Package 'GaussianHMM1d'

February 5, 2025

Title Inference, Goodness-of-Fit and Forecast for Univariate Gaussian Hidden Markov Models

Version 1.1.2

Description Inference, goodness-of-fit test, and prediction densities and intervals for univariate Gaussian Hidden Markov Models (HMM). The goodness-of-fit is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Chapter 10.2 of Remillard (2013) <doi:10.1201/b14285>.

Depends R (>= 3.5.0), doParallel, parallel, foreach, stats

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Bouchra R. Nasri [aut, cre, cph], Bruno N Remillard [aut, ctb, cph]

Maintainer Bouchra R. Nasri <bouchra.nasri@umontreal.ca>

Repository CRAN

Date/Publication 2025-02-05 14:10:06 UTC

Contents

EstHMM1d	 2
EstRegime	 3
ForecastHMMeta	 4
ForecastHMMPdf	 5
GaussianMixtureCdf	 6
GaussianMixtureInv	 6
GaussianMixturePdf	 7
GofHMM1d	 8
Sim.HMM.Gaussian.1d	 9
Sim.Markov.Chain	 10
SimHMMGaussianInv	
Sn	 11

Index

EstHMM1d

Description

This function estimates parameters (mu, sigma, Q) of a univariate Hidden Markov Model. It computes also the probability of being in each regime, given the past observations (eta) and the whole series (lambda). The conditional distribution given past observations is applied to obtains pseudoobservations W that should be uniformly distributed under the null hypothesis. A Cramér-von Mises test statistic is then computed.

Usage

EstHMM1d(y, reg, max_iter = 10000, eps = 1e-04)

Arguments

У	(nx1) vector of data
reg	number of regimes
max_iter	maximum number of iterations of the EM algorithm; suggestion $10\ 000$
eps	precision (stopping criteria); suggestion 0.0001.

Value

mu	estimated mean for each regime
sigma	stimated standard deviation for each regime
Q	(reg x reg) estimated transition matrix
eta	(n x reg) probabilities of being in regime k at time t given observations up to time t
lambda	(n x reg) probabilities of being in regime k at time t given all observations
CVM	Cramér-von Mises statistic for the goodness-of-fit test
U	Pseudo-observations that should be uniformly distributed under the null hypothesis of a Gaussian HMM
LL	Log-likelihood

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.

13

EstRegime

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2); mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05)
data <- Sim.HMM.Gaussian.ld(mu,sigma,Q,eta0=1,100)$x
est <- EstHMM1d(data, 2, max_iter=10000, eps=0.0001)</pre>
```

```
EstRegime
```

Estimated Regimes for the univariate Gaussian HMM

Description

This function computes and plots the most likely regime for univariate Gaussian HMM using probabilities of being in regime k at time t given all observations (lambda) and probabilities of being in regime k at time t given observations up to time t (eta).

Usage

EstRegime(t, y, lambda, eta)

Arguments

t	(nx1) vector of dates (years,); if no dates then t=[1:length(y)]
У	(nx1) vector of data;
lambda	(nxreg) probabilities of being in regime k at time t given all observations;
eta	(nxreg) probabilities of being in regime k at time t given observations up to time
	t;

Value

А	Estimated Regime using lambda
В	Estimated Regime using eta
runsA	Estimated number of runs using lambda
runsB	Estimated number of runs using eta
рА	Graph for the estimated regime for each observation using lambda
рВ	Graph for the estimated regime for each observation using eta

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2); mu <- c(-0.3,0.7); sigma <- c(0.15,0.05);
data <- Sim.HMM.Gaussian.1d(mu,sigma,Q,eta0=1,100)$x
t=c(1:100);
est <- EstHMM1d(data, 2)
EstRegime(t,data,est$lambda, est$eta)
```

ForecastHMMeta Estimated probabilities of the regimes given new observations

Description

This function computes the estimated probabilities of the regimes for a Gaussian HMM given new observation after time n. it also computes the associated weight of the Gaussian mixtures that can be used for forecasted density, cdf, or quantile function.

