+i-16)]
x <- arima.sim(model = list(ar = c(-0.7, -0.5), ma = c(-1, -0.8)),
n.start = 500,n = n+1,sd = 1)
for(i in 19:20) X[i,] <- x[(i-18):(n+i-19)]

Generate y_t
A <- matrix(runif(p*p, -3, 3), ncol =p)
Y <- A%*%X
Y <- t(Y)

permutation = "max" or permutation = "fdr"
res <- PCA_TS(Y, lag.k = 5,permutation = "max")
res1 <- PCA_TS(Y, lag.k = 5,permutation = "fdr",beta = 10^(-200))
Z <- res$X

predict.factors Make predictions from a "factors" object

Description

This function makes predictions from a "factors" object.

Usage

S3 method for class 'factors'
predict(
object,
newdata = NULL,
n.ahead = 10,
control_ARIMA = list(),
control_VAR = list(),
...

)

Arguments

object An object of class "factors" constructed by Factors.

newdata Optional. A new data matrix to predict from.

n.ahead An integer specifying the number of steps ahead for prediction.

predict.mtscp 21

control_ARIMA A list of arguments passed to the function auto.arima() of forecast. See ’De-
tails’ and the manual of auto.arima(). The default is list(ic = "aic").

control_VAR A list of arguments passed to the function VAR() of vars. See ’Details’ and
the manual of VAR(). The default is list(type = "const", lag.max = 6, ic =
"AIC").

... Currently not used.

Details

Forecasting for yt can be implemented in two steps:

Step 1. Get the h-step ahead forecast of the r̂ × 1 time series x̂t [See Factors], denoted by x̂n+h,
using a VAR model (if r̂ > 1) or an ARIMA model (if r̂ = 1). The orders of VAR and ARIMA
models are determined by AIC by default. Otherwise, they can also be specified by users through
the arguments control_VAR and control_ARIMA, respectively.

Step 2. The forecasted value for yt is obtained by ŷn+h = Âx̂n+h.

Value

ts_pred A matrix of predicted values.

See Also

Factors

Examples

library(HDTSA)
data(FamaFrench, package = "HDTSA")

Remove the market effects
reg <- lm(as.matrix(FamaFrench[, -c(1:2)]) ~ as.matrix(FamaFrench$MKT.RF))
Y_2d = reg$residuals

res_factors <- Factors(Y_2d, lag.k = 5)
pred_fac_Y <- predict(res_factors, n.ahead = 1)

predict.mtscp Make predictions from a "mtscp" object

Description

This function makes predictions from a "mtscp" object.

22 predict.mtscp

Usage

S3 method for class 'mtscp'
predict(
object,
newdata = NULL,
n.ahead = 10,
control_ARIMA = list(),
control_VAR = list(),
...

)

Arguments

object An object of class "mtscp" constructed by CP_MTS.

newdata Optional. A new data matrix to predict from.

n.ahead An integer specifying the number of steps ahead for prediction.

control_ARIMA A list of arguments passed to the function auto.arima() of forecast. See ’De-
tails’ and the manual of auto.arima(). The default is list(ic = "aic").

control_VAR A list of arguments passed to the function VAR() of vars. See ’Details’ and
the manual of VAR(). The default is list(type = "const", lag.max = 6, ic =
"AIC").

... Currently not used.

Details

Forecasting for yt can be implemented in two steps:

Step 1. Get the h-step ahead forecast of the d̂ × 1 time series x̂t = (x̂t,1, . . . , x̂t,d̂)
′ [See CP_MTS],

denoted by x̂n+h, using a VAR model (if d̂ > 1) or an ARIMA model (if d̂ = 1). The orders of
VAR and ARIMA models are determined by AIC by default. Otherwise, they can also be specified
by users through the arguments control_VAR and control_ARIMA, respectively.

Step 2. The forecasted value for Yt is obtained by Ŷn+h = ÂX̂n+hB̂
′ with X̂n+h = diag(x̂n+h).

