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1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large biological data sets, such as
those arising from mRNA expression microarrays or mass spectrometry proteomics. The ClassPrediction

package in OOMPA provides tools to help with the �class prediction� problem. Class prediction is one of
the three primary types of applications of microarrays described by Richard Simon and colleagues. The
point of these problems is to select a subset of �features� (genes, proteins, etc.) and combine them into
a fully speci�ed model that can predict the �outcome� for new samples. Here �outcome� may be a binary
classi�cation, a continuous variable of interest, or a time-to-event outcome.

Most prediction methods involve (at least) two parts:

1. feature selection: deciding which of the potential predictors (features, genes, proteins, etc.) to include
in the model

2. model optimization: selecting parameters to combine the selected features in a model to make predic-
tions.

In this vignette, we illustrate the use of a genetic algorithm for feature selection.
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2 Getting Started

No one will be surprised to learn that we start by loading the package into the current R session:

> library(GenAlgo)

We also use some plotting routines from the ClassDiscovery package.

> library(ClassDiscovery)

3 The Generic Genetic Algorithm

The GenAlg class in the GenAlgo library provides generic tools for running a generic algorithm. Here the
basic idea is that we have a list of features, and we want to select a �xed number, k, of those features to
include in a predictive model. Thus, a candidate solution consists of a vector of length k containing the
indices of the features to be included. The genetic algorithm is initialized by creating a population of such
candidate vectors, and storing it in a data matrix, which is passed as the �rst argument to the GenAlg

function. After supplying all the necessary arguments (as described below) to this function, you update the
population by calling the newGeneration function as many times as necessary. Each iteration computes the
�tness of each candidate solution, selects pairs of individuals to reproduce (with more �t individuals being
more likely to reproduce), and generates a new population that, on average, is expected to be more ��t�
than the previous population.

The syntax of the GenAlg function is as follows:

> args(GenAlg)

function (data, fitfun, mutfun, context, pm = 0.001, pc = 0.5,

gen = 1)

NULL

As just explained, data is the population matrix containing individual candidate solutions as its rows.
You must also supply a �tness function (fitfun) and a mutation function (mutfun) customized to the
current problem. The context argument is a list or data frame that is passed back to fitfun and mutfun

to enable them to take advantage of any auxiliary information needed for them to perform their functions.
The pm argument is the probability that an individual �allele� in the candidate solutions will mutate in any
generation; the pc argument is the probability that crossover will occur during reproduction.

A common mutation rule for feature selection is that any included feature can mutate to any other
potential feature. This rule is implemented by the following function, assuming that context is a data frame
with one row per feature.

> selection.mutate <- function(allele, context) {

+ context <- as.data.frame(context)

+ sample(1:nrow(context),1)

+ }

4 The Tour de France 2009 Fantasy Cycling Challenge

To illustrate the use of the feature-selection genetic algorithm, we turn from the world of genes and proteins to
the world of professional cycling. As part of its coverage of the 2009 Tour de France, the Versus broadcasting
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network ran a �fantasy cycling challenge� on its web site. The (simpli�ed for purposes of our example) rules
of the challenge were to select nine riders for a fantasy team. Each player was given a �xed budget to work
with; each rider �cost� a certain amount to include on the fantasy team. Players could change their selections
during the �rst four stages of the tour. During stages 5 through 21, riders �nishing in the top 15 positions
were awarded points, with higher �nishes garnering more points. Riders in the three �leaders jerseys� were
awarded bonus points. We have put together a data frame containing the cost and scores of all riders who
scored points for this contest during the 2009 tour. The data set can be loaded with the following command;
Table 1 lists a few of the riders, their cost, and total score.