Usage

ForecastHMMeta(ynew, mu, sigma, Q, eta)

Arguments

ynew	new observations (mx1);
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
Q	transition probality matrix (r x r);
eta	vector of the estimated probability of each regime (r x 1) at time n;

Value

etanew	values of the estimated probabilities at times n+1 to n+m, using the new observations
W	weights of the mixtures for periods n+1 to n+m

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.

4

ForecastHMMPdf

Examples

```
mu <- c(-0.3 ,0.7); sigma <- c(0.15,0.05); Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2); eta <- c(.1,.9);
x <- c(0.2,-0.1,0.73)
out <- ForecastHMMeta(x,mu,sigma,Q,eta)</pre>
```

ForecastHMMPdf Density function of a Gaussian HMM at time n+k

Description

This function computes the density function of a Gaussian HMM at time n+k, given observation up to time n.

Usage

```
ForecastHMMPdf(x, mu, sigma, Q, eta, k)
```

Arguments

х	points at which the density function is comptuted (mx1);
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
Q	transition probality matrix (r x r);
eta	vector of the estimated probability of each regime (r x 1) at time n;
k	time of prediction.

Value

f	values of the density function at time n+k
W	weights of the mixture

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.

Examples

```
mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ;
eta <- c(.9,.1);
x <- seq(-1, 1, by = 0.01)
out <- ForecastHMMPdf(x,mu,sigma,Q,eta,3)
plot(x,out$f,type="1")</pre>
```

GaussianMixtureCdf Distribution function of a mixture of Gaussian univariate distributions

Description

This function computes the distribution function of a mixture of Gaussian univariate distributions

Usage

GaussianMixtureCdf(x, mu, sigma, w)

Arguments

х	Points at which the distribution function is comptuted (nx1);
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
W	vector of the probability of each regime (r x r).

Value

values of the distribution function

Author(s)

F

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Examples

```
mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); w <-c(0.8, 0.2);
x <- seq(-1, 1, by = 0.01)
F <- GaussianMixtureCdf(x,mu,sigma,w)
plot(x,F,type="1")
```

GaussianMixtureInv	Inverse distribution function of a mixture of Gaussian univariate dis-
	tributions

Description

This function computes the inverse distribution function of a mixture of Gaussian univariate distributions

Usage

GaussianMixtureInv(p, mu, sigma, w)

GaussianMixturePdf

Arguments

р	Points in $(0,1)$ at which the distribution function is computed $(nx1)$;
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
W	vector of the probability of each regime (r x 1).

Value

q values of the quantile function

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Examples

mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); w <-c(0.8, 0.2); p <- seq(0.01, 0.99, by = 0.01) q <- GaussianMixtureInv(p,mu,sigma,w) plot(p,q,type="1")

GaussianMixturePdf Density function of a mixture of Gaussian univariate distributions

Description

This function computes the density function of a mixture of Gaussian univariate distributions

Usage

```
GaussianMixturePdf(x, mu, sigma, w)
```

Arguments

Х	Points at which the density is comptuted (n x 1);
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
W	vector of the probability of each regime (r x 1).

Value

f Values of the distribution function

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Examples

```
mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); w <-c(0.8, 0.2);
x <- seq(-1, 1, by = 0.01)
f <- GaussianMixturePdf(x,mu,sigma,w)
plot(x,f,type="1")
```

GofHMM1d	
----------	--

Goodness-of-fit test of a univariate Gaussian Hidden Markov Model

Description

This function performs a goodness-of-fit test of a Gaussian HMM based on a Cramér-von Mises statistic using parametric bootstrap.