Value

Y_pred A list of length n.ahead, where each element is a p× q matrix representing the
predicted values at each time step.

See Also

CP_MTS

Examples

library(HDTSA)
data(FamaFrench, package = "HDTSA")

Remove the market effects

predict.tspca 23

reg <- lm(as.matrix(FamaFrench[, -c(1:2)]) ~ as.matrix(FamaFrench$MKT.RF))
Y_2d = reg$residuals

Rearrange Y_2d into a 3-dimensional array Y
Y = array(NA, dim = c(NROW(Y_2d), 10, 10))
for (tt in 1:NROW(Y_2d)) {

for (ii in 1:10) {
Y[tt, ii,] <- Y_2d[tt, (1 + 10*(ii - 1)):(10 * ii)]

}
}

res_cp <- CP_MTS(Y, lag.k = 20, method = "CP.Refined")
pred_cp_Y <- predict(res_cp, n.ahead = 1)[[1]]

predict.tspca Make predictions from a "tspca" object

Description

This function makes predictions from a "tspca" object.

Usage

S3 method for class 'tspca'
predict(
object,
newdata = NULL,
n.ahead = 10,
control_ARIMA = list(),
control_VAR = list(),
...

)

Arguments

object An object of class "tspca" constructed by PCA_TS.

newdata Optional. A new data matrix to predict from.

n.ahead An integer specifying the number of steps ahead for prediction.

control_ARIMA A list of arguments passed to the function auto.arima() of forecast. See ’De-
tails’ and the manual of auto.arima(). The default is list(max.d = 0, max.q
= 0, ic = "aic").

control_VAR A list of arguments passed to the function VAR() of vars. See ’Details’ and
the manual of VAR(). The default is list(type = "const", lag.max = 6, ic =
"AIC").

... Currently not used.

24 QWIdata

Details

Having obtained x̂t using the PCA_TS function, which is segmented into q uncorrelated subseries
x̂
(1)
t , . . . , x̂

(q)
t , the forecasting for yt can be performed in two steps:

Step 1. Get the h-step ahead forecast x̂(j)
n+h (j = 1, . . . , q) by using a VAR model (if the dimension

of x̂(j)
t is larger than 1) or an ARIMA model (if the dimension of x̂(j)

t is 1). The orders of VAR and
ARIMA models are determined by AIC by default. Otherwise, they can also be specified by users
through the arguments control_VAR and control_ARIMA, respectively.

Step 2. Let x̂n+h = ({x̂(1)
n+h}′, . . . , {x̂

(q)
n+h}′)′. The forecasted value for yt is obtained by ŷn+h =

B̂−1x̂n+h.

Value

Y_pred A matrix of predicted values.

See Also

PCA_TS

Examples

library(HDTSA)
data(FamaFrench, package = "HDTSA")

Remove the market effects
reg <- lm(as.matrix(FamaFrench[, -c(1:2)]) ~ as.matrix(FamaFrench$MKT.RF))
Y_2d = reg$residuals

res_pca <- PCA_TS(Y_2d, lag.k = 5, thresh = TRUE)
pred_pca_Y <- predict(res_pca, n.ahead = 1)

QWIdata The national QWI hires data

Description

The data on new hires at a national level are obtained from the Quarterly Workforce Indicators
(QWI) of the Longitudinal Employer-Household Dynamics program at the U.S. Census Bureau
(Abowd et al., 2009). The national QWI hires data covers a variable number of years, with some
states providing time series going back to 1990 (e.g., Washington), and others (e.g., Massachusetts)
only commencing at 2010. For each of 51 states (excluding D.C. but including Puerto Rico) there is
a new hires time series for each county. Additional description of the data, along with its relevancy
to labor economics, can be found in Hyatt and McElroy (2019).

SpecMulTest 25

Usage

data(QWIdata)

Format

A list with 51 elements. Every element contains a multivariate time series.