> data(tourData09)

Cost Scores JerseyBonus Total

Albert Timmer (Ned) Skil-Shimano 13 46 0 46
Alberto Contador Velasco (Spa) Astana 95 440 175 615
Alessandro Ballan (Ita) Lampre - NGC 41 92 0 92
Alexandre Botcharov (Rus) Team Katusha 8 30 0 30
Amaël Moinard (Fra) Co�dis, Le Credit en Ligne 6 59 0 59
Amets Txurruka (Spa) Euskaltel - Euskadi 8 91 0 91
Andreas Klöden (Ger) Astana 49 250 0 250
Andy Schleck (Lux) Team Saxo Bank 68 358 0 358
Angelo Furlan (Ita) Lampre - NGC 21 30 0 30
Bradley Wiggins (GBr) Garmin - Slipstream 16 325 0 325
Brice Feillu (Fra) Agritubel 5 198 5 203
Cadel Evans (Aus) Silence - Lotto 78 153 0 153
Carlos Sastre Candil (Spa) Cervelo TestTeam 81 59 0 59
Christian Knees (Ger) Team Milram 7 41 0 41
Christian Vande Velde (USA) Garmin - Slipstream 57 40 0 40

Table 1:

The speci�c challenge is to select nine riders, at a total cost of at most 470, who achieve the maximum total
score. (Our task is easier than that of the participants in the contest, since they had to make their selections
before knowing the outcome. With hindsight, we are trying to �gure out what would have been the best
choice.) Thus, we can de�ne the objective function (or �tness function) for the genetic algorithm:

> scores.fitness <- function(arow, context) {

+ ifelse(sum(context$Cost[arow]) > 470,

+ 0,

+ sum(context$Total[arow]))

+ }

This objective function, scores.fitness, illustrates some conventions of the GenAlg class. First, the �tness
function is always called with two arguments. The �rst argument, arow, is a vector of integers representing
indices into the list of features being selected. In the present case, these represent indices into the tourData09
data frame, and thus correspond to cyclists being considered for inclusion on the ultimate fantasy team.
The second argument, context, is a list (or data frame) containing whatever auxiliary data is needed to
evaluate the �tness of this candidate team. When we actually initialize the GenAlg function, we will pass
the tourData09 data frame in as the context argument. In our problem, any team that costs more than
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470 is invalid, and so it is given a �tness of 0. Otherwise, the �tness of the team is the cumulative total score
that its riders achieved in the 2009 Tour de France.

Now we can initialize a starting population for the genetic algorithm. We will (arbitrarily) start with a
population of 200 individual candidate solutions.

> set.seed(821813)

> n.individuals <- 200

> n.features <- 9

> y <- matrix(0, n.individuals, n.features)

> for (i in 1:n.individuals) {

+ y[i,] <- sample(1:nrow(tourData09), n.features)

+ }

We are �nally ready to initialize the genetic algorithm:

> my.ga <- GenAlg(y, scores.fitness, selection.mutate, tourData09, 0.001, 0.75)

The summary method reports the distribution of ��tness� scores:

> summary(my.ga)

An object representing generation 1 in a genetic algorithm.

Population size: 200

Mutation probability: 0.001

Crossover probability: 0.75

Fitness distribution:

Min. 1st Qu. Median Mean 3rd Qu. Max.

445.0 925.8 1183.0 1210.1 1477.5 2151.0

Now we can advance to the second generation:

> my.ga <- newGeneration(my.ga)

> summary(my.ga)

An object representing generation 2 in a genetic algorithm.

Population size: 200

Mutation probability: 0.001

Crossover probability: 0.75

Fitness distribution:

Min. 1st Qu. Median Mean 3rd Qu. Max.

657 1035 1308 1299 1515 2659

Notice that the mean, but not the maximum �tness, has increased.
Now we can advance through 100 generations:

> for (i in 1:100) {

+ my.ga <- newGeneration(my.ga)

+ }

> summary(my.ga)
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An object representing generation 102 in a genetic algorithm.

Population size: 200

Mutation probability: 0.001

Crossover probability: 0.75

Fitness distribution:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2422 2995 3136 3108 3260 3570

We can access the �best� �tness or the complete �tness vector from appropriate slots in the GenAlg object,
my.ga.

> my.ga@best.fit

[1] 3570

> mean(my.ga@fitness)

[1] 3108.215

Since we also know which �individual� feature set gives the best score in this generation, we can retrieve it
and get a list of cyclists for a pretty good fantasy team (Table 2).