Usage

GofHMM1d(y, reg, max_iter = 10000, eps = 1e-04, n_sample = 1000, n_cores)

Arguments

У	(n x 1) data vector
reg	number of regimes
max_iter	maxmimum number of iterations of the EM algorithm; suggestion 10 000
eps	eps (stopping criteria); suggestion 0.0001
n_sample	number of bootstrap samples; suggestion 1000
n_cores	number of cores to use in the parallel computing

Value

pvalue	pvalue of the Cram\'er-von Mises statistic in percent
mu	estimated mean for each regime
sigma	estimated standard deviation for each regime
Q	(reg x reg) estimated transition matrix
eta	(n x reg) conditional probabilities of being in regime k at time t given observa- tions up to time t
lambda	(n x reg) probabilities of being in regime k at time t given all observations
CVM	Cramér-von Mises statistic for the goodness-of-fit test
W	Pseudo-observations that should be uniformly distributed under the null hypothesis of a Gaussian HMM
LL	Log-likelihood

8

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2); mu <- c(-0.3, 0.7); sigma <- c(0.15,0.05)
data <- Sim.HMM.Gaussian.1d(mu,sigma,Q,eta0=1,100)$x
gof <- GofHMM1d(data, 2, max_iter=10000, eps=0.0001, n_sample=100,n_cores=2)</pre>
```

Sim.HMM.Gaussian.1d Simulation of a univariate Gaussian Hidden Markov Model (HMM)

Description

This function simulates observations from a univariate Gaussian HMM

Usage

```
Sim.HMM.Gaussian.1d(mu, sigma, Q, eta0, n)
```

Arguments

mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
Q	Transition probality matrix (r x r);
eta0	Initial value for the regime;
n	number of simulated observations.

Value

х	Simulated Data
reg	Markov chain regimes

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ; mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); sim <- Sim.HMM.Gaussian.1d(mu,sigma,Q,eta0=1,n=100)
```

Sim.Markov.Chain Simulation of a finite Markov chain

Description

This function generates a Markov chain X(1), ..., X(n) with transition matrix Q, starting from a state eta0.

Usage

Sim.Markov.Chain(Q, n, eta0)

Arguments

Q	Transition probability matrix (r x r);
n	length of series;
eta0	inital value in (1,,r).

Value

Simulated Markov chain

Author(s)

х

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ;
sim <- Sim.Markov.Chain(Q,eta0=1,n=100)</pre>
```

SimHMMGaussianInv Simulation of a univariate Gaussian Hidden Markov Model (HMM)

Description

Generates a univariate regime-switching random walk with Gaussian regimes starting from a given state eta0, using the inverse method from noise u.Can be useful when generating multiple time series.

Usage

SimHMMGaussianInv(u, mu, sigma, Q, eta0)

Arguments

u	series of uniform i.i.d. series (n x 1);
mu	vector of means for each regime (r x 1);
sigma	vector of standard deviations for each regime (r x 1);
Q	Transition probality matrix (r x r);
eta0	Initial value for the regime;

Value

х	Simulated Data
eta	Probability of regimes

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

References

Nasri & Remillard (2019). Copula-based dynamic models for multivariate time series. JMVA, vol. 172, 107–121.

Examples

```
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2)
set.seed(1)
u <-runif(250)
mu <- c(-0.3 ,0.7)
sigma <- c(0.15,0.05);
eta0=1
x <- SimHMMGaussianInv(u,mu,sigma,Q,eta0)</pre>
```

Sn

Cramer-von Mises statistic for goodness-of-fit of the null hypothesis of a univariate uniform distrubtion over [0,1]

Description

This function computes the Cramér-von Mises statistic Sn for goodness-of-fit of the null hypothesis of a univariate uniform distrubtion over [0,1]

Usage

Sn(U)

Arguments U

vector of pseudos-observations (apprimating uniform variates)

Value

Sn Cramér-von Mises statistic

Author(s)

Bouchra R Nasri and Bruno N Rémillard, January 31, 2019

Index

EstHMM1d, 2 EstRegime, 3

 $\begin{array}{l} \mbox{ForecastHMMeta}, 4 \\ \mbox{ForecastHMMPdf}, 5 \end{array}$

GaussianMixtureCdf, 6 GaussianMixtureInv, 6 GaussianMixturePdf, 7 GofHMM1d, 8

Sim.HMM.Gaussian.1d,9 Sim.Markov.Chain,10 SimHMMGaussianInv,10 Sn,11