Source

https://qwiexplorer.ces.census.gov/

https://ledextract.ces.census.gov/qwi/all

References

Abowd, J. M., Stephens, B. E., Vilhuber, L., Andersson, F., McKinney, K. L., Roemer, M., and
Woodcock, S. (2009). The LEHD infrastructure files and the creation of the quarterly workforce
indicators. In Producer dynamics: New evidence from micro data, pages 149–230. University of
Chicago Press. doi:10.7208/chicago/9780226172576.003.0006.

Hyatt, H. R. and McElroy, T. S. (2019). Labor reallocation, employment, and earnings: Vector
autoregression evidence. Labour, 33, 463–487. doi:10.1111/labr.12153

SpecMulTest Multiple testing with FDR control for spectral density matrix

Description

SpecMulTest() implements a new multiple testing procedure proposed in Chang et al. (2022) for
the following Q hypothesis testing problems:

H0,q : fi,j(ω) = 0 for any (i, j) ∈ I(q) and ω ∈ J (q) versus H1,q : H0,q is not true

for q = 1, . . . , Q. Here, fi,j(ω) represents the cross-spectral density between xt,i and xt,j at
frequency ω with xt,i being the i-th component of the p×1 times series xt, and I(q) and J (q) refer
to the set of index pairs and the set of frequencies associated with the q-th test, respectively.

Usage

SpecMulTest(Q, PVal, alpha = 0.05, seq_len = 0.01)

Arguments

Q The number of the hypothesis tests.

PVal A vector of length Q representing p-values of the Q hypothesis tests.

alpha The prescribed level for the FDR control. The default is 0.05.

seq_len The step size for generating a sequence from 0 to
√
2× logQ− 2× log(logQ).

The default is 0.01.

https://qwiexplorer.ces.census.gov/
https://ledextract.ces.census.gov/qwi/all
https://doi.org/10.7208/chicago/9780226172576.003.0006
https://doi.org/10.1111/labr.12153

26 SpecMulTest

Value

An object of class "hdtstest", which contains the following component:

MultiTest A logical vector of length Q. If its q-th element is TRUE, it indicates that H0,q

should be rejected. Otherwise, H0,q should not be rejected.

References

Chang, J., Jiang, Q., McElroy, T. S., & Shao, X. (2022). Statistical inference for high-dimensional
spectral density matrix. arXiv preprint. doi:10.48550/arXiv.2212.13686.

See Also

SpecTest

Examples

Example 1
Generate xt
n <- 200
p <- 10
flag_c <- 0.8
B <- 1000
burn <- 1000
z.sim <- matrix(rnorm((n+burn)*p),p,n+burn)
phi.mat <- 0.4*diag(p)
x.sim <- phi.mat %*% z.sim[,(burn+1):(burn+n)]
x <- x.sim - rowMeans(x.sim)
Q <- 4

Generate the sets Iq and Jq
ISET <- list()
ISET[[1]] <- matrix(c(1,2),ncol=2)
ISET[[2]] <- matrix(c(1,3),ncol=2)
ISET[[3]] <- matrix(c(1,4),ncol=2)
ISET[[4]] <- matrix(c(1,5),ncol=2)
JSET <- as.list(2*pi*seq(0,3)/4 - pi)

Calculate Q p-values
PVal <- rep(NA,Q)
for (q in 1:Q) {

cross.indices <- ISET[[q]]
J.set <- JSET[[q]]
temp.q <- SpecTest(t(x), J.set, cross.indices, B, flag_c)
PVal[q] <- temp.q$p.value

}
res <- SpecMulTest(Q, PVal)
res

https://doi.org/10.48550/arXiv.2212.13686

SpecTest 27

SpecTest Global testing for spectral density matrix

Description

SpecTest() implements a new global test proposed in Chang et al. (2022) for the following hy-
pothesis testing problem:

H0 : fi,j(ω) = 0 for any (i, j) ∈ I and ω ∈ J versus H1 : H0 is not true ,

where fi,j(ω) represents the cross-spectral density between xt,i and xt,j at frequency ω with xt,i

being the i-th component of the p × 1 times series xt. Here, I is the set of index pairs of interest,
and J is the set of frequencies.