> bestFound <- tourData09[my.ga@best.individual,]

> bestFound <- bestFound[rev(order(bestFound$Total)),]

Cost Scores JerseyBonus Total

Thor Hushovd (Nor) Cervelo Test Team 68 563 60 623
Alberto Contador Velasco (Spa) Astana 95 440 175 615
Gerald Ciolek (Ger) Team Milram 46 413 0 413
Jose Joaquin Rojas Gil (Spa) Caisse d'Epargne 12 399 0 399
Oscar Freire Gomez (Spa) Rabobank 82 369 0 369
Andy Schleck (Lux) Team Saxo Bank 68 358 0 358
Rinaldo Nocentini (Ita) AG2R La Mondiale 16 139 200 339
Nicolas Roche (Irl) AG2R La Mondiale 15 272 0 272
Pierrick Fedrigo (Fra) BBOX Bouygues Telecom 14 182 0 182

Table 2: Best team found by a small genetic algorithm

5 Convergence

How can we tell if the answer found by the genetic algorithm is really the best possible? Actually, in the
present instance, we know that the answer found in our limited application of the genetic algorithm is not
the best possible. The winner of the Versus fantasy cycling challenge in 2009 scored 3, 515 points, which is
more than the best solution we have found so far.

To explore the solution space more completely, we re-ran the genetic algorithm using a starting population
of 1000 individuals (instead of the 200 used above). We let the solutions evolve through 1100 generations
(instead of just 100). In order to allow this vignette to be produced in a timely fashion, we write down (but
do not evaluate) the code to run the genetic algorithm in this way:
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> set.seed(274355)

> n.individuals <- 1000

> n.features <- 9

> y <- matrix(0, n.individuals, n.features)

> for (i in 1:n.individuals) {

+ y[i,] <- sample(1:nrow(tourData09), n.features)

+ }

> my.ga <- GenAlg(y, scores.fitness, selection.mutate, tourData09, 0.001, 0.75)

> # for each generation, we will save the results to a file

> output <- 'Generations'

> if (!file.exists(output)) dir.create(output)

> # save the starting generation

> recurse <- my.ga

> filename <- file.path(output,"gen0000.txt")

> assign('junk', as.data.frame(recurse), env=.GlobalEnv, immediate=T)

> write.csv(junk, file=filename)

> # iterate

> n.generations <- 1100

> diversity <- meanfit <- fitter <- rep(NA, n.generations)

> for (i in 1:n.generations) {

+ base <- ''

+ if (i < 1000) { base <- '0' }

+ if (i < 100) { base <- '00' }

+ if (i < 10) { base <- '000' }

+ filename <- file.path(output, paste("gen", base, i, '.txt', sep=''))

+ recurse <- newGeneration(recurse)

+ fitter[i] <- recurse@best.fit

+ meanfit[i] <- mean(recurse@fitness)

+ diversity[i] <- popDiversity(recurse)

+ cat(paste(filename, "\n"))

+ assign('junk', as.data.frame(recurse), env=.GlobalEnv, immediate=T)

+ write.csv(junk, file=filename)

+ }

> save(fitter, meanfit, recurse, diversity, file="gaTourResults.rda")

Instead, we load the saved results.

> data(gaTourResults)

In Figure 1, we plot the best �tness and the mean �tness as a function of the number of generations
through which the genetic algorithm has been allowed to evolve. The maximum score that we ever achieve
is 3978, and the fantasy cycling team that gives this score is shown in Table 3.

> newBest <- tourData09[recurse@best.individual,]

> newBest <- newBest[rev(order(newBest$Total)),]

In this case, we can prove that this team yields the optimal score. The selected team includes 9 of the 11
highest scoring individual cyclists in the 2009 Tour de France. The two omitted cyclists are Oscar Freire
(cost = 82; total = 369) and Andy Schleck (cost = 68; total = 358. Replacing one of the three cyclists on the
selected team with lower scores than these two riders would increase the cost above the cap of 470, and so
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Cost Scores JerseyBonus Total

Thor Hushovd (Nor) Cervelo Test Team 68 563 60 623
Alberto Contador Velasco (Spa) Astana 95 440 175 615
Mark Cavendish (GBr) Team Columbia - HTC 100 528 25 553
Gerald Ciolek (Ger) Team Milram 46 413 0 413
Jose Joaquin Rojas Gil (Spa) Caisse d'Epargne 12 399 0 399
Franco Pellizotti (Ita) Liquigas 54 337 45 382
Rinaldo Nocentini (Ita) AG2R La Mondiale 16 139 200 339
Tyler Farrar (USA) Garmin - Slipstream 48 329 0 329
Bradley Wiggins (GBr) Garmin - Slipstream 16 325 0 325

Table 3: Best team found by an extensive genetic algorithm

no single change can improve the score. We also consider the possibility of replacing the two lowest scoring
cyclists on the best selected team with one of these high scorers and one other cyclist. Since the two lowest
scoring cyclists have a combined cost of 48+ 16 = 64 and the total cost for the best team is 455 = 470− 15,
we would need to �nd two replacements whose combined cost is at most 64 + 15 = 79. Since the cost to
include Oscar Freire already exceeds this cap, we must �nd another cyclist to pair with Andy Schleck. So,
the cost is bounded by 79 − 68 = 11, while the total score must exceed 329 + 325 − 358 = 296. But there
are no riders in the database meeting these conditions.

5.1 Lessons for Fantasy Cylists

The �ultimate� fantasy cycling team for the 2009 Tour de France, as shown in Table 3, leads to several
conclusions for how to pick a team for this competition. First, the team should be heavily weighted toward
sprinters. Most of the 20 teams in the 2009 tour had one sprinter among their nine riders; the fantasy team
has �ve sprinters (Hushovd, Cavendish, Ciolek, Rojas, and Farrar) out of nine. Second, riders who wear
leaders jerseys are valuable. During the 2009 tour, three riders wore the �yellow jersey� for the overall leader:
Fabian Cancellara, Rinaldo Nocentini, and Alberto Contador; two of those three are on the best fantasy
team. The 'green jersey� for most consistent rider was shared by Mark Cavendish and Thor Hushovd, both
on the best fantasy team. The �polka dot jersey� for best rider in the mountains was worn for nine stages by
Franco Pellizotti. The �nal lesson is to avoid �breakaway� specialists in favor of riders who can win sprints
or place high in the �general classi�cation� for overall best time. Riders who win breakaways are not likely
to score well in more than one stage in a tour; that does not provide enough points to put them among the
overall leaders. (The exception here is Rinaldo Nocentini, whose one breakaway win put him in the yellow
jersey lead for eight days.)

5.2 Lessons for Convergence of Genetic Algorithms

Based on Figure 1, the optimal score is �rst achieved around generation 400. However, the population
temporarily evolves away from this score at about generation 630, but then comes back. Interestingly,
however, the mean �tness decreases for a period even after the maximum appears to stabilize. Taken as a
whole, this �gure suggests that neither tracking the maximum nor the mean �tness, by themselves, gives
a reliable measure of the convergence of the genetic algorithm. Note, by the way, that simple mutations
(which replace one feature with another) can have a large e�ect on the �tness, and thus can have a strong
in�uence on the mean.

One possibility is to look at smoothed changes in the mean and maximum �tness. The next commands
use the loess function to �t a smooth approximation to the changing values of the mean and maximum
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Figure 1: Maximum and mean �tness found in each generation.
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�tness per generation. A scatter plot of these smooth curves is displayed in Figure 2. This �gure suggests
that, at about generation 800, the best �tness stops changing, while the mean �tness continues to increase
slowly. It also suggests that most of the gain in �nding the optimal solution occurred in the �rst 300 to 400
generations.