Usage

SpecTest(X, J.set, cross.indices, B = 1000, flag_c = 0.8)

Arguments

X An n×p data matrix X = (x1, . . . ,xn)
′, where n is the number of observations

of the p× 1 time series {xt}nt=1.

J.set A vector representing the set J of frequencies.

cross.indices An r×2 matrix representing the set I of r index pairs, where each row represents
an index pair.

B The number of bootstrap replications for generating multivariate normally dis-
tributed random vectors when calculating the critical value. The default is 2000.

flag_c The bandwidth c ∈ (0, 1] of the flat-top kernel for estimating fi,j(ω) [See (2) in
Chang et al. (2022)]. The default is 0.8.

Value

An object of class "hdtstest", which contains the following components:

Stat The test statistic of the test.

pval The p-value of the test.

cri95 The critical value of the test at the significance level 0.05.

References

Chang, J., Jiang, Q., McElroy, T. S., & Shao, X. (2022). Statistical inference for high-dimensional
spectral density matrix. arXiv preprint. doi:10.48550/arXiv.2212.13686.

See Also

SpecMulTest

https://doi.org/10.48550/arXiv.2212.13686

28 UR_test

Examples

Example 1
Generate xt
n <- 200
p <- 10
flag_c <- 0.8
B <- 1000
burn <- 1000
z.sim <- matrix(rnorm((n+burn)*p),p,n+burn)
phi.mat <- 0.4*diag(p)
x.sim <- phi.mat %*% z.sim[,(burn+1):(burn+n)]
x <- x.sim - rowMeans(x.sim)

Generate the sets I and J
cross.indices <- matrix(c(1,2), ncol=2)
J.set <- 2*pi*seq(0,3)/4 - pi

res <- SpecTest(t(x), J.set, cross.indices, B, flag_c)
Stat <- res$statistic
Pvalue <- res$p.value
CriVal <- res$cri95

UR_test Testing for unit roots based on sample autocovariances

Description

This function implements the test proposed in Chang, Cheng and Yao (2022) for the following
hypothesis testing problem:

H0 : Yt ∼ I(0) versus H1 : Yt ∼ I(d) for some integer d ≥ 1 ,

where Yt is a univariate time series.

Usage

UR_test(Y, lagk.vec = NULL, con_vec = NULL, alpha = 0.05)

Arguments

Y A vector Y = (Y1, . . . , Yn)
′, where n is the number of the observations.

lagk.vec The time lag K0 used to calculate the test statistic [See Section 2.1 of Chang,
Cheng and Yao (2022)]. It can be a vector specifying multiple time lags. If
provided as a s×1 vector, the function will output the test results corresponding
to each of the s values in lagk.vec. The default is c(0, 1, 2, 3, 4).

con_vec The constant cκ specified in (5) of Chang, Cheng and Yao (2022). The default
is 0.55. Alternatively, it can be an m× 1 vector specified by users, representing
m candidate values of cκ.

alpha The significance level of the test. The default is 0.05.

WN_test 29

Value

An object of class "urtest", which contains the following components:

statistic A s× 1 vector with each element representing the test statistic value associated
with each of the s time lags specified in lagk.vec.

reject An m×s data matrix R = (Ri,j) where Ri,j represents whether the null hypoth-
esis H0 should be rejected for cκ specified by the i-th component of con_vec,
and K0 specified by the j-th component of lagk.vec. Ri,j = 1 indicates rejec-
tion of the null hypothesis, while Ri,j = 0 indicates non-rejection.

lag.vec The time lags used in function.

References

Chang, J., Cheng, G., & Yao, Q. (2022). Testing for unit roots based on sample autocovariances.
Biometrika, 109, 543–550. doi:10.1093/biomet/asab034.

Examples

Example 1
Generate yt
N <- 100
Y <-arima.sim(list(ar = c(0.9)), n = 2*N, sd = sqrt(1))
con_vec <- c(0.45, 0.55, 0.65)
lagk.vec <- c(0, 1, 2)

UR_test(Y, lagk.vec = lagk.vec, con_vec = con_vec, alpha = 0.05)
UR_test(Y, alpha = 0.05)

WN_test Testing for white noise hypothesis in high dimension

Description

WN_test() implements the test proposed in Chang, Yao and Zhou (2017) for the following hypoth-
esis testing problem:

H0 : {yt}nt=1 is white noise versus H1 : {yt}nt=1 is not white noise.

Usage

WN_test(
Y,
lag.k = 2,
B = 1000,
kernel.type = c("QS", "Par", "Bart"),
pre = FALSE,
alpha = 0.05,
control.PCA = list()

)

https://doi.org/10.1093/biomet/asab034

30 WN_test

Arguments

Y An n × p data matrix Y = (y1, . . . ,yn)
′, where n is the number of the obser-

vations of the p× 1 time series {yt}nt=1.

lag.k The time lag K used to calculate the test statistic [See (4) of Chang, Yao and
Zhou (2017)]. The default is 2.

B The number of bootstrap replications for generating multivariate normally dis-
tributed random vectors when calculating the critical value. The default is 1000.

kernel.type The option for choosing the symmetric kernel used in the estimation of long-
run covariance matrix. Available options include: "QS" (the default) for the
Quadratic spectral kernel, "Par" for the Parzen kernel, and "Bart" for the
Bartlett kernel. See Chang, Yao and Zhou (2017) for more information.

pre Logical. If TRUE (the default), the time series PCA proposed in Chang, Guo
and Yao (2018) should be performed on {yt}nt=1 before implementing the white
noise test [See Remark 1 of Chang, Yao and Zhou (2017)]. The time series
PCA is implemented by using the function PCA_TS with the arguments passed
by control.PCA.

alpha The significance level of the test. The default is 0.05.

control.PCA A list of control arguments passed to the function PCA_TS(), including lag.k,
opt, thresh, delta, and the associated arguments passed to the clime function
(when opt = 2). See ’Details’ in PCA_TS.

Value

An object of class "hdtstest", which contains the following components:

statistic The test statistic of the test.

p.value The p-value of the test.

lag.k The time lag used in function.

kernel.type The kernel used in function.

References

Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary
vector time series. The Annals of Statistics, 46, 2094–2124. doi:10.1214/17AOS1613.

Chang, J., Yao, Q., & Zhou, W. (2017). Testing for high-dimensional white noise using maximum
cross-correlations. Biometrika, 104, 111–127. doi:10.1093/biomet/asw066.

See Also

PCA_TS

https://doi.org/10.1214/17-AOS1613
https://doi.org/10.1093/biomet/asw066

WN_test 31

Examples

#Example 1
Generate xt
n <- 200
p <- 10
Y <- matrix(rnorm(n * p), n, p)

res <- WN_test(Y)
Pvalue <- res$p.value
rej <- res$reject

Index

∗ data
FamaFrench, 11
IPindices, 14
QWIdata, 24

Coint, 2
CP_MTS, 5, 9, 22

DGP.CP, 8

Factors, 9, 13, 20, 21
FamaFrench, 11

HDSReg, 12

IPindices, 14

MartG_test, 15

PCA_TS, 17, 23, 24, 30
predict.factors, 20
predict.mtscp, 21
predict.tspca, 23

QWIdata, 24

SpecMulTest, 25, 27
SpecTest, 26, 27

UR_test, 28

WN_test, 29

32

	Coint
	CP_MTS
	DGP.CP
	Factors
	FamaFrench
	HDSReg
	IPindices
	MartG_test
	PCA_TS
	predict.factors
	predict.mtscp
	predict.tspca
	QWIdata
	SpecMulTest
	SpecTest
	UR_test
	WN_test
	Index