> n.generations <- length(meanfit)

> index <- 1:n.generations

> lo <- loess(meanfit ~ index, span=0.08)

> lof <- loess(fitter ~ index, span=0.08)

An alternative is to measure the �diversity� of the population. We de�ne the �distance� between two
individuals in the population to be the number of alleles that are di�erent. In other words, we count the
number of di�erent features that the two candidate solutions would select. This measure of distance de�nes
an ultrametric on the space of candidate feature selection solutions, analogous to the Hamming distance
between binary strings. We de�ne the diversity of the population to be the average of the distance between
all pairs of individuals. This measure of diversity is implemented in the popDiversity function in the
GenAlgo package; we used this function above when evolving the population with the genetic algorithm.

Figure 3 overlays the diversity on a plot of the best and mean �tnesses. We note �rst that the average
diversity appears to be negatively correlated with the mean �tness.:

> cor(diversity, meanfit)

[1] -0.9863062

> cor(diversity, meanfit, method='spearman')

[1] -0.9935457

This strong correlation suggests that we might be able to use the mean �tness to draw conclusions
about whether the algorithm has converged. One reason to prefer the diversity, however, is that it is more
interpretable. For instance, we note that the diversity starts in generation zero at a value between eight and
nine. This observation makes sense; two sets of nine riders selected randomly from among the 102 riders who
scored points in the 2009 tour challenge should almost never have more than one overlap. At the point where
we �rst reach the best solution, the average diversity falls to about 2, showing that most pairs of solutions
have seven riders in common. However, the diversity is near 1.5 during the period when the best solution
temporarily drifts away from the optimum. During the �nal phase, however, the diversity drops below 1.25
and stays near that level, suggesting that this might provide a reasonable criterion for convergence. An
additional measure that might be applied when the diversity starts to fall into this range is to compute the
number of individuals in the population that are identical to the best solution:

> temp <- apply(recurse@data, 1, function(x, y) {

+ all(sort(x)==sort(y))

+ }, recurse@best.individual)

> sum(temp)

[1] 297

In this case, the best solution is represented by 297 of the 1000 individual candidates.
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Figure 2: Relationship between the mean and maximum �tness in a population of potential solutions as the
generations evolve. Gray curve tracks the complete �uctuations; colored dots follow the smoothed curves,
with colors the same as in Figure 1.
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Figure 3: Overlay of the average diversity (color) on plots of the best (black) and mean (gray) �tness through
the generations of the genetic algorithm. Horizontal (cyan) lines are located at a diversity of 1, 1.25, and
1.5.
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6 Implications for Gene Expression Signatures

The example presented here has some important implications for applying feature selection to develop gene
expression signatures to predict useful clinical outcomes. The most signi�cant issues relate to the problem
of convergence. The cycling example is likely to be easier than the gene expression problem, since there
are only 102 �cycling-features� (i.e., riders) while there may be several thousand gene-features. In order to
search adequately through the sample space, we needed a population of 1000 individuals evolved through
about 1000 generations. (Even though that means we evaluated up to 1, 000, 000 candidate solutions, this
is still a small number compared to the 2 × 1012 ways to choose nine riders from a list of 102.) Unless
some preliminary �ltering is performed to reduce the number of genes, it will probably take a much larger
population and many more generations to search through gene-space for useful predictive features.

We do expect, however, that the �diversity� will prove useful to monitor convergence even in the gene
expression setting. As mentioned earlier, diversity has the advantage of providing an interpretable condition
for convergence, which does not need to know the ��tness� of the optimal solution in advance. By contrast,
we know that the �tness function must will be di�erent in the gene expression case from the �tness function
used for the fantasy cycling challenge. The underlying di�culty is that we do not have as clear an objective
score. Instead, we can start by considering the problem of selecting features in order to classify samples into
two di�erent groups. If we use something like linear discriminant analysis (LDA), or an equivalent linear
model, to separate the groups, then a natural measure of the �tness of a set of gene-features is the distance
between the centers of the two groups in the resulting multivariate space. This measure is known as the
Mahalanobis distance, and is implemented by the maha function in the GenAlgo package. A �tness function
that is adequate for use in the constructor of a GenAlg object is then provided by the function:

> mahaFitness <- function(arow, context) {

+ maha(t(context$dataset[arow,]), context$gps, method='var')

+ }

where the appropriate context object consists of a list containing the gene expression dataset and a vector
identifying the two groups.
